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Abstract—The fifth generation of mobile networks (5G) is 

rapidly reaching deployment across the globe, promising a series 

of advances for vertical service providers, both in terms of 

performance and in terms of operational capabilities. In this 

context, the 5G-IANA Network Application platform focuses on 

the rapidly advancing domain of intelligent, data centric, Artificial 

Intelligence / Machine Learning (AI/ML)-enabled applications, 

with a particular focus on the automotive domain. In this paper, 

we present the key functional features designed for the support of 

such services including the integration of (mobile) far-edge 

resources, as well as ML-aware orchestration primitives. This 

includes novel features such as decision support for the optimal 

distribution of end-to-end ML pipelines, as well as run-time 

support for client selection in Federated Learning setups, far-edge 

failure handling and distribution drift aware lifecycle 

management. Such features come to address a series of limitations 

associated with legacy 5G management & orchestration systems, 

such as resource consumption of data centric services and privacy 

support. In this context, we further discuss the new opportunities 

arising for service provisioning and corresponding business 

models in the automotive ecosystem, with a particular emphasis on 

the implications of the emerging data and/or ML-model sharing 

schemes. 

 
Index Terms—5G, AI/ML, management, orchestration, CAM, 

vehicular, federated learning 

I. INTRODUCTION 

G  is expected to provide the connectivity fabric for a 

multitude of novel services in a series of vertical domains 

e.g., automotive, manufacturing, etc., to name a few. In 

numerous cases, these services are characterized by the pivotal 

role of the vertical-oriented end devices e.g., fleet vehicles, 

factory robots/Automated Guided Vehicles (AGVs), etc., 

which, as opposed to general purpose terminals e.g., 

smartphones, are typically under the operational control of the 

vertical service provider. This role often manifests itself 
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through the generation of valuable data capturing (vertical) 

operational conditions and further feeding decision making and 

eventually AI/ML-enabled intelligent automated services. In 

this paper we focus on the Automotive domain as a notable 

example domain, of particular economic interest. Indeed, the 

global connected car market is projected to reach a value of 

€200 billion by 2025, growing at a compound annual growth 

rate (CAGR) of 14.8% from 2018 to 2025. It is also forecast 

that more than 125 million passenger cars produced in the next 

four years will be equipped with embedded connectivity, out of 

a total of 1.2 billion motor vehicles in use worldwide1. This 

connectivity is expected to fuel a series of AI/ML-based 

services, such as Automated Driving, Trajectory Planning, 

Preventive Maintenance, etc., which rely on the rich data 

generated by vehicles, often (expected to be) operated in fleets 

e.g., in Mobility-as-a-Service (MaaS) schemes [4], 

transportation/logistics truck platoons [5]. Such data include 

mobility traces, sensor readings, communication data, etc., and 

can often reach high volumes e.g., up to TBs per vehicle per day 

[6]. 

While enhanced 5G connectivity is rightfully seen as a 

facilitator to such services, a series of constraints raise 

significant barriers in translating this valuable data to services. 

Privacy concerns, energy consumption / sustainability 

requirements, economic viability and performance reasons 

often challenge the well-established centralized model that 

largely builds on the aggregation of high volumes of data in 

centralized data lakes [7]. 

Admittedly, several solutions have emerged against the 

aforementioned barriers e.g., Federated Learning solutions 

against privacy restrictions [8], distributed computing systems 

for the support of the compute continuum e.g., Kubernetes2, 

MicroK8s3, KubeEdge4, as well as mobile offloading 

optimization solutions tackling energy-performance tradeoffs 

1 https://www.marketsandmarkets.com/PressReleases/connected-cars.asp   
2 Kubernetes, https://kubernetes.io/ (last accessed 01/11/2022) 
3 MicroK8s, https://microk8s.io/ (last accessed 01/11/2022) 
4 KubeEdge, https://kubeedge.io/en/ (last accessed 01/11/2022) 
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[9]. Nevertheless, as we discuss in this paper, such individual 

solutions lack a holistic service-oriented approach that would 

inherently integrate service management and provisioning 

considerations, taking into account the aforementioned 

limitations. Most importantly they lack visibility and control of 

vertical far-edge devices5 and their data in a privacy aware, but 

unified, in terms of 5G-enabled service provisioning approach. 
In this context, this paper presents the 5G-IANA Network 

Application (5G) service provisioning platform, which aims to 

address the above limitations by supporting:  

• The encapsulation of data generation, pre-processing and 

processing within service level re-usable and orchestrate-

able application and network functions (AFs/NFs), 

organized in Network Application packages. 

• A clear separation between vertical customer facing 

functionality and network side operations, including 

network slicing, as well as Management & Orchestration 

(M&O) operations. 

• The explicit support of service provisioning primitives on 

top of far-edge resources, allowing to move any step of the 

data manipulation process across the extended compute 

continuum i.e., including the user equipment (UE). 

• The explicit support of distributed ML schemes such as 

Federated Learning (FL).  

Focusing on the automotive domain, we discuss how these 

features enable data centric services and novel use cases that 

were previously either impossible or inefficient to support, 

giving ground to new business models.  

II. CHALLENGES  

A. Privacy 

Privacy concerns increase with the integration of devices that 

sense the environment of the terminal equipment user, and 

capture potentially sensitive / personal data e.g., daily 

trajectories, communication patterns, video footage or even 

Cooperative Awareness Messages (CAM) and Decentralized 

Environment Notification Messages (DENM) in Intelligent 

Transportation System (ITS) applications, etc. Subject to the 

enforcement of the European General Data Protection 

Regulation (GDPR)6, these concerns are inherently tight with 

the aggregation of this data at centralized locations and their 

exposure to vertical service providers (or even third parties). As 

the 5G/6G ecosystem is evolving along the lines of digital 

transformation, including Private 5G deployments [10], more 

and more cases emerge where the sensing (end) device is owned 

by the vertical service operator e.g., vehicle fleets, smart city 

sensors (cameras). Nevertheless, privacy concerns do remain in 

many cases associated to the participation of vertical service 

customers e.g., vehicle fleet owner (smart mobility), smart city 

citizen. In view of the extend of digital transformation already 

taking place, explicit user consent, that often suffices to provide 

a legal basis for data exposure, may not be taken for granted. 

 
5 By far-edge devices we refer to User Equipment (UE) connected to the 

remainder of the 5G System infrastructure through the Uu interface. 

B. Resource efficiency – Sustainability 

Centralized data aggregation (and subsequent processing) may 

not be preferable, even in cases where privacy restrictions are 

not present or user consent if available. The potentially high 

volume of data generated by the far-edge devices may challenge 

a data lake model, subject to the associated resource 

consumption i.e., data aggregation may result in the excessive 

utilization of available bandwidth yielding a prohibitive energy 

and/or monetary cost footprint [2][3]. Obviously, this is only 

part of a broader optimization challenge which further includes 

aspects related to processing (energy) costs and performance 

tradeoffs. As discussed in [1] [2], the optimal dimensioning and 

placement of a data centric vertical service depends on the 

specificities of the vertical service in terms of data volume, as 

well as AI/ML aspects e.g., type/size of ML model used, 

hyperparameters, etc. The challenge becomes even more 

profound when further considering the continuous adaptation of 

the vertical service at hand to data distribution drifts, resulting 

in repetitive data aggregation and processing tasks [11]. 

C. Obstacles to DML/FL Schemes 

The above challenges point to distributed solutions, where 

computation (i.e., ML training) takes place at the data source, 

avoiding the exposure of private data and the potentially 

excessive resource consumption associated to data aggregation. 

Obviously, these are functional features of FL [13], which 

already emerges as a strong candidate solution to the problem. 

FL implementations are currently largely provided as an over-

the-top solution. Practical frameworks already exist7 able to 

deploy an FL-enabled service over 5G. However, their 

operational scope does not go beyond the edge of the fixed 

network. Supporting such distributed ML (DML) schemes at 

their full extend i.e., over UE devices generating the data, 

currently requires an out-of-band mechanism i.e., decoupled to 

service provisioning inside the network. In view of the 

increased penetration of 5G enabled connectivity in IoT 

domains and digital transformation, this causes a problem as it 

overlooks the fact that UE-connected devices may well/often 

belong to the operational domain of the vertical service provider 

e.g., vehicle fleet, Industry 4.0 robots, etc., especially in view 

of Private 5G deployments.  

III. THE 5G-IANA NETWORK APPLICATION 

APPROACH 

The 5G-IANA Network Application experimentation platform 

[15] high-level design is presented in Figure 1. The proposed 

architecture aims to tackle the aforementioned limitations, 

offering service providers mechanisms to easily design 

distributed intelligent services, which span from the remote 

cloud to the far-edge segment, and request their provisioning on 

top of 5G-enabled infrastructures. The platform is realized by 

four main building blocks: 

• Network Application Orchestration and Development: 

the entry point for service providers. It exposes 

functionalities for designing distributed services composed 

6 https://gdpr-info.eu/  
7 E.g., FLOWER: https://flower.dev/ (last accessed: 01/11/2022) 

https://gdpr-info.eu/
https://flower.dev/


3 

MANUSCRIPT ID NUMBER: 22-00215.R1 

 

by Network Applications. This layer hosts also a catalogue 

of available Network Applications that can be used and 

chained to realize the desired service. 

• Slice Management and Resource Orchestration: this 

layer implements the functionalities for verifying the 

availability of a network slice instance suitable for 

supporting the operation of the vertical service. It also 

handles the orchestration of computational resources to be 

allocated to run the Network Applications. 

• Data Collection, Monitoring and Analytics: it realizes 

the collection of data from distributed data sources (i.e., 

Network Application, infrastructure hosts etc.) and 

provides analytics based on service-level policies to 

optimize the Lifecycle Management (LCM) operations. 

• DML Orchestration: provides explicit support for ML-

oriented services, including FL primitives such as client 

selection and enhanced LCM e.g., drift management. 

The platform provides service providers with the ability to wrap 

all data manipulation processes within Network Applications 

that can be re-used in broader service chains/graphs. The 

Network Application catalogue builds atop the Network 

Application Package construct. On the one side, the platform 

exposes this construct to service providers, allowing them to 

describe their service (see Section III.A). On the other side, the 

platform interfaces both the 5G System and the available far-

edge/UE-side resources/nodes (Section III.B) so as to enable a 

series of Distributed Machine Learning Orchestration (DMLO) 

functional primitives (Section III.C). In the following, we 

describe the main concepts behind the platform. 

 

 
Figure 1: 5G-IANA Network Application (NetApp) Experimentation 

Platform 

A. Network Application Package 

In 5G-IANA, a Network Application is defined as a virtualized 

application that leverages 5G performance capabilities. Each 

Network Application implements and exposes a specific 

service. Network Applications constitute baseline components 

within more complex and distributed service-chains, depending 

on the specific logic that the service provider would like to 

implement. The Network Application Package is the construct 

that enables the Network Application chaining, orchestration 

and possible reuse in multiple vertical services. Indeed, the 

proposed Network Application Package information model has 

the primary objective of facilitating the re-usage of a Network 

Application by service providers to realize new 5G-enabled 

end-to-end services. To this end, the Network Application 

Package must include two different layers of information: 

• Service-level information: it aims at simplifying the re-

usage of a Network Application Package. Typical 

information includes the Network Application 

documentation, especially for what concerns the exposed 

services and interfaces and how the proper operation of the 

Network Application can be assessed. In addition, part of 

the information is structured in a Network Application 

Template that specifies high-level Quality of Service 

(QoS) parameters (e.g., the number of UEs to be 

accommodated). The Network Application Template 

includes also a high-level representation of the Network 

Application graph in terms of constituent components and 

related constraints e.g., features of vehicular (far-edge) 

resources required in service provisioning.  

• Orchestration-level information: this type of information 

is used to actually perform the provisioning and LCM of a 

Network Application. It includes the expected 5G QoS 

indicators to be fulfilled formalized into a Network Slice 

Type (NEST) template. Network Application components 

packages and cloud-native service descriptors (i.e., 

Kubernetes compatible service templates) are included to 

enable the actual provisioning and orchestration of the 

Network Application. 

Figure 2 provides a visual overview of the 5G-IANA Package 

information model. 

 

 
Figure 2: 5G-IANA Network Application (NetApp) Package 

Network Application packages are baseline components for 

automotive verticals to create and operate in a facilitated 

manner innovative distributed service-chains that leverage 5G 

services. Indeed, one or more Network Application packages 

can be re-used and composed together by verticals: the service 

provider should understand which services a Network 

Application provides and how it can be chained with its own 

Network Applications, while the inner details related to the 

Network Application deployment are not exposed and its 

orchestration is handled in a transparent manner by the 

proposed platform.  

Reusability is the “leitmotiv” behind the proposed information 

model. Examples of Network Application Packages to be used 

as baselines to compose new Automotive services include 

vehicles’ communication services (e.g., ETSI ITS long-

distance communication), device-specific interfacing services 

(e.g., Advanced Driver Assistance Systems (ADAS) interfaces, 

sensors/actuators interfaces, cameras interfaces, etc.). Also, 

specific services related to manoeuvres coordination, 
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infotainment etc. can be packaged as Network Applications and 

reused/chained with different Network Applications exposing 

compatible interfaces. 

The described modelling is suitable to support the orchestration 

of AI/ML Network Applications, which indeed bring specific 

requirements in terms of data availability, data types, areas of 

service coverage, etc. As depicted in Figure 3, AI/ML pipelines 

composed by different functions can be packaged as DML 

Network Application service-chains and deployed on-demand 

to support the operation of vertical services. The possibility of 

packaging AI/ML pipelines into Network Applications and 

orchestrating them across remote cloud, edge and far-edge 

resources brings a great opportunity to verticals for exploiting 

the AI/ML potential in the Automotive segment.    

 

 
Figure 3: DML Service-chain Example 

B. UE Integration 

Given the focus on the automotive vertical, the far-edge devices 

in 5G-IANA, can be of the following types: 

• On-Board Unit (OBU): it is the main element on the 

vehicle that is responsible for the communication 

between the services on the vehicle and the edge and 

cloud services. 

• Road-Side Unit (RSU): it is used to collect data from 

roadside sensors, process them, and provide the raw or 

processed data to the relevant edge and cloud services. 

The OBUs and RSUs, that are considered in 5G-IANA, are 

enhanced devices with respect to the currently commercially 

available ones, since they are devised: (i) to support AI 

applications (i.e., they are equipped with graphics processing 

units), and (ii) to be added as Points of Presence (PoPs) in the 

5G-IANA service provisioning platform. These devices can 

indeed support the orchestration and the LCM of Network 

Applications through the deployment of virtualization and 

orchestration tools such as Kubernetes. 

The service provisioning to OBUs and RSUs is critical from 

different points of view. First, the OBUs and RSUs are typically 

embedded devices, and they likely have a constrained 

availability of compute and storage resources. Second, the 

availability and quality of network connectivity of these far-

edge devices may also change a lot depending on their physical 

location. Furthermore, the OBUs’ connectivity varies over time 

as the vehicles move. 

To achieve an effective service provisioning, it is essential that 

the 5G-IANA platform considers all these aspects. The far-edge 

devices continuously have their compute and storage resources, 

as well as 5G connectivity status monitored (see Data 

Collection, Monitoring and Analytics). This information is 

provided to the 5G-IANA Network Applications provisioning 

platform in such a way that it can decide how and when to 

provision Network Applications to the OBUs and RSUs in 

order to fulfil the Service Level Agreement (SLA) of the 

different applications that should be deployed. 

The Network Applications provisioning service can also be 

customized depending on the current location of OBUs. This 

information allows for implementing a service provisioning 

tailored to the needs of OBUs that are currently in a given 

geographic area and therefore have special needs (e.g., 

provisioning a Network Application related to a country-

specific regulation). This functionality further gives ground to 

the Client Selection feature of the Distributed ML Orchestrator 

(DMLO) as described in the following. 

The last aspect to be considered in the 5G-IANA context is that 

the OBUs and RSUs may lose the connection to the service 

provisioning platform. This event must be properly handled 

from both platform and far-edge device sides. Through 

monitoring, the platform identifies the disconnection, informs 

the relevant involved actors, and manages the reconnection 

event. The OBUs and RSUs should be able to manage the 

provisioned Network Applications without the support of the 

service provisioning platform for ensuring the continuity of the 

operations. 

C. Distributed ML Orchestration 

The pervasiveness of AI/ML in various vehicular applications 

goes hand in hand with the requirement to wrap UE Integration 

toolsets as the above, in functional, ready-to-use frameworks, 

where minimal domain expert knowledge and resources are 

required for configuration/optimization. ML-as-a-Service 

(MLaaS), which is currently limited to (centralized) cloud 

services, has emerged as a notion that aims to ease the process 

of ML training and deployment, by abstracting away challenges 

related to the intermediate steps of the ML process e.g., data 

acquisition, storage, feature engineering, data cleaning, tuning, 

training, monitoring, etc. The DMLO seeks to extend the 

traditional concept of MLaaS, facilitating AI/ML deployment 

in distributed (far-edge) environments. In that sense, the UEs 

(solely regarded as data sources in the past) can be part of the 

training process, therefore enabling the deployment of 

distributed ML schemes (see Figure 4) such as FL. In the 

following, we detail the primitive functionalities of the DMLO, 

which realize baseline M&O and LCM support. 

ML-pipeline topology optimization: The selection of the most 

appropriate overlay service topology, corresponding to the 

placement of the various elements of a ML-pipeline on the 

compute continuum (underlying physical topology), depends 

on several factors ranging from privacy restrictions to resource 

consumption costs and energy footprint, as discussed in Section 

II, i.e., from fully distributed star topology in typical FL 

environments, to fully centralized ones (see Figure 4). While in 

some cases the decision is straightforward e.g., FL for privacy 

sensitive services, in other occasions it may require more 

complex optimization logic e.g., related to the resource 

footprint [1]. The DMLO aims to provide support for such cases 

by (i) realizing the corresponding decision support algorithms 
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[1], and by (ii) guiding the vertical service provider in the 

delivery of the required input information e.g., on the available 

sizes of the ML model at hand, the expected volume/rate of 

data, privacy requirements, desired UE features such as 

location, etc.   

 

 
Figure 4: ML-as-a-Service examples: (top) fully distributed, FL-

based deployment; (bottom) semi-distributed / centralized (hybrid) 

deployment 

Client Selection: Choosing the clients (far-edge nodes/UEs) 

that will participate in each training round is a challenging 

problem in any distributed ML task [12]; a suboptimal selection 

may not only introduce delays in the training process, but also 

endanger the convergence of ML task. For that cause, the 

DMLO is designed to offer a multi-parameter selection scheme, 

based on both ML-specific (e.g., feature availability, data 

entropy, data freshness, etc.) and generic (data volume, 

connectivity, processing capacity, etc.) client criteria. On top of 

these criteria, client selection can be performed in various 

modes with respect to temporal granularity: 

• One-off, where client selection occurs only once, 

during initialization (minimal overhead, low 

flexibility). 

• Iterative, in a per training round basis (medium 

overhead, more flexibility). 

• Event-based i.e., upon node change detection 

(maximum flexibility and overhead). 

Node Failure Handling: The DMLO is responsible for 

identifying a potential node failure e.g., due to loss of 

connectivity, and subsequently supporting graceful handling in 

the training process, by communicating related information to 

the AI/ML service. By leveraging the node (UE) health 

monitoring functionality (see also Figure 1 and Section III) 

provided by the platform, stragglers and drop-out nodes can be 

identified. Subsequently, the training process can be modified 

according to policies specified by the vertical service provider 

e.g., use event-based client selection primitives to remove a 

straggler node in a synchronous ML/FL scheme. 

Termination Control and Model Monitoring: Refers to LCM 

handling i.e., controlling when the training process stops, 

subject to predefined criteria, related to e.g., ML task 

convergence, resource consumption restrictions, etc. Upon task 

completion, the (trained) deployed ML model performance is 

monitored at regular intervals, to account for model ageing i.e., 

degradation of model’s accuracy, due to a (severe) change in 

the underlying data distribution. In the latter case, the DMLO 

will provide an option for the automated re-initialization of the 

ML training process. 

IV. BUSINESS-LEVEL OPPORTUNITIES: THE 

AUTOMOTIVE CASE  

5G promises to unlock new business models and enlarge the 

existing ecosystem. Going one step further, the creation of 

platforms like 5G-IANA will give the opportunity to third 

parties, that until now had no such role in the ecosystem, to 

create and/or offer their own Network Applications and 

services to users. By analyzing the rapid growth of private 

networks in the US, as well as the central role of cloud 

infrastructure providers like Amazon and Microsoft offering 

their services to users, either directly or through Mobile 

Network Operators (MNOs) (end-to-end solution), we expect 

that something similar will happen to platforms like 5G-IANA 

used for the development and provisioning of Network 

Applications. Especially in the automotive sector, there is a 

number of established stakeholders like the Vehicle 

Manufacturers (Original Equipment Manufacturers, OEMs) 

that are trying to identify their position in the new ecosystem. 

Towards this direction, we initially identify the stakeholders 

that are expected to have (at different degrees) interactions with 

the 5G-IANA platform and group them into the following broad 

categories:  

• Infrastructure providers who provide different types of 

resources such as MNOs, Cloud Providers and Road 

Infrastructure operators.  

• Vendors who provide either H/W or S/W to all other 

actors. 

• Vehicle manufacturers (OEMs) who provide the 

vehicles. 

• Related to compliance, such as the different regulatory 

authorities, standardization bodies and policy makers. 

• Service developers who include all types of service 

creators and research centers. 

• Network Application-related players who include both 

Network Application developers and providers. 

• Service providers that provide the service to users. 

• Users that can be classified into Business in a B2B 

relation and customers (B2C). 

Depending on the type of the developed Network Application, 

different stakeholders will interact with the 5G-IANA platform. 

Hereby we focus on the generic scenario where a stakeholder 

who owns a fleet of vehicles is in the position to collect data 

that can be used from the AI/ML models and then by different 

services. The following business models can then be defined 

based on the different levels of synergies that can be achieved 

between the stakeholders:  

Single owner-user: the vertical user (fleet owner) is leveraging 

the data collected from its own fleet and uses it for its own 

benefit (for example predictive maintenance of the fleet 

vehicles). In this model, there can be several fleet owners that 

use their own data leading to the creation of different silos. It 

should be highlighted that the semi-distributed / centralized 

(hybrid) deployment of Figure 4 can be used in this case. 

Multiple owner-users: The second model includes the 

collaboration among fleet owners with the exchange of the 

models among them in an effort to increase the flexibility and 
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reliability of the services that use the collected data. (Cross-

silo). In this case, a fully distributed FL-based deployment can 

be used. Each fleet uses the data to create a model which, 

combined with other models, can result in an aggregated model. 

That way, data are not exposed to other actors while at the same 

time all involved actors benefit from the aggregated model. 

Another option would be to exchange the models through a 

dedicated P2P network that will be formed by the interested 

parties. 

Single – multiple owners – third parties as users: In this model, 

the vertical user(s) are providing the models to third parties that 

are interested to improve their services. Third parties can use 

the model from single users or combine the models from several 

users to create an aggregated model. 

Single – multiple owners and MNO as a user: This model 

applies in the particular scenario where the AI/ML training 

process focuses on use cases with particular interest for the 

MNOs i.e., Predictive QoS [14]. Here, the data collected refer 

to the performance of the network as perceived by the vertical 

end user(s) and can be enhanced by network side data e.g., cell 

conditions. A synergy can be envisioned where the MNO can 

act as the eventual recipient and operator of the trained model 

i.e., in delivering Predictive QoS to automotive applications. 

The model can be trained on a multiplicity of sources, namely 

the vertical users themselves taking advantage of the high 

number of available data coming from their devices. It is noted, 

that alternatively, costly measurement campaigns are the only 

option for MNOs to collect their own data about network 

performance. MNOs can either exploit a single model or 

aggregate the models of different vertical users. Different 

agreements between MNOs and users on how to define the 

price for the models can be made.   

V. CHARACTERISTIC USE CASE 

In this section, we describe a characteristic use case (remote 

driving) that is enabled by the 5G-IANA Network Application 

(5G) service provisioning platform. This use case consists of 

three distinct and standalone services (Network Applications) 

that may be combined to run in sequence: a) an ML training 

service aimed to support the delivery of a trained ML model 

suitable to deliver QoS predictions [14], based on data 

generated by the vehicles, b) a network status monitoring and 

predictive QoS inference service, and c) a vertical-/application-

specific remote driving service, that is tailored to the 

requirements and needs of any third-party automotive service 

provider. The remote driving service is meant to consume the 

inference service, i.e., to utilise the related predictive QoS 

information offered through the monitoring of the 5G network 

status from a UE/OBU perspective. Similarly, the inference 

service utilises the model artefact produced by the training 

service. 

The training and inference services are enabled by means of the 

DMLO part of the 5G-IANA Network Application platform 

with the assistance of data generated by the far-edge devices 

(i.e., OBUs) (see Section III.B). All services are realized, by the 

respective vertical service provider(s), with the appropriate 

configuration of the Network Application Package service-

level and orchestration-level information (see Section III.A) 

through the 5G-IANA Platform. The resulting service chain(s) 

is(are) composed of reusable AFs/NFs, offered by the Network 

Application “starter-kit” and any other proprietary VNFs at 

hand, stitched together in a meaningful order and with an 

appropriate configuration. 

Delving into more details regarding this specific vertical 

service, and in particular the remote driving use case in the 

context of the 5G-IANA Network Application platform, this is 

envisaged to become reality as follows: 

Training service (Network Application): The following 

functionality is realized (see Figure 5): (1) a model aggregator 

(here, lying in a Multi-access Edge Computing (MEC) server) 

conducts Client Selection for instance on node (vehicle) 

location, data availability, data volume, and data features 

criteria; this selection process is enabled by the DMLO which 

maintains a view of the available OBUs; (2) dispatches the 

currently available global model to the selected set of OBUs; 

(3) the OBUs perform local model training; (4) they upload the 

local models back to the aggregator, which then (5) aggregates 

the local models to produce a fresh version of the global model.  

 

 
Figure 5:The DML-FL framework enabled through the 5G-IANA 

platform 

Inference service (Network Application): Then, using the latest 

available version of this global model, each OBU would be in 

the position to conduct inference, namely, as examples, to 

conduct data traffic / QoS predictions, and to distinguish 

between normal and abnormal network behaviours as an 

attempt to predict network service deterioration. Alternatively, 

the global model can be deployed at the edge remotely 

supporting predictions for the vehicles; a decision subject to 

resource optimization (see Section III).  

Remote driving service (Network Application): Then, the 

consumption of the previous services by the remote driving 

service is realized with the delivery of an In-advance QoS 

Notification (IQN) to the latter. The purpose of the IQN would 
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be to help the remote driving application take a more informed 

decision in the context of expected QoS degradation e.g., a 

triggering of an “alarm”, making a remote operator take full 

control and drive the vehicle (see Figure 6); or/and the 

adjustment of the autonomous vehicle’s video stream quality so 

that fewer network resources are consumed; or/and instructing 

the vehicle to safely make a stop, among other potential options. 

This example use case can be mapped to several business 

models (see Section IV). One potential option is the “single 

owner-user” model, where the OEM in charge of the remote 

driving application uses the QoS prediction inference that is 

prepared exclusively by its own fleet. However, we cannot 

exclude cases where each one of the aforementioned three 

distinct services is owned and run by three different OEMs, who 

use SLAs in order to collaborate with each other and take 

advantage of each other’s offered services. Another viable 

business model is the “multiple owner-users” (i.e., cross-silo 

concept), where the training model is built through all involved 

OEMs’ fleet-generated data. Such an approach would be 

particularly valuable, as it would lead to the collection of more, 

in terms of quantity and of geospatial spread, real-time 

network-related data, and thus, to the training of a more 

accurate ML model. In turn, this would produce more reliable 

IQNs, handed over for the disposal and management of more 

than one fleet owners, enforcing mutual benefits for all 

involved parties. Privacy-related challenges are not to be 

neglected though in such kinds of scenarios, as discussed in 

previous sections (Section II-A). 

VI. CONCLUSION 

The 5G ecosystem is rapidly emerging with deployments across 

the globe promising a series of performance and operational 

advances to vertical service providers. The 5G-IANA Network 

Application platform aims to take a next step in this direction 

in supporting next generation intelligent, AI/ML-enabled 

automotive services. This is accomplished through a series of 

functional features including the LCM of AI/ML pipelines, 

including the optimized selection of the corresponding pipeline 

component placement across the compute continuum, which 

subsequently builds on innovative platform features such as the 

support for service provisioning over far-edge resources, client 

selection capabilities in federated learning deployments, failure 

handling and drift management. This is expected to facilitate a 

series of interesting service provisioning / business models, 

including cross-silo interactions.  
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