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Abstract—When users exchange data with Unmanned Aerial
Vehicles - (UAVs) over Air-to-Ground - (A2G) wireless commu-
nication networks, they expose the link to attacks that could
increase packet loss and might disrupt connectivity. For example,
in emergency deliveries, losing control information (i.e., data
related to the UAV control communication) might result in
accidents that cause UAV destruction and damage to buildings
or other elements. To prevent these problems, these issues must
be addressed in 5G and 6G scenarios. This research offers a
Deep Learning (DL) approach for detecting attacks on UAVs
equipped with Orthogonal Frequency Division Multiplexing -
(OFDM) receivers on Clustered Delay Line (CDL) channels
in highly complex scenarios involving authenticated terrestrial
users, as well as attackers in unknown locations. We use the
two observable parameters available in 5G UAV connections:
the Received Signal Strength Indicator (RSSI) and the Signal to
Interference plus Noise Ratio (SINR). The developed algorithm
is generalizable regarding attack identification, which does not
occur during training. Further, it can identify all the attackers in
the environment with 20 terrestrial users. A deeper investigation
into the timing requirements for recognizing attacks shows that
after training, the minimum time necessary after the attack
begins is 100 ms, and the minimum attack power is 2 dBm, which
is the same power that the authenticated UAV uses. The developed
algorithm also detects moving attackers from a distance of 500
m.

Index Terms—Cybersecurity, Convolutional Neural Networks,
Deep Learning, Jamming Detection, Jamming Identification,
Unmanned Aerial Vehicles, 5G;

I. INTRODUCTION

Unmanned Aerial Vehicles - (UAVs) will integrate into 5G
and 6G networks to provide delivery services, security, general
and risky inspections, emergency services, and other functions
inside and outside the network. The logistics industry will
benefit first from using UAVs in their ecosystem, followed
by all other vertical industries. In addition to coverage, high
throughput, and low latency requirements, there is an increas-
ing demand for secure and reliable connections with powerful
data protection [1]. We expect that emergency and high-value
transportation, whose success depends on the capacity to com-
municate reliably and securely, will employ UAVs to provide
high-quality services at lower costs [3]. Due to their aerial
nature, UAVs provide faster and more flexible network services
at higher data rates since they have complete control over their
movement and a high probability of establishing robust Line-

of-Sight (LoS) communication links. However, the vulnerabil-
ity of wireless Air-to-Ground - (A2G) communication links
make UAVs susceptible to attacks that increase packet loss or,
even worse, completely lose communication. In order to keep
UAV communications safe, it is crucial to detect potential risks
and implement countermeasures. There is extensive research
on Anti-Jamming techniques. Two established approaches to
identify jamming are: analyzing the packet delivery ratio and
the received signal strength. Both mechanisms deal with a
high amount of lost information before detecting the attack. In
ultra-dense networks, the overall amount of connected devices
might hide the presence of local jammers. Finding other ways
to address security issues in UAV networks is vital.

Currently, researchers are adopting machine learning tech-
niques for sequence prediction problems with spatial inputs
and pattern recognition [2]. As a part of machine learning,
Deep Learning (DL) research exploits algorithms to make
models with high-level data abstractions by using multi-
ple processing layers with complex structures. Deep Neural
Networks (DNNs) such as Convolutional Neural Networks
(CNNs) [3], [4] with Long Short-Term Memory (LSTM) or
attention layers are used for temporal modeling, and to define
universal functions in complex wireless scenarios. [5] [4].
These characteristics make them suitable for applications that
deal with time series and spatial data, such as interference
identification in wireless networks. The signal under analy-
sis uses specific features to detect anomalies. The authors
in [6] add an attention layer in their CNN to track long
temporal variations in the time domain gradients. Some pre-
trained networks do not require re-design because they use
transfer learning methods to learn classification procedures.
For example, the authors in [7] use pre-trained networks
(i.e., AlexNet, VGG-16, ResNet-50) to identify jamming using
spectral images of the received signal in the UAV. These
networks can be vast and require extensive processing to sort
information, making them unsuitable for use by UAVs.

Even though embedded deep network techniques in the
cloud or edge can monitor and evaluate channel degradation
due to interference, fading, and jamming attacks, anti-jamming
procedures and non-traditional approaches to avoid jamming
are the focus of most research on this topic rather than
recognizing attacks. As a result, there is a lack of publicly
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available research on attack detection in UAV communications.
We intend to detect attacks against authenticated UAVs when
the UAVs are providing delivery services in highly complex
environments such as the realistic ones in big urban centers.
We aim to add terrestrial and aerial users connected to small
cells that produce interference and simulate blockages that
represent buildings. In this environment, the UAV is equipped
with a unique deep network design with fewer layers than
pre-trained networks typically use to identify attacks.

We organize this paper as follows: Section II details the
system model. It explains the channel model, the dataset, and
the architecture of the intended deep network. Section III
summarizes the results of the performance evaluation of the
deep network, and Section IV concludes this paper.

A. Contributions and Motivation

There is a lack of research and data on the detection and
prevention of jamming using deep network techniques in UAV
scenarios. In order to expand the literature on this topic, we
present the following key contributions of this paper:

• A comprehensive case research model that assumes inter-
ference and blockages in the scenario with authenticated
UAVs in 5G networks and the presence of other UAV
attackers;

• An analysis of the identification of static and moving
attackers in the network with and without terrestrial users;

• A smaller Convolutional Neural-Attention Based Net-
work - (CNN-Attention) architecture to detect jamming;

• Insights into the deep network hyperparameters configu-
ration;

• Comparison between deep network performances using
attention or LSTM layers;

• Results on attack detection accuracy with and without
terrestrial users in both static and moving scenarios;

Finally, we offer a visual representation of the confusion
matrix for both the training and test datasets.

II. SYSTEM MODEL

We consider a deep learning approach to detect attacks over
UAV networks when there are V (l ∈ N ≜ {1, 2, ..., V }) au-
thenticated UAVs connected to private networks in A2G links,
S small cells serve U ground users, and M attackers exist with
a fixed index i ∈ N ≜ {1, 2, ..., S}, j ∈ N ≜ {1, 2, ..., U},
k ∈ N ≜ {1, 2, ...,M}, respectively. The attackers are in
unknown locations in the air and they can deliberately jam
the signal received by the authenticated UAVs. The X-Y-Z
Cartesian coordinate established between the small cells and
the authenticated UAVs are defined as ||pbs − puav||2. All the
elements in the network follow slow fading and fast fading
propagation characteristics according to [8] and [9]. The users
are in random fixed positions and they can move when the
proper configuration is set up. The small cells follow the
same random location positioning strategy as the users. Fig 1
illustrates a top view of the simulation scenario. We define a
total (1.0kmX1.0km) area that includes buildings of different
sizes and heights, which are represented by rectangles. The
”x” identifies the fixed S small cells available for connection.
Some of the small cells are on the tops of the buildings. ” • ”
represents the authenticated terrestrial users, "+" illustrates the
attackers, and a variety of colors distinguishes the authenti-
cated UAVs from the attackers. For the sake of simplicity, the

authenticated UAVs stay connected to the same base station
during the entire simulation. We assume there is sufficient
space between all devices and other objects in the city in
order to avoid collisions and that all devices are in outdoor
locations. The small cells do not overlap coverage signals, and
all the authenticated terrestrial users are always connected to
the closest small cell available.

Fig. 1: Scenario Top View.

The authenticated UAVs connect to the small cells and
generate downlink signals while the attackers attempt to jam
the link. The jamming UAVs are able to adjust their power
and position throughout the simulation. They aim to disrupt
the UAV signal using decentralized capabilities and the least
resources possible. The attackers utilize the same propagation
models as the authenticated UAVs. They move towards the
target UAVs when they are set up with moving capabilities.

TABLE I: Network Parameters.

Scenario Parameters Value

Terrestrial Users 0, 3, 5, 10, 20
Authenticated UAVs 1
Small Cells 10
Small cell height 10 m
Attackers 0, 1, 2, 3, 4
Speeds 10 m/s
Modulation scheme OFDM
Small cell power 4 dBm
Authenticated UAV power 2 dBm
Attackers power 0,2,10,20 dBm
Authenticated UAV position random
Attackers position random
Small cells position random
Scenario UMi
Distance 100, 200, 500 m
Simulation time 20 s

We define an urban scenario for our experiment based on the
complex interference and obstruction patterns that we find in
a city. Additionally, this is the most common environment for
the UAV emergency delivery use case. The channel between
the UAVs and the small cells use a wireless fading model
which is modeled after A2G channels, and the transmission
uses the OFDM modulation scheme. The deep network takes
the fading and interference of wireless data into consideration
using s subchannels for a total of Ni time slots, where
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s ≤ Ni (in practice, we typically have s ≪ Ni). The urban
scenarios limit the small cell’s height. We use the heights
and distances in Table I and we create scenarios with both
LoS and Non-Line-of-Sight (NLoS) conditions. Note that the
distance in Table I is the distance between the small cell and
the authenticated UAV.

A. Channel Model

The 3GPP standards [8] and [9] describe the losses and
fading in 5G UAV wireless communications. Specifically,
small-scale and large-scale fading in rural and urban scenarios.
The UAV norm adds the logarithm’s height component losses
to the overall calculation to differentiate the UAV links from
well-known wireless connections. Regarding the mathematical
modeling of the small-scale fading effect, known as fast
fading, there are two channel models available in the standard:
the Tapped Delay Line (TDL) and the Clustered Delay Line
(CDL). The second model comes from the first one. UAV
fast fading models are frequently described as CDL channels.
In addition, there is another subcategory for LOS and NLoS
conditions in the model highlighted by the letters "ABCDE"
after the model’s name. For example, the CDL-D includes
line-of-sight components while "ABC" represent models with
NLoS components. Due to the line-of-sight characteristics of
the UAV links, they are usually modeled using CDL-D. The
major difference compared to terrestrial wireless links is that
the UAV is at substantially higher altitudes considering the
average rooftop height in a city, whereas the antenna is at
positions below the same reference points, which means that
the angular spreads in the departure and arrival devices swap.

B. The Dataset

As an extension of our previous work [10], we study deep
network identification and generalization algorithms for jam-
ming attacks under fading and interference when UAV attack-
ers have static and moving configurations. We use sequential
datasets, such as the time-series network parameters that the
authenticated UAV generates during its mission. Specifically,
we analyse two observable parameters: the Received Signal
Strength Indicator (RSSI) and the Signal to Interference plus
Noise Ratio (SINR) as inputs. Both parameters are collected
from the authenticated UAV’s receiver side. The dataset con-
tains 2400 folders. Each folder has two files, one for RSSI
data and one for SINR. The folders are classified into four
configuration groups namely: None Speed, Attacker Speed,
User Speed, and Both Speed. The None Speed group
collects RSSI and SINR data when there are no changes in the
initial position of the elements in the network over time. In the
Attacker speed configuration, the attackers are able to change
their speed according to Table I. In the third case named User
speed, only the users are able to move in the simulation over
time, and in the Both speed case, both elements (the attackers
and the users) are able to move according to predefined speeds
during the simulation time. The RSSI parameter defines the
total interference power in the network, and the SINR param-
eter measures the link quality (with the ratio of useful signal
power over interference plus noise power). Both parameters
are available in the authenticated UAV after the initial access
synchronization.

For classification purposes, the dataset use the following
nomenclature: " Yes Jamming", "No Jamming", "Moving

Jamming", and "Fixed Jamming". Yes Jamming implies that
at least one attacker has been discovered by the authenticated
UAV in the network. No Jamming indicates the absence of
jamming and suggests that the network is secure. Moving Jam-
ming denotes that the jammer is approaching the authenticated
UAV over time and Fixed Jamming suggests that the jammer
is in a fixed position over time. The jammers change their
transmission power values during the experiment.

C. The Designed Deep Network

In the this section, we describe the deep network char-
acteristics that recognize attacks in realistic scenarios. The
motivation behind the use of a deep network solution is to
learn the characteristics of networks while it is under attack.
The two headed DNN solution receives two sequences from
the observable signals RSSI and SINR and then it produces
just a single classified output. The architectural design contains
the following in both of the two heads: (i) three CNNs
layers, (ii) a LSTM or Multi-headed-attention layer, and (iii)
a drop-layer. The body of the deep network consists of: (i)
three convolutional layers, (ii) a Drop out layer, (iii) a fully
connected layer, and (iv) the output layer for two classes
classification as in figure 2. After the first classification, we
run another deep network with the same structure to classify
the moving and non-moving jammers.

Fig. 2: Multiheaded Deep Network proposed architecture
with two configurations: all structure with LSTM layer or all
structure with self-attention layer

First, we use the auto correlation function to find the
window size hyperparameter for the time-series data. For the
other hyperparameters such as the number of CNN filters,
kernel sizes, stride lengths, batch size, learning rate, and
the number of regularization terms we use the grid search
algorithm and other insights from our previous paper [10]. Our
training data is fed into the Adam optimizer, which reduces
the classification error for each new batch of commands.
The Attention layer is applicable in this context because it
provides the ability to capture temporal information since the
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nodes in the layers are weighted by the sum of the row
vectors that hold the information over several time steps, which
increases robustness similar to the LSTM layer, but with fewer
trainable parameters. At the end, we trained the deep network
with 5-fold cross validation technique to assure correctness
and prevent overfitting. The deep Network model is trained
and tested on a computer system with a Nvidia RTX 3090
that has a 25GB RAM Graphics Processing Unit (GPU). All
the Convolutional layers, self-attention, and drop out groups
follow the same structure and parameters mentioned in Table
II. The main deep network parameters are available in Table
II.

TABLE II: Deep Network Configuration Parameters.

Deep network Parameters Value

Base learning rate 2.5x10−2

Base batch size 32
Conv-1 filters, kernel size, strides 8, 8, 2
Conv-2 filters, kernel size, strides 8, 4, 2
Conv-3 filters, kernel size, strides 8, 3, 1
Self-Attention head-number, key-dimensions 8, 8
(or LSTM) 50
Drop-out 0.4
Fully connected layer 100
Softmax 2

III. EXPERIMENTAL RESULTS

In this section, we present the results of our synthetic UAV
attack dataset executed in our designed deep network. Except
when explicitly mentioned, all the network and deep network
parameters used are described in Table I and in Table II,
respectively. For each attacker number, we ran a simulation
based on the attacker power, distance, and users amount, which
generated 4800 files (2400 for RSSI and 2400 for SINR).
We fed this data into the deep network and we analysed the
classification results. First, we calculated the overall accuracy
considering all the scenarios. Our deep network was able
to correctly classify approximately 84% of the scenarios
regarding Y es Jamming and No Jamming labels in the
training and 74% in the test.

The training results showed that the deep network mis-
categorized 11,407 training samples from No Jamming
to Y es Jamming and vice-versa out of a total of 72288
training samples generated from all folds cross validation.
For validation, we used roughly 14,000 samples. During the
testing, we observed 80,537 misclassifications out of a total of
315,800. The relatively high misclassification number found
in the training can be justified by taking into account the
abrupt changes in the stochastic channel model and the random
nature of the simulation. Moreover, the fact that we did not
use samples from the same configuration in the test as the ones
that we used in the training might justify the increased number
of miscategorized samples. Figure 3 presents the confusion
matrix for all scenarios.

Tables III and IV illustrate additional information regarding
the experiment’s accuracy and f-score parameters for training
and testing, respectively.

In order to simplify the 2-steps-classification in the deep
network architecture in figure 2, we tried a 1-step classifica-
tion with 3-classes, the labels were No Jamming, Fixed

Fig. 3: The binary classification Confusion Matrix for all
scenarios.

TABLE III: Precision, recall, and f1-score in training.

precision recall f1-score support

No Jamming 0.79 0.92 0.85 36144
Yes Jamming 0.91 0.77 0.83 36144

TABLE IV: Precision, recall, and f1-score in testing.

precision recall f1-score support

No Jamming 0.68 0.94 0.79 157900
Yes Jamming 0.90 0.55 0.68 157900

jamming, and Moving Jamming, but the accuracy results
decreased approximately 11% reaching 72%. In the binary
classification test, it became clear that the CNN layers were
critical to reduce the number of trainable parameters. After
replacing the LSTM with the self-attention layers, we noticed
that the number of trainable parameters reduced down to
approximately half of the initial amount (i.e., from 43000 to
22000), but maintained the same good performance in training
and validation. We observed that accuracy increased roughly
by 2% (i.e., 73.15 to 75.13) during testing using the attention
layers.

Figure 4 depicts the accuracy results based on the number
of terrestrial users connected to the network for training and
testing. The overall accuracy decreased according to the
number of users connected to the network. For example,
when there were no users in the network, training accuracy
was about 90%, but with 20 users it was around 83%. The
accuracy decreased because of the interference generated by
the connection between the users and the small cells over
time. The slow fading values changed when the users were
configured to move and the additional users made it hard to
differentiate whether the RSSI and SINR changes were caused
by attackers or users. The accuracy of the 5-users simulation
was lower (roughly 75%) compared to the other cases with
fewer and/or more users because the related data was new to
the deep network. These results assured the robustness of our
deep network with respect to data that was not in the training.

Figure 5 shows the accuracy over distance and attackers
power ratios during training. Attackers with lower power are
harder to be identified by the deep network. Both simulations
where the attacker power was configured to 2 dBm and the
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Fig. 4: Accuracy versus the number of users in the network
in the 5-fold Cross validation training and test.

distance was set up to 200 m were removed from the training.

Fig. 5: Accuracy over power and distances.

Table V presents the overall results of each scenario consid-
ering all distances, powers, and attackers. The deep network
achieved the highest accuracy in the Attacker speed scenario
(when only the attackers move toward the authenticated UAV),
but the accuracy difference compared to the other scenarios
was small (i.e., 0.25% compared to None speed, 1.15% in
User Speed, and 3.24 % in Both speed).

TABLE V: Accuracy in fixed and moving scenarios.

Scenario Accuracy (%)

None speed 77.35
Attacker speed 77.60
User speed 76.45
Both speed 74.36

Figure 6 depicts the accuracy across the number of attackers
and their respective power. It is difficult for the deep network
to identify a small number of attackers or an attacker with
limited power because The CDL channel model can fluctuate
30 dB depending on the configurations in the fast fading
parameters.

IV. CONCLUSION

This article offered a solution based on deep networks for
identifying jamming attacks in UAVs networks. We were able
to embed the deep network with self-attention layer in the UAV
because after training and testing the processing capacity of
the generalized deep network matched the limited processing
capacity of the UAV. In general, our deep network was able to

Fig. 6: Accuracy over the number of attackers in the network.

recognize attacks in all scenarios’ configurations. Simulations
with 3 or more attackers, fewer users, and power greater than
10 were easier to be identified. Furthermore, the 3D distance
between the small cell and the authenticated UAV impacted
the identification accuracy. In our case, as the distance grew,
the chances of identification increased because the interference
decreased.
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