
3rd AEGC: Geosciences for Sustainable World – Online, 13-17 September 2021, Brisbane, Australia  1 

A new era for the Australian National Gravity Grids – adding 
airborne data to the mix 

Richard Lane Yvette Poudjom Djomani Phillip Wynne 
Geoscience Australia  Geoscience Australia Geoscience Australia 
GPO Box 378 Canberra ACT 2601 GPO Box 378 Canberra ACT 2601 GPO Box 378 Canberra ACT 2601

yvette.poudjomdjomani@ga.gov.au phillip.wynne@ga.gov.au 

INTRODUCTION 

In the last 60 years, Geoscience Australia (GA) and 

its predecessors, in collaboration with State and Territory 

government agencies, has acquired gravity data across 

Australia. Following rigorous processing and quality control, 

these data are used to produce national gravity grids for the 

continent. The 2019 Australian National Gravity Grids 

produced by GA are two sets of grids (the "A" and "B" Series) 

covering the continent of Australia and surrounding region (108 

to 164 degrees East Longitude, -48 to -8 degrees North 

Latitude) (Lane et al., 2020a). 

The “A” Series grids were produced from a combination of 

ground gravity data for onshore Australia sourced from the 

Australian National Gravity Database (ANGD) (Tracey and 

Nakamura, 2010; Tracey et al., 2007; Murray, 1997), gravity 

data derived from satellite altimetry (Sandwell et al., 2014) for 

offshore locations and, for the onshore locations in countries 

other than Australia, gravity data from the EGM2008 global 

gravity model (Pavlis et al., 2012).  

For the first time, we combine ground, marine, satellite and 

airborne gravity data to produce the national gravity grids, “B” 

Series. The grids contain the gravity data used in the “A” Series 

but also include data from a number of airborne gravity and 

airborne gravity gradiometer surveys acquired by GA and State 

and Territory government agencies. These grids provide the 

most up to date information, with a more equally and 

continuously sampled gravity field of Australia and 

surrounding regions. The grids are the best currently available 

support for geological interpretation and mineral exploration in 

Australia.    

DATA SOURCES 

The 2019 national gravity grids (B series) were produced from 

three main data sources: onshore, offshore and airborne 

gravity data (Figure 1).    

Figure 1. New gravity data used for the production of the 

2019 national gravity grids. These data supplemented the 

existing ground gravity data (white) used in the 2016 edition 

of the national grids. 

Onshore data 

A total of 1,430,447 ground gravity observation values 

covering the Australian mainland, Tasmania, and a number of 

offshore islands were sourced in September 2019 from the 

Australian National Gravity Database (ANGD) (Tracey and 

Nakamura, 2010; Tracey et al., 2007; Murray, 1997). These 

observations are tied to the Australian Absolute Gravity Datum 

2007 (AAGD07) (Tracey et al., 2007).  A total of 

approximately 40,000 new ground gravity stations were 

added to the ANGD since the 2016 edition of the national grids. 

The gravity station spacing varies from approximately 11 

kilometres over much of northern and western Australia to 

1.5 kilometres in Victoria. Recent Federal, State and Territory 
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Government initiatives have funded systematic infill at a grid 

station spacing of 2, 2.5 or 4 kilometres to provide improved 

coverage in areas of greater prospectivity or scientific interest.  

Offshore data 

Offshore gravity data were sourced from the global gravity grid 

developed at Scripps Institution of Oceanography, University 

of California San Diego using data from SIO, NOAA and NGA 

(Sandwell et al., 2014). These data, referred to here as 

“Sandwell et al. v28.1”, provide valuable context for the 

onshore ground gravity data. The gravity values in Sandwell et 

al. v28.1 are referenced to the International Gravity 

Standardization Net 1971 (I.G.S.N.71) (Morelli et al., 

1972). The Sandwell et al. v28.1 grid has a cell size of 

approximately 1.7 km. For processing, the grid was 

decomposed into points, one per cell using the centre of each 

cell as the location. 

Airborne gravity data 

A total of 345,000 line km of Airborne Gravity data (AG) from 

12 survey blocks and 106,000 line km of Airborne Gravity 

Gradiometer data (AGG) from 2 survey blocks were included 

in this project (Bates et al., 2011; Howard et al., 2018; Bates et 

al., 2019a; 2019b; Carter et al., 2019). These data were acquired 

with a number of different systems, with line spacing from 0.5 

to 2.5 km, and terrain clearance generally between 150 and 200 

m. 

DATA PROCESSING 

To produce the B series of the national gravity grids (addition 

of airborne data), all observations needed to be brought to a 

common drape surface. All of the gravity observations were 

vertically continued to a smooth airborne drape surface referred 

to as “AusDrape2019”. This airborne drape surface was 

generated to have characteristics similar to the flight path of a 

typical airborne survey. This meant that there would be minimal 

vertical continuation of data from the airborne surveys to locate 

the data on the drape surface.  

The Shuttle Radar Topography Mission (SRTM) surface 

elevation data with 3 second grid cell size (CGIAR-CSI, 2019) 

was used as the terrain data. The minimum terrain clearance 

was set to 250 m to avoid amplification of short wavelength 

noise in the airborne data. A modified version of the Extended 

Drape Lift algorithm described by Fossati 

and Wolvaardt (2001) was used to impose maximum climb and 

descent rates whilst maintaining the minimum surface 

clearance. The maximum climb and descent rates were set to 25 

m per km. Some post-calculation smoothing was applied to the 

drape surface to approximate second order constraints (i.e., 

limits on the rates of change of climb or descent rates).  

The heights in the SRTM data are referenced to the WGS84 

ellipsoid. EGM96 was used during the production of SRTM 

data to convert elevations from the WGS84 ellipsoid to the 

geoid (AusDrape2019_geoid) (Lemoine et al., 1998). We thus 

used EGM96 to essentially reverse this conversion to obtain 

AusDrape2019 heights with respect to the GRS80 

ellipsoid, GDA94 datum (AusDrape2019_ellipsoid).  

The Free Air Anomaly (FAA) and Complete Bouguer Anomaly 

(CBA) grids from the A series were upward continued to the 

AusDrape2019 surface and low pass filtered with the 

conforming filter (Dransfield, 2010) to better match the low 

pass filtering applied to the airborne data. AusDrape2019 

elevation values were added from the AusDrape2019 grid. 

Water depth values for use in the spherical cap Bouguer 

corrections were added from the AusBath09 grid (Whiteway, 

2009).  

The airborne surveys were processed in a specific order from 

the older, lower resolution, lower accuracy surveys to the more 

recent, higher resolution, more accurate surveys. The process 

was the same for FAA and CBA data. The conforming process 

was completed by adding the high pass filtered airborne survey 

grid to the low pass filtered onshore-offshore grid. The 

conformed grid was then merged with the base grid using a 

weighted combination of the two grids in a buffer zone around 

the margins of each airborne survey, a process referred to as 

either “grid merging” or “grid stitching”. The output would 

become the new base grid if there were more airborne surveys 

to process, or the final FAA and CBA grids if all of the airborne 

surveys had been processed (Lane et al., 2020b).   

RESULTS 

We have produced national gravity grids by combining ground, 

satellite, marine and airborne gravity data for Australia and the 

surroundings. The standard gravity grids provide Free Air 

Anomaly (FAA, Figure 2) and Complete Bouguer Anomaly 

(CBA, Figure 3). An important addition to the grid series is the 

production of the De-trended Global Isostatic Residual (DGIR, 

Figure 4) grid. Near-field and far-field isostatic corrections 

were subtracted from the CBA grid values to produce a global 

isostatic residual grid, ΔgGIR. It is noted that the near-field and 

far-field regional values were calculated on the geoid surface. 

The De-trended Global Isostatic Residual, ΔgDGIR, was 

produced by removing a first order trend surface from 

the ΔgGIR grid. To avoid distorting the trend surface 

calculation with gravity values from the complex collision zone 

between northern Australia and Indonesia and Papua New 

Guinea, data for latitudes north of -13 degrees north were 

excluded from the trend surface calculation. This calculation 

was performed using a least squares objective and geodetic 

coordinates. The Isostatic residual data, or DGIR grid is the 

preferred data to use for interpretation of mid and upper crustal 

features since the majority of the long wavelength 

anomalies contributing to the gravity data have been removed. 

Figure 2. Image of the B series Free Air Anomaly (FAA) 

grid.  
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Figure 3. Image of the B series Complete Bouguer Anomaly 

(CBA) grid.  

Figure 4. Image of the B series De-trended Global Isostatic 

Residual (DGIR) grid.  

Two supplementary grids were also produced and provide the 

elevation values that define the observation surface for the 

gravity grids. One of these grids has elevations referenced to 

the geoid (AusDrape 2019_geoid) whilst the other contains 

elevation values referenced to the GRS80 ellipsoid for the 

GDA94 datum (AusDrape 2019_ellipsoid).  

The addition of airborne data has greatly improved the 

resolution of the grids. The image in Figure 5 shows the Tanami 

region, straddling the border between Western Australia (WA) 

and the Northern Territory (NT). This image is based solely on 

ground gravity data. The station spacing was a mixture of 2 and 

4 km in the Northern Territory, and a very sparse 11 km in 

Western Australia.  

Figure 5. Example of the A series De-trended Global 

Isostatic Residual Gravity anomaly in the Tanami region, 

WA/NT produced using only ground gravity data. 

Figure 6 shows the same area as in Figure 5, with the addition 

of airborne data within the black outline. The equivalent station 

spacing of these airborne data is 2.5 km compared to 11 km for 

the ground data. This figure shows the improvement of the 
image in WA after the addition of the airborne data.  

Figure 6. Example of the B series De-trended Global 

Isostatic Residual Gravity anomaly in the Tanami region, 

WA/NT produced with the addition of airborne gravity 

data within the black outline. 

CONCLUSIONS 

For the first time, we have combined ground, marine, satellite 

and airborne data to produce the national gravity grids of 

Australia and the surroundings, including the new De-trended 

Global Isostatic Residual (DGIR) grid. 

The addition of airborne data has greatly improved the 

resolution of the grids, providing explorers with a better product 

to use for geological interpretation and the discovery of new 

resources. Adding airborne data has also highlighted the 

continuity of some geological structures that were not evident 

in the previous editions of the national gravity grids. As more 

precompetitive gravity data become available, Geoscience 

Australia will continue to produce high resolution, high quality 

gravity grids for the continent. 
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