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INTRODUCTION 

Densities, orientation, and connectivity of fault and fractures 
exhibit a strong influence on permeability resulting in 
anisotropic flow fields. Discontinuity networks that are the 
result of numerous subsequent deformation events are likely to 
exhibit a strong anisotropy and characterizing this with 
laboratory experiments is challenging and cost intensive. 
Solving flow on unit cubes in numerical simulations is one way 
for capturing the anisotropy of discontinuity networks and 
represents a homogenization method that allows for combining 
discontinuity networks of different scales in large scale models. 
An example is a network of fault zones hosted in low porosity 
rocks. The background permeability of the host-rock will be a 
function of the fracture abundance that increases in the fault 
zones with highest fracture densities in zones adjacent to fault 
cores. 
The parameter comprising the highest uncertainties are the 
apertures of the fractures that also affects the permeability 

distribution within the fault zones.  Numerous hydraulic 
simulations would have to be conducted to capture the 
distributions of possible permeability tensors at the smaller 
scales around the faults and investigate their impact in the large-
scale models. 
In this contribution, we present a methodology for obtaining the 
shape of the anisotropy tensor that can be used for upscaling the 
smaller scale network permeability to a continuum model. In 
addition, we will show how to determine the connected 
components and dominant pathways in large-scale fault 
networks, which is of interest for targeting by identifying 
structures that are crucial for fluid flow in hydrothermal 
systems that form economic mineralization. 
We will show the applicability of our framework on a fracture 
network from the Bristol Channel, UK, and on structural 
interpretation of an area in the Central Gawler Craton in South 
Australia (figure 1). 

Figure 1: Left: High detail fracture network in the Bristol 
channel, UK automatically mapped from drone imaginary 
(Prabhakaran et al., 2021). The features contained in the 
rectangular area represent the dataset analysed in this 
study (~2400 fractures). Right: Fault zone network located 
in the Central Gawler Craton of South Australia. The high-
resolution total magnetic intensity map (Katona et al., 2019) 
was the basis for manually performing the structural 
interpretation (courtesy Mark Pawley). The fault traces 
contained by the red rectangle are shown in the upper right, 
visualizing how we build a 2D referenced graph. Fault 
segments are the edges whereas tips and intersection points 
are considered as the vertices. The degree of a vertex 
(number of edges meeting at this point) is used to classify 
the intersections as either Y- (degree of 3) or X-vertices 
(degree of 4). Fault or fracture tips that have a degree of 1 
are classified as I-nodes. Note that vertices that are located 
at intersections with the bounding box of the area of interest 
are classified as boundary nodes (blue vertices) and will be 
connected to virtual source and target nodes for solving the 
maximum flow.  

METHODS 

We base our analysis on 2D trace maps of discontinuities that 
are provided as vector data. The first step is to correct for 
digitization flaws in the data. The common defects are 

SUMMARY 

Fracture networks and fault zones play an important role 
for subsurface fluid flow.  Estimating the impact on the 
permeability field of such structures is of high interest for 
reservoir characterization, groundwater management, and 
exploration targeting.  Of particular interest is the 
anisotropic permeability resulting from fracture sets, 
which can be represented as a tensor.  These permeabilities 
of small- to mesoscale fracture networks can be utilized in 
macroscale models of macroscale fault networks. 
Obtaining exact permeability values from fractured rocks 
through laboratory experiments is challenging and subject 
to large uncertainties.  Numerical methods can help 
estimating reliable values but are computationally 
expensive.   
On the large scale it is desirable to predict the dominant 
pathways in fault networks as these zones can strongly 
affect localization of mineralizing fluids, can affect the 
productivity of reservoirs (hydrocarbon and geothermal), 
and has implications for groundwater management. 
Here, we present a methodology that (1) allows for 
estimating permeability anisotropy, and (2) predicting 
dominant fluid pathways from regional scale maps. 
Assuming that the permeability of fractured or faulted 
media is governed by the connectivity of the network 
entities, we will show how permeability anisotropy and 
dominant pathways can be obtained from a graph 
representation of 2D discontinuity networks. The graph 
metrics we base our analysis on are the betweenness 
centrality and maximum flow.  
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duplicated entries, incorrectly split traces, or traces that are not 
clipped to other traces which can lead to false classification of 
intersections (e.g. crossing instead of junction).  In figure 1 we 
show the two datasets we investigate and introduce the graph 
data structure we use in the analysis.  In the following we brief 
the graph algorithms we applied. 

Betweenness Centrality 
Centrality (C) is a measure of the importance of a vertex in the 
network for maintaining connectivity.  We utilize the Brandes’ 
betweenness centrality of the BOOST graph library (Siek et al., 
2002) which is a measure of how many shortest paths between 
randomly chosen vertices s and t pass through a vertex(v) in the 
network.  The absolute betweenness centrality is defined as: 

𝐶𝐶(𝑣𝑣) = ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑣𝑣≠𝑡𝑡 (1) 

Here 𝜎𝜎𝑠𝑠𝑠𝑠  is the number of shortest paths between source (s) and 
target (t) and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) is the number of shortest paths through the 
vertex v. 

Maximum Flow 
Maximum flow analysis determines the maximum possible 
flow rate in a directed graph between a source (s) and target (t) 
vertex.  We choose BOOST’s implementation of Boykov-
Kolmogorov maximum flow (Siek et al., 2002) as this network 
flow algorithm was shown to be applicable to flow in pipe and 
river networks (Zhou et al., 2020). 

Maximum flow is solved on a directed graph G=(V,E) 
comprising a single source (s) and target (t) vertex.  Each edge 
has a positive capacity (C) proportional to the amount of flow 
that can pass through this edge.  A function must be defined for 
the flow that can pass though the edge from the adjacent 
vertices.  This function (f) must satisfy three conditions (Siek et 
al., 2002): 

𝑓𝑓 (𝑢𝑢, 𝑣𝑣) ≤ 𝑐𝑐(𝑢𝑢.𝑣𝑣) ∀ (𝑢𝑢, 𝑣𝑣) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉 (2) 
𝑓𝑓(𝑢𝑢, 𝑣𝑣) =  −𝑓𝑓(𝑢𝑢, 𝑣𝑣) ∀ (𝑢𝑢, 𝑣𝑣)𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉  (3) 
∑ 𝑓𝑓(𝑢𝑢, 𝑣𝑣)𝑣𝑣 𝑖𝑖𝑖𝑖 𝑉𝑉 = 0 ∀ 𝑢𝑢 𝑖𝑖𝑖𝑖 𝑉𝑉 − {𝑠𝑠, 𝑡𝑡}  (4) 

The maximum flow represents the path through a network 
comprising the maximum sum of capacities between the source 
and the target with: 

|𝑓𝑓| = ∑ 𝑓𝑓(𝑢𝑢, 𝑡𝑡) = ∑ 𝑓𝑓(𝑠𝑠, 𝑣𝑣)𝑣𝑣 𝑖𝑖𝑖𝑖 𝑉𝑉𝑢𝑢 𝑖𝑖𝑖𝑖 𝑉𝑉  (5) 

In our approach to the maximum flow problem we first 
determine the model boundaries by constructing a rectangular 
envelope around the line features.  We then shrink this rectangle 
by a defined percentage to ensure intersections between 
features and boundaries.  At every intersection a new vertex is 
inserted and connected to a virtual vertex outside the domain by 
an edge of infinite capacity.  A constant gradient (p) from 0 and 
1 is calculated between two opposing boundaries and every 
vertex will have a value of p assigned to it.  Based on the values 
of p assigned to the vertices, we define an additional constraint 
for the capacity at edge (i) pointing from vertex u to vertex v 
that considers the gradient of ∆𝑝𝑝 = 𝑝𝑝𝑢𝑢 − 𝑝𝑝𝑣𝑣 over the length of 
the edge (𝑙𝑙𝑢𝑢𝑢𝑢): 

𝐶𝐶 = 𝐶𝐶𝑖𝑖 ∙
∆𝑝𝑝
𝑙𝑙𝑢𝑢𝑢𝑢

(6) 

We define three types of capacities that are shown in table 1. 
Type 1 determines the edge capacity as the square root of its 
length accounting for the scaling relationships between aperture 
size and length in a fracture or the scaling between 
displacements and length of faults. The latter enhances the 
permeability of fault zones in low-porosity rocks via fracturing. 
The capacity type 2 is a function of edge orientation (α) with 
capacity values derived from a Gaussian distribution around a 
mean angle (μ) with a standard deviation (σ) of 25°.  This 
capacity accounts for the relation between apertures and 
maximum stress orientation where fractures perpendicular to 
the maximum compression are closing resulting in a 
permeability reduction.  Capacity type 3 combines the scaling 
of length and orientation dependency in single capacity. Note 
that all capacity values are normalized by the maximum 
capacity.  
Investigating which edge capacities are filled, allows for 
predicting the dominant pathways in a network.  Furthermore, 
performing experiments with varying conditions (e.g. gradient 
orientation, flow direction, and capacity type) enables analysing 
of the anisotropy of the network connectivity that govern flow. 

Table 1: Capacity types (C) used for solving maximum flow. 
L is the length of the edge, σ is the standard deviation, and 
μ is the mean around an angle α. After obtaining the 
capacities for all edges we normalize by the maximum 
capacity (𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎) value giving the capacity at edge n as 𝑪𝑪𝒏𝒏 =
𝑪𝑪

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎
. 

Type Expression 

1 (length) 𝐶𝐶𝑙𝑙 = √𝑙𝑙 

2 (orientation) 
𝐶𝐶𝑜𝑜 =

1
𝜎𝜎√2𝜋𝜋

∙ 𝑒𝑒−
1
2�
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∙1000

3 (length-orientation) 𝐶𝐶𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑙𝑙𝐶𝐶𝑜𝑜 

Estimation of effective Permeabilities 
The directional permeabilities (κ) of discontinuity networks can 
be estimated from the flow rates (q) obtained for varying 
pressure gradients (P) solved on a unit square through: 

�
𝜅𝜅𝑥𝑥𝑥𝑥 𝜅𝜅𝑥𝑥𝑥𝑥
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For symmetrical tensors the principal permeabilities and their 
orientations can be obtained as: 

𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜅𝜅𝑥𝑥𝑥𝑥+𝜅𝜅𝑦𝑦𝑦𝑦
2

+
�
𝜅𝜅𝑥𝑥𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼� �

2
 (8) 

𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜅𝜅𝑥𝑥𝑥𝑥+𝜅𝜅𝑦𝑦𝑦𝑦
2

−
�
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𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼� �

2
 (9) 

2𝛼𝛼 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 −2𝜅𝜅𝑥𝑥𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥−𝜅𝜅𝑦𝑦𝑦𝑦

   (10) 

We can derive the shape of the permeability tensor by solving 
the maximum flow in vertical and horizontal directions for a 
horizontal and vertical gradient respectively. This approach 
allows for investigating different capacity types and yields a 
normalized tensor that can then be used for detailed numerical 
investigation in macro-scale simulations.  
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RESULTS 

The results of solving the maximum flow with length- 
dependant capacities in the Bristol Channel joint network is 
shown in figure 2 for a N-S gradient (a) and a E-W gradient (b). 
The flow direction in figure 2 equals the pressure direction.  By 
solving the maximum flow for direction parallel and 
perpendicular to the gradient we can estimate the permeability 
tensor for uniform-, length-, and orientation capacities. 

Figure 2: Maximum flow with length dependent capacities 
and betweenness centrality calculated on the fracture 
network from the Bristol channel. a Vertical gradient and 
flow. b Horizontal gradient and flow direction. An estimate 
of the permeability tensor for uniform-, length-, and 
orientation-capacities is shown exemplary to the upper 
right. 

While the vertical connectivity comprises only perturbed 
channels that often do not have their capacity filled up (a), a 
strong connectivity exists in the horizontal direction with few 
straight channels extending from the right to the left boundary 
(b).  The thicknesses and colouring of the edges corresponds to 
the proportion of the capacity filled. Comparing the dominant 
flow paths with the betweenness centrality of the vertices shows 
that there is a correlation between centrality and location of the 
maximum flow. 
The results of length-dependant maximum flow and 
betweenness centrality in the Central Gawler fault networks are 
shown in figure 3. In this network we did not utilize a gradient 
constraint as this analysis does not aim at homogenizing the 
area but rather aims at identifying the structures that are most 
relevant for horizontal connectivity. 

Figure 3: Maximum flow with length-dependant capacities 
and betweenness centrality for the structural interpretation 
of Gawler Craton.  A dominant conduit exists in the north-
south direction (a).  In contrast, the connectivity in the east-
west direction reveals at least three prominent channels (b).) 
Note that the connectivity for this dataset is obtained 
without pressure constraint (equation 6).  In the upper right 
the edges comprising highest cumulative capacities for 

vertical and horizontal maximum flow and the vertex 
betweenness centrality is shown.  This can be considered as 
the backbone of the regional scale fault network. 

CONCLUSIONS 

We have shown a simple and computationally efficient 
approach for estimating permeability anisotropy in fracture 
networks (figure 2).  The results obtained can, for instance, be 
utilized for upscaling small scale fractures in large scale 
simulations where the fractured media is treated as a 
continuum.  In the case of large-scale discontinuity networks, 
such as the example shown from the Central Gawler Craton in 
South Australia (figure 3), a homogenization of permeabilities 
may not feasible. Graph theory can help in this case to 
determine the backbone of the connectivity network 
(betweenness centrality) and maximum flow can be applied for 
determining the elements that are most important for 
maintaining flow though the network. 
The results presented in this study will have to be evaluated by 
detailed numerical experiments to further demonstrate their 
reliability. 
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