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INTRODUCTION 

Securing adequate quantities of acceptable quality water for 

sustaining human livelihoods, well-being and ecosystems is a 

major challenge of the 21st century (Bakker, 2012). 

Groundwater will continue to provide a significant fraction of 

human and ecological water needs, particularly in many areas 

of Australia with scarce or unreliable surface water resources. 

However, groundwater varies in quality and a significant 

groundwater is unsuitable for human use due to high levels of 

dissolved salts. Measuring or modelling the quality of a 

groundwater resource is typically challenging due to sparse 

borehole measurements or hydrogeological heterogeneity. 

The traditional approach of estimating the quality of 

groundwater is to measure the electrical conductivity (EC) or 

total dissolved solids (TDS) of water sampled from boreholes 

that intersect aquifers. These measurements can be interpolated 

using geostatistical techniques to produce a map of 

groundwater quality. However, in areas where borehole data are 

sparse these models may have large uncertainties away from 

boreholes. A number of geostatistical and machine learning 

approaches have been developed for modelling sparse point 

data by exploiting correlated variables with high lateral 

resolution. Airborne electromagnetics (AEM) is a geophysical 

technique for broad-scale mapping of the near surface. The 

electrical bulk conductivity profile of the sub-surface can be 

inferred from AEM data using geophysical inversion (Menke, 

2018). Notably in our study, bulk conductivity is correlated 

with the groundwater EC in saturated, clastic sedimentary 

aquifers allowing us to model salinity between the bores. 

Previous works have derived empirical regression functions for 

calculating salinity from bulk conductivity (Paine 2003, Lawrie 

et al 2012). 

In this study we used a probabilistic approach for inferring 

groundwater salinity from borehole and AEM data in the Keep 

River Plains, on the northern border of Western Australia and 

the Northern Territory. Instead of producing a single model of 

groundwater salinity, we produce an ensemble of models from 

which we can calculate statistics for quantifying uncertainty, 

which are essential for assessing risk for groundwater 

management. The AEM data were inverted using a probabilistic 

inversion algorithm to estimate the posterior distribution of 

bulk conductivities that are able to fit the AEM data. Analytical 

probability distribution functions for groundwater salinity were 

estimated by binning high resolution measurements from pore 

fluid samples extracted from aquifer material recovered using 

sonic drilling. These probability distributions were propagated 

through our model.  

To demonstrate this workflow, we used our ensemble of 

groundwater salinity models to calculate the probability that 

groundwater from the top ten metres of the saturated zone falls 

within four salinity classes, based on the Australian and New 

Zealand guidelines for fresh and marine water quality 

(ANZECC and ARMCANZ, 2000). This study demonstrates 

how probabilistic methods can assist groundwater management 

decision making. It does not however, provide any advice about 

groundwater use on the Keep River Plains.  

SUMMARY 

Groundwater is a critical resource for supporting human 

consumption, stock water, agricultural use, and mineral or 

energy extraction as well as the environment. However, 

the quality of groundwater varies enormously from potable 

to hyper-saline, particularly in the Australian context. To 

evaluate the suitability of a groundwater resource, the 

spatial distribution of salinity within an aquifer is typically 

estimated by measuring the electrical conductivity (EC) of 

groundwater sampled from boreholes. However, drilling is 

a logistically and economically challenging task, and 

hydrogeologists are usually left with a sparse set of 

measurements from which to infer groundwater salinity 

over large spatial extents. 

Airborne electromagnetic (AEM) surveying is a 

geophysical technique for estimating the bulk electrical 

conductivity of the near-surface. Where AEM bulk 

conductivity is well correlated with groundwater salinity 

in aquifers, AEM is a useful tool for modelling salinity in 

the data sparse areas between boreholes. We present a 

probabilistic method for modelling groundwater salinity 

and a case study from the Keep River Plains in the 

Northern Territory. Co-located probabilistic AEM 

inversions and EC measurements on pore fluids at 

coincident locations were fused to calculate an empirical 

joint probability density function. This function allowed us 

to estimate salinity away from the bores by sampling the 

ensemble of AEM conductivities. Unlike deterministic 

methods that provide a single estimate of salinity, our 

method generates an ensemble of estimates, which can be 

used to quantify predictive uncertainty. The results 

provided by our method can feed into decision making 

while accounting for uncertainty, allowing responsible 

management of land and water resources. 

Key words: groundwater salinity, AEM, probabilistic 

modelling, inversion  
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METHOD AND RESULTS 

Data acquisition 

Data acquisition, processing and analysis were funded by 

Exploring for the Future (EFTF), an Australian Government 

funded program focused on better understanding potential 

mineral, energy and groundwater resources in northern 

Australia. In the Keep River Plains area, 11 bores were drilled 

using sonic drilling and aquifer material was recovered (Figure 

1). Pore fluid samples were extracted from aquifer material at 

decimetre scale sampling density and where possible, EC 

measurements were recorded. The depth to the water table was 

measured at each bore and interpolated to derive the water table 

elevation map shown in Figure 1 using ordinary kriging with a 

Gaussian variogram with a range of 12,000 m.  

Figure 1.  Location of the 11 boreholes where pore fluid EC 

measurements were collected on a water table elevation map. 

Boreholes 635735 (yellow circle) and 635740 (red circle) are 

used to evaluate the model. 

AEM data were acquired using the SkyTEM312 system, flown 

at 200 metre line spacing (see Ray et al., 2019 for technical 

detail on the Ord-Keep AEM survey). We inverted the AEM 

data using a Bayesian rjMCMC (reversible jump Markov-chain 

Monte Carlo) algorithm (Green, 1995) implemented in 

Geoscience Australia’s GA-AEM software (Brodie and Reid, 

2013). A notable development used in this work has been the 

addition of parallel tempering for improved rjMCMC 

convergence, as implemented in Blatter et al. (2018). The 

rjMCMC yields an ensemble of samples from a distribution of 

layered-earth models that fit the data within noise (Figure 2a). 

The “reversible-jump” formulation of MCMC allows the 

ensemble to contain conductivity models with differing 

numbers of layers (Figure 2c). This allows the model 

complexity to vary and provides the best fit to the data 

while being parsimonious in the number of layers. We have 

recently modified the software to also provide Bayesian 

estimates of “nuisance” parameters, such as the magnitude of 

the noise in the data and errors in the reported height of the 

transmitter, allowing the output of the inversion to more 

accurately reflect the credible range of conductivity models 

given the collected dataset (e.g., Minsley 2011). 

Figure 2. A) A conductivity-depth histogram illustrating the 

posterior distribution of bulk conductivities in the model 

ensemble for the AEM fiducial nearest to borehole 635735. EC 

measurements and the conductivity log from the borehole are 

plotted over the top. For this study EC data were manually 

binned and the edges of the EC bins are plotted as green 

horizontal lines. B) The geographic location of the borehole. C) 

A histogram showing the frequency number of layers used by 

the rj-MCMC inversion model. D) A plot showing the RMS 

misfit for each chain in the parallel tempering inversion. A 

misfit approaching one reveals that inversion converged and the 

model ensemble fit the data acceptably. 

Deriving relationship between borehole EC and AEM 

conductivity  

Methods for modelling EC with AEM bulk conductivity can 

only be used if these two variables are correlated. To investigate 

this relationship, we inverted the nearest AEM fiducial to each 

of the boreholes. At each borehole the EC measurements were 

binned into approximately 10m interval and the mean and 

standard error for each bin was calculated and used to generate 

an analytical probability density function (PDF) (e.g. Figure 

2a). This allowed us to simulate a joined PDF for each interval 

using the AEM bulk conductivity ensemble.  

Figure 3a Joint probability density function (PDF) of AEM 

conductivity σ and groundwater EC derived from joint 

sampling of bores from all locations. b. The joint PDF that has 

been smoothed to account for the sparse training data. It is this 

joint PDF that we sample for estimating EC away from the 

bores. 
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By sampling the distributions of EC and bulk conductivity we 

generated a joint probability distribution describing covariance 

given the uncertainties of both (Figure 3a). Box-car smoothing 

was applied to account for sparse sampling and make the 

relationship more general (Figure 3b). The joint PDF reveals 

that EC and bulk conductivity are positively correlated, with 

two distinct clusters, which we interpret as two groundwater 

populations; a very resistive population and a moderately to 

very conductive population (Figure 3b) 

Modelling EC using AEM conductivity 

From the joint PDF in Figure 3b, we are able to predict the 

‘conditional’ distribution of EC away from boreholes. The 

smoothed joint PDF was sampled 10,000 times using bulk 

conductivity samples, which were themselves sampled from the 

PDF generated from the probabilistic inversions. The sampling 

was done using AEM bulk conductivities at ~450 pilot points 

using values from the top 10 m of saturated thickness as 

estimated using our water table map. In Figure 4 we display the 

mean, median (p50), 10th percentile (p10) and 90th percentile 

(p90) of the modelled EC distribution, plotted at each point. 

Features in the map that persist across the p10, p50 and p90 

distributions, such as high salinity water in the NE, can be 

confidently interpreted. 

Figure 4 suggests there are at least three spatially distinct 

populations of groundwater salinity that can be interpreted, high 

salinity in the NE, moderate salinity through the centre of the 

region and low salinity in the NW and SE margins. 

Figure 4. The mean, median (p50), 10th percentile (p10) and 

90th percentile (p90) predicted EC value for each point in our 

study area. The underlying distribution was generated by 

sampling the joint PDF function in Figure 3b using the sampled 

value of bulk conductivity from ~450 pilot points. 

To evaluate the workflow, we withheld boreholes 635734 and 

635740 from the modelling process and compared our predicted 

salinity with the distribution of EC measurements at these 

locations (Figure 1). The results reveal that the distribution of 

EC falls within the high probability regions of our modelled 

PDF (Figure 5). This suggests that our model is performing well 

on the validation set. 

Figure 5. This figure demonstrates the validation of model 

performance at two boreholes withheld during the model 

training. The box and whisker plots towards the bottom of the 

diagram show the mean EC value with error bars to two 

standard deviations. The histogram represents the ensemble of 

modelled EC generated using the joint PDF in Figure 3b and 

bulk conductivities from the nearest AEM sounding. As the 

groundwater EC distribution falls within the high probability 

region of the modelled distribution, we are satisfied with model 

performance. 

Probabilistic classification of groundwater salinity 

A major benefit of undertaking a thorough uncertainty analysis 

is that it allows our scientific findings to inform risk analysis. 

To demonstrate how this work could inform decision making, 

we have used the results to produce maps of the probability that 

groundwater within the top 10 metres of saturated aquifer falls 

within the salinity classes defined in Table 1. 

Class 1: 

human 

consumption 

Class 2: 

agricultural 

use 

Class 3: 

stock 

water/ 

process 

use 

Class 

4: 

saline 

TDS 

mg/L 

<600 600-1920 1920-

16640 

>16640 

EC 

S/m 

<0.094 0.094-0.3 0.3-2.6 >2.6 

Table 1. Classes of groundwater salinity in EC and TDS based 

on the Australian and New Zealand guidelines for fresh and 

marine water quality (ANZECC and ARMCANZ, 2000). Note 

that for reasons of simplicity, salinity classes described here are 

exclusive. However, groundwater suitability is not exclusive 

and we are not suggesting that fresh water is unsuitable for 

agricultural use or stock water. 

The results show that there is a clear spatial distribution of high 

probabilities that groundwater belongs within the classes listed 

above. The water that is most likely acceptable for human 

consumption is generally located along the NW and SE 

margins. The groundwater within the centre and SW of the 

study show a greater than 50% probability of being classified 

as suitable for stock water and processing. As expected, the 
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groundwater in the NE, in the vicinity of the estuary, show the 

highest likelihood of being saline. The advantage of a map such 

as that presented in Figure 6, is that it allows a groundwater 

manager to discover the probability that groundwater from the 

top 10 metres of the saturated zone at any point in the study area 

has an acceptable level of salinity for some specified purpose. 

This workflow is easily adapted to answer other specific 

questions about groundwater salinity. 

Figure 6. A map showing the probability that groundwater 

From the top 10 metres of the saturated aquifer falls within each 

of the four salinity classes described in Table 1. This map 

provides an accessible way to understand groundwater salinity 

and uncertainty in the context of specifed groundwater salinity 

classes. 

CONCLUSIONS 

In this study, we have demonstrated a workflow for 

probabilistic modelling of groundwater salinity using borehole 

data and AEM. The workflow was applied to a hypothetical use 

case within the Keep River Plains in the Northern Territory, 

Australia. Our approach considers the uncertainty inherent in 

AEM inversion and in the sampling of pore fluid. We have also 

shown how the modelling workflow can be used to support 

decision making that takes these uncertainties into account.  
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