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How to enhance Magnetotellurics resistivity model resolution 
using passive seismic HVSR to identify the cover-basement 
interface. 
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INTRODUCTION 

The magnetotelluric (MT) method is an electromagnetic 
method that can be used to characterize the interface between 
the sedimentary cover and the crystalline basement. This in turn 
can provide valuable information for mineral and geothermal 
energy prospectivity mapping and groundwater modelling at a 
fraction of cost the drilling. In this abstract, we present two new 
approaches to use depth constraints from passive seismic 
HVSR models to enhance MT resistivity model resolution and 
to reduce the uncertainty in the recovered cover thickness.     

The inversion of MT data usually yields the smoothest 
resistivity model, which is demanded by the smoothness 
regularization terms of the inversion. This limits the detection 
of localized resistivity features such as sharp resistivity 
contrasts. On the other hand, purely data-driven inversions 
would create unrealistic resistivity models. This research 
attempts to find realistic models which could represent the 
contrast in resistivity between the conductive cover and the 
resistive basement, while maintaining geological plausibility.   
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SUMMARY 

Magnetotelluric (MT) and the passive seismic Horizontal 
to Vertical Spectral Ratio (HVSR) methods are commonly 
used to characterize cover thickness. While MT is 
sensitive to resistivity contrasts in the subsurface, the MT 
data inversion process is affected by non-uniqueness, 
noise, and sometimes sparsely sampled data, all which 
tend to increase uncertainty in the inverted models. 
Likewise, HVSR models are also affected by uncertainty. 

In this study, we test a new approach to exploit the 
complementarity between HVSR and MT modelling, 
using structural information from HSVR to reduce the 
uncertainty on the cover thickness recovered using MT 
data inversion. To this end, we adjust the roughness 
constraints applied to MT inversion using the depth range 
predicted by the HVSR method. 

New approach can recover sharp resistivity contrasts at the 
cover-basement interface and the cover depth estimation 
uncertainty could be reduced to 5%.  

Key words: Magnetotellurics, Passive seismic, inversion, 
integration, cover thickness   
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We present numerical investigations using a synthetic model. 
First, we computed the responses of a 1D two-layer cover 
basement model to test our approaches. Then, assuming that 
collocated passive seismic measurements analysed using the 
HVSR technique could detect the cover-basement interface 
within a certain depth range, we defined constraints for the MT 
inversions. Finally, we analyse the results of unconstrained and 
constrained inversions of MT data to determine the most 
effective constraints.      

METHODOLOGY 

Forward problem 

In this study we assume a sedimentary cover resistivity of 20 Ω 
m, a basement resistivity of 1000 Ω m and a cover thickness of 
1000 m (Figure 1a). We assume a 1D model with homogenous 
layers.  

The forward response of this model was calculated using the 
impedance recursive approach (Wait 1954). The responses 
were calculated at 56 frequencies ranging from 10-3 to 104 Hz 
having 8 frequencies per decade. 5% random noise was added 
to the response to simulate real data (Figure 1b).  

According to  Mulargia (2016) and Castellaro (2012),  the 
modelling of HVSR data would produce models where the 
estimation of the depth to an interface has uncertainties ranging 
from 10% to 25%. In this synthetic study, we consider that an 
estimation of the depth of the cover basement interface using 
HVSR has 25% uncertainty and the true interface resistivity 
signature sensed by MT would locate within that depth range.  

INVERSION METHOD AND CONSTRAINTS 

Within the Occam’s inversion scheme (Constable, Parker et al. 
1987) , the objective function U is minimized  (Equation 1):     

𝑈𝑈 =  ‖𝜕𝜕𝜕𝜕‖2 +  ‖𝑃𝑃(𝜕𝜕−  𝜕𝜕∗)‖2  
+ 𝜇𝜇−1  ��𝐶𝐶 �𝑑𝑑 − 𝐹𝐹(𝜕𝜕)��2 −  𝜒𝜒∗2�

Equation 1. Unconstrained regularization function 
(Constable, Parker et al. 1987)  

The first term (𝝏𝝏𝝏𝝏) is the model roughness. It applies the 
differentiation operator 𝝏𝝏 to the model vector 𝝏𝝏 (see subsection 
bellow for details). The second term is the measurement of the 
difference between the model 𝝏𝝏 and the prior model 𝝏𝝏∗. P is a 
diagonal matrix that determines the relative weighting between 
model roughness and closeness to the prior model. The third 
term is a measure of the misfit of the models’ forward response 
𝑭𝑭(𝝏𝝏) to the data d. C is the data covariance and defines the 
error estimate for each data point. It is a diagonal matrix; 𝜒𝜒∗2 is 
the target misfit; 𝜇𝜇−1 is a Lagrange multiplier that balances the 
trade-off between the data fit and the regularisation terms 
(Constable, Parker et al. 1987).  

In this framework, 𝝏𝝏𝝏𝝏 ,𝑷𝑷 and 𝝏𝝏∗ can be defined using external 
information. Here, the interface depth estimation from the 
HVSR modelling was only used to constrain the model 
roughness term. 

Model roughness term (𝝏𝝏𝝏𝝏) is product of roughness penalty 
weight (first matrix with weights 𝐰𝐰), the first-order difference 
roughness operator (second matrix) and the model vector (third 
matrix) (Equation 2). This has illustrated using a 5-layer 
example below. Air layer considered as a fixed resistivity layer 
(~ 1012 Ω m) assigned 0 penalty weight by nullifying the first 
row of the difference operator matrix.    
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Equation 2. Expanded model roughness term (Key 2010) 

New approach was tested to assign penalty values in roughness 
penalty weight diagonal matrix (first matrix in equation 2) using 
prior HVSR information. This approach was tested against the 
unconstrained methods (minimum gradient support 
regularization and depth weighted regularization). In what 
follows, unconstrained inversions refer to the case where no 
HVSR information is used and the roughness penalty weights 
(𝒘𝒘𝐢𝐢)  are all equal to 1. 

Constraining approach 

Here we test the utilisation of a sliding window within a 
specified interval around the depth predicted by HVSR, dpred. 
The weights assigned to the roughness are calculated as 
follows:  

𝑾𝑾𝒊𝒊 =  �
1, |𝑑𝑑| > 𝑑𝑑𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑑𝑑  
𝑤𝑤𝑖𝑖 , |𝑑𝑑| = 𝑑𝑑𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒        

1, |𝑑𝑑| < 𝑑𝑑𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒 − 𝛿𝛿𝑑𝑑
Equation 3. Square constrain window 

Figure 1 a) Initial cover basement model and b) MT 
response
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This constrained approach uses (flat) roughness penalty value 
(wi) from minimum (0) to maximum (1) in 0.05 steps for the 
depth window within the depth uncertainty estimated by HVSR 
model.  

The width of the sliding depth window (δd) for this test was set 
to 5% of the estimated interface depth from HVSR. 
Approximately 20 depth predictions (dpred) values were linearly 
placed within the cover depth range. 

Recovered models were examined in model space and data 
space and compared with the results of unconstrained 
inversions.  

 RESULTS AND DISCUSSION 

Unconstrained inversion 

Both minimum gradient support regularization results (Figure 2 
a) and depth weighted regularizations results (Figure 2b)
revealed a smoothed resistivity model for the initial model.
Resistivity contrast for the cover-basement boundary is not
clearly visible in either models.

Figure 2. Inverted resistivity model from unconstrained 
inversion, (a) first difference penalty method, (b) depth 
weighted penalty method  

Constrained inversion 

Figure 3 shows the inverted resistivity models from depth range 
constraining (square window) method.  

Figure 3. Inverted resistivity models different depth 
predictions, depth range sliding window method 

In this approach, minimum roughness penalty (0) could not 
converge into a final solution. Next plausible lowest roughness 

penalty 0.05 was used to recover the highest resistivity contrast 
for the cover-basement interface. 

 Low depth predictions (from 750 to 850 m) could create 
unrealistic resistivity model fluctuations at the cover-basement 
interface prediction depth (Figure 4). Possible reasons are 
discussed further in next section.  

We calculated the numerical sum of the (absolute) gradients of 
resistivity model to quantify model fluctuations. Result showed 
minimum value (sum) close to the correct depth prediction 
(Figure 4). Assuming lowest sum of gradients was given at the 
most probable interface depth, cover-basement depth for this 
approach would be 1025 m with 5% (25 m) uncertainty.    

Figure 4. Numerical sum of absolute values of gradients, 
depth range constrain approach 

DISCUSSION AND CONCLUSIONS 

There are two possibilities that lowered model roughness 
penalties could cause sharp resistivity gradients in MT 
inversion results. When the depth prediction is correct, the 
model could fit with observations (data) to achieve an 
appropriate resistivity gradient within the (roughness) relaxed 
depth range. If the depth prediction is incorrect, the model is 
trying to describe observations while having unrealistic 
resistivity model fluctuations inside the relaxed depth window. 
This model fluctuations could be influenced by the random data 
noise which is introduced at the beginning of forward modelling 
to simulate real data.  

Initial cover basement interface estimation from HVSR and its 
uncertainty estimation is central for the constrained MT 
inversion stability. Therefore, any interface predictions should 
be based on robust geological-geophysical prior information. 
With reasonable interface depth predictions with reasonable 
uncertainty, we could apply this new approach successfully to 
recover accurate resistivity models and describe the 
observations within acceptable RMS.  

The numerical sum of the resistivity gradient successfully 
quantified the total gradient changes (model oscillations) in the 
inverted model. When the depth prediction was close to the true 
cover depth, inverted models showed the lowest value for the 
sum of the gradients in relation to the other predictions.  

Based on the results and observations mentioned above, we can 
remark the following conclusions for new constraint approach. 
Sliding constraints windows could use to draw reasonable depth 
predictions for cover depth. In this synthetic test, the depth 

True cover depth 

(a) (b) 
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prediction uncertainty was reduced to 5% of the cover depth 
estimation initially given by the HVSR.  

Smaller sliding window and multilayer stratigraphy scenarios 
must be checked for the robustness of the new approach.   
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