
Performance modeling of Heterogeneous HW Platforms

Falk Rehma, Dakshina Dasaria, Arne Hamanna, Michael Presslera, Dirk
Ziegenbeina, Jörg Seittera, Ignacio Sañudob, Nicola Capodiecib, Paolo

Burgiob, Marko Bertognab

aRobert Bosch GmbH
bUniversity of Modena and Reggio Emilia

Abstract

The push towards automated and connected driving functionalities mandates
the use of heterogeneous hardware platforms in order to provide the required
computational resources. For these platforms, established methods for per-
formance modeling in industry are no longer effective or adequate. In this pa-
per, we explore the detailed problem of mapping a prototypical autonomous
driving application on a Nvidia Tegra X2 platform while considering differ-
ent constraints of the application, including end-to-end latencies of event
chains spanning CPU and GPU boundaries. With the given use-case and
platform, we propose modeling concepts in Amalthea, capturing the archi-
tectural aspects of heterogeneous platforms and also the execution structure
of the application. These models can be fed into appropriate tools to predict
performance properties. We proposed the above problem in the Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS) Industrial Challenge 2019 and in response, academicians came
up with different solutions. In this paper, we evaluate these different solu-
tions and summarize all approaches. The lesson learned from this challenge is
then used to improve on the simplifying assumptions we made in our original
formulation and discuss future modeling extensions.

Email addresses: falk.rehm@de.bosch.com (Falk Rehm),
dakshina.dasari@de.bosch.com (Dakshina Dasari), arne.hamann@de.bosch.com
(Arne Hamann), michael.pressler@de.bosch.com (Michael Pressler),
dirk.ziegenbein@de.bosch.com (Dirk Ziegenbein), joerg.seitter@de.bosch.com
(Jörg Seitter), ignacio.sanudoolmedo@unimore.it (Ignacio Sañudo),
nicola.capodieci@unimore.it (Nicola Capodieci), paolo.burgio@unimore.it (Paolo
Burgio), marko.bertogna@unimore.it (Marko Bertogna)

Preprint submitted to Elsevier July 16, 2021

1. Introduction

Emerging automated and assisted driving applications are radically re-
defining the way automotive systems are designed and deployed. The com-
putational power and communication bandwidth required by these new func-
tions (such as path planning, object recognition, predictive cruise control),
exceed the capabilities of legacy micro-controller based compute nodes and
the newer E/E architectures are shifting towards centralized E/E architec-
tures that are based on a new class of computing nodes featuring more pow-
erful micro-processors and accelerators such as Graphic Processing Units
(GPUs), reconfigurable logic (e.g., FPGA) and dedicated application-specific
integrated circuits (ASIC). Systems designers thereby need to grapple with
conflicting demands of these applications like predictability and efficiency,
while dealing with the intricacies of more complex hardware platforms and
complex software-hardware interactions between different compute elements.
Mastering the system complexity has become increasingly difficult and there
is an increasing need for modelling and analysis tools to meet these chal-
lenges.

Although much research has been conducted on the formal analysis of
heterogeneous multiprocessor architectures, we believe there are some gaps
that need to be addressed primarily on the modeling perspective. Such gaps
are represented by scheduling complex tasksets into multi-core CPUs that
work in concert with compute accelerators. Existing response time analy-
ses must be therefore extended to consider the added complexity of such
heterogenous platforms, with specific emphasis on memory contention, pro-
gramming models and different scheduling policies enabled by the different
computing elements.

In order to master such a complexity an important prerequisite is the
need for expressive performance models capturing the heterogeneity of the
hardware-software system. These performance models can be fed into simu-
lation tools to replicate different execution scenarios and predict the perfor-
mance at design time. To our knowledge there do not exist models capturing
the intricacies of heterogeneous systems in the current state of the art.

With this work, we make the following key contributions:

• We highlight the need for expressive performance models capturing the
heterogeneity of hardware-software systems. As a use case, we con-

2

sider an autonomous driving application that is deployed in a modern
heterogeneous SoC (an Nvidia Tegra platform).

• We provide a detailed description of an autonomous driving applica-
tion designed to run in a modern heterogeneous SoC and in particular
focus on the problem of mapping such an application to the underlying
platform such that its timing requirements are guaranteed.

• We demonstrate how a heterogeneous application can be modelled in
Amalthea [1] by capturing both the hardware and software aspects.
In order to model the hardware, we describe the architecture of the
underlying platform and show how key information needed for a timing
analysis can be captured in Amalthea. Similarly, on the software front,
we discuss the different modes of software interactions occur between
the CPU and the GPU and describe how these interactions can be
captured in Amalthea.

• We summarize and discuss the proposed solutions for the timing anal-
ysis challenge regarding this use case, posed by us at the WATERS
Industrial Challenge 2019, held in conjunction with the 31st Euromi-
cro Conference on Real-Time Systems [2, 3].

• We eventually discuss the lessons learned by comparing how differ-
ent academicians approached such a challenge: more specifically, we
propose modeling extensions in order to capture software and hard-
ware in greater detail. These extensions include i) a more detailed
modeling of the GPU hardware ii) refined memory access modeling
iii) extended support for practical schedulers like the QNX Adaptive
Partitioning Scheduler iv) extensions to handle middleware systems
using the publish-subscribe communication paradigm. This enhanced
modeling approaches will be used to formulate a future version of the
challenge.

1.1. Organization of the work

The remainder of the article is organized as follows. The following section
presents the Amalthea modelling framework and related work, focusing on
similar challenges proposed in the community and other modelling frame-
works that are used for modelling real-time constraints. Section 3 describes

3

the automotive use case and timing constraints. In Section 4 and 5 we pro-
vide hardware details of the Jetson TX2 platform and an overview of GPU
programming concepts. A description of the 2019 Waters challenge is then
presented in Section 6. Then, in Section 7 we present the modelling mech-
anisms that are needed to address the challenge and the modelling artifacts
used to describe the use case from a hardware and software perspective. Sec-
tion 8 presents a summary of all the proposed solutions and a comparison
between all the different solutions. Then in Section 9, we provide multiple
modelling extensions that lay the basis of a new Industrial Challenge. Fi-
nally, Section 10 presents our conclusions and concludes with a summary of
the provided contributions.

2. Need for Modelling

Model-based techniques are integral in mastering the complexity of het-
erogeneous systems. Models capturing the software and hardware architec-
ture are essential in the early design phases for several reasons, including

• (Early) system performance evaluation before target hardware is avail-
able

• (Glue) code generation for system configuration parameters like schedul-
ing configurations and communication infrastructure

• Design space exploration (what-if analysis) before implementation

• Data exchange between costumers, suppliers and system integrators as
well as singe input for multiple (commercial) analysis tools

As systems get more complex in the automotive arena, it becomes imper-
ative to be able to have rich and expressive models of the hardware, software
and design decisions and incorporate it into the design process, as early as
possible. In this work, we used Amalthea[1] for specifying the characteristics
of our system.

2.1. Amalthea Modelling Concepts

Amalthea is an open source data model which focuses on the non-functional
dynamic system architecture of a hardware/software system enriched with
performance data embedded in a rich tooling platform [1]. The model is

4

primarily used for performance analysis and performance simulation. By ab-
stracting from the specific functionality of model elements, Amalthea mod-
els or sub-models can be exchanged between companies or with academia
without disclosing confidential information. Amalthea is capable to express
complete hardware/software models for multi- and many-core systems and is
currently extended to cover the increasing heterogeneity of modern embedded
systems.

The granularity of the modeled system always depends on the use case,
which means a performance simulation including memory accesses needs way
more system model information compared to an abstract event chain analysis
where only runnable execution times are used. In turn, this means that based
on the specific use case only parts of the system model may be required.
Amalthea is organized in a set of sub models which closely interact witch
each other, as an example the mapping model maps task of the software
model to schedulers of the operating system model which are in turn mapped
to processing units of the hardware model. An Amalthea model typically
consists of the following sub models:

• Software: Represents the application in terms of runnable entities (in
our case study described in section 3, including the GPU offloading
mechanisms).

• Hardware: Represents the HW platform in terms of processing ele-
ments, memories and interconnects (in our case study a simple repre-
sentation of the Nvidia Jetson TX2 platform including latencies).

• Operating Systems: Defines the operating systems together with the
schedulers and the scheduling algorithms.

• Stimuli: Periodic and interprocess triggers for the software model.

• Constraints: In this part of the system model can deadlines for different
software tasks be specified and other system constraints.

• Mapping: Connect the software, operating system and the hardware
model for a specific task mapping and assigns data elements (labels) to
memory.

5

A complete documentation about the Amalthea version 0.9.3 1 can be
found on the official webpage of the open source project Eclipse APP4MC [1].
Examples for modeling multi-core microprocessor-based systems with Amalthea
are given in [14] and [15]. However as we shall describe in the upcoming
sections, there were gaps in Amalthea in the context of expressing software
interactions like different offloading computations from the CPU to the GPU,
which have been covered by the described in Section 7.

2.2. Related work

In this section, we will firstly cover different modeling tools and secondly
other industrial challenges that have been proposed and what exactly differ-
entiates the described WATERS industrial challenge in this paper.

One of the most fundamental problems when proposing real industrial
settings is the hardware and software representation of the system. Many
different frameworks for modelling real-time systems have been used and pro-
posed in the industry and scientific community. Capella [10] is a modeling
workbench to master architectural design and manage complexity. How-
ever it lacks details on the dynamic architecture and performance aspects of
embedded systems. Unlike Amalthea that is focused on performance mod-
elling of the dynamic system architecture, Capella is meant to capture the
static system architecture. MAST (Modelling and Analysis Suite for Real
Time Applications) [11], is an open source set of tools that enables en-
gineers developing real-time applications to check the timing behaviour of
their application, including schedulability analysis for checking hard timing
requirements. Commercial simulation tools like Vectors Timing Architect [9]
and InChron ChronSIM [12] provide a dedicated model-based simulation and
optimization tools for real-time systems. They are used for the simulation
and performance requirements validation n of embedded systems. Similarly
Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [8],
introduces a domain view for time modeling and defines standard UML el-
ements to express defined timing concepts of real-time and embedded sys-
tems. But MARTE highly abstracts from the hardware architecture. All
the aforementioned tools (including the earlier version of Amalthea) are not
particularly adapted to handle heterogeneous architectures and capture the

1There are newer versions of Amalthea available, 0.9.3 refers to the version in which
most of the changes were implemented

6

semantics of CPU-GPU interactions involving modern parallel frameworks
like CUDA or OpenMP. In this work, propose extensions in Amalthea in
Section 7 and Section 9 to handle the requirements of modern heterogeneous
applications.

2.3. Other Industrial Challenges in the Real-time systems domain

The ’Formal Methods for Timing Verification’ FMTV industrial chal-
lenge, proposed in conjunction with the European Conference on Real-Time
Systems (ECRTS) has a long, well-known history in the real-time commu-
nity. The first challenge was proposed in 2014 and 2015 by Thales Research
[5]. The challenge consisted in the end-to-end latency analysis and priority
assignment optimization of an aerial video tracking application. In 2016,
Robert Bosch GmbH proposed the challenge [6] focused on determining end-
to-end latency bounds for different cause-effect chains and response time of
the tasks of a engine management automotive software. An Amalthea model
containing the software and hardware model of the system was provided.
Then in 2017, Robert Bosch GmbH extended the problem by proposing the
analysis with two different inter-task communication semantics, namely, Im-
plicit Communication and Logical Execution Time [7]. The model follows the
same hardware and software specification of the 2016 model. In 2018, Das-
sault Aviation took up the challenge 2. The challenge focused on end-to-end
timing analysis and compositionality of a drone-like muti-system case study.
The organizers provided a SysML architectural model and the generated C
source code for the participants interested in performing WCET estimation.
Then, in 2019, Robert Bosch GmbH and HiPeRT Lab (University of Modena
and Reggio Emilia) proposed the challenge that is subject of this work [2].

Recently, PerceptIn, have proposed an industrial challenge in the context
of the 42nd IEEE Real-Time Systems Symposium (RTSS) conference 3. In
this industrial challenge, it is presented an end-to-end latency and schedula-
bility analysis problem that must be applied on an autonomous driving use
case. However, in the proposed case study, the task-to-engine mapping prob-
lem is neither introduced nor task timing constraints like WCET or deadlines
are provided. Such missing elements, make the challenge and solutions pre-
sented in this paper more concrete and complete from a scientific point of
view.

2https://github.com/AdaCore/RESSAC Use Case/
3http://2021.rtss.org/industry-session/

7

http://2021.rtss.org/industry-session/

Also we re-iterate that the WATERS challenge on which this paper is
based, serves to reiterate the need for modeling, the challenges in captur-
ing the software-hardware interactions in modern heterogeneous applications
spanning general purpose CPUs and also custom accelerators (GPUs).

In the next section we present the autonomous driving use case and the
timing constraints of all the software components. Each of these tasks have
been modeled in AMALTHEA, they form the basis of the partitioning and
end-to-end response time analysis.

3. Application Use Case

CPU

GPU

LiDAR grabber Localization

DetectionCamera grabber

Point

cloud

Camera

frame

EKF

Pose

(x,y,yaw)

Can reader

Odometry

Odometry

Planner

Pose

(x,y,yaw)

Occupancy grid

Bounding box

SFM
Lane

detection

Controller
Steer,speed

Depth

estimation

Lane

boundaries

Figure 1: Autonomous driving task pipeline

Researchers in next-generation embedded systems agree that there is a
clear need and urgency to demonstrate and bound the predictability of com-
plex heterogeneous systems in terms of end-to-end latencies. As a prereq-
uisite, there is a need to be able to formally model these systems (software
and hardware), which can then be fed into appropriate tools for performance
analysis. In this section, we first describe the features of a relevant applica-
tion and later we describe how such an application can be modeled.

We developed the prototype of an end-to-end autonomous driving appli-
cation running on the Tegra TX2 platform. The goal was to create and model
an application that is representative for next-generation Advanced Driver As-
sistance Systems (ADAS) and automated driving systems. It uses state-of-
the-art algorithms from robotics and automotive, mixes different workloads
with different criticality levels on the same computing platform, and exploits
architectural heterogeneity by concurrently running tasks on the most suit-
able computational units (i.e. CPU and GPU).

On the highest level, the reference application provides the proper throt-
tle, steering, and brake signals to drive a vehicle through a predetermined

8

map of way-points. Moreover, the vehicle runs specific high-priority tasks to
break and/or perform emergency manoeuvres to avoid obstacles like pedestri-
ans or bicycles, the so-called Vulnerable Road Users (VRUs). It is important
to mention that the application works without using Robotic Operating Sys-
tem (ROS), and all algorithms are implemented from scratch.

An overview of the key software tasks running in the system can be seen in
Figure 1. The green boxes with the dashed borders represent tasks executing
on the GPU, while the blue ones execute on the CPU hosts. Please note
that there are tasks that can be partitioned by using either a GPU or CPU
implementation of it, e.g., lane detection or localization.

In the following a short description of the individual tasks is given:

LIDAR Grabber. The grabber reads the information from the LiDAR sensor,
and builds a point cloud that is shared with the Localization task. Addition-
ally, a so-called occupancy grid is produced capturing the free space in front
of the vehicle. This information is sent to the Path Planner task.

Localization (CPU/GPU). The localization is implemented using a Particle
Filter algorithm. This method adopts a probabilistic model to determine
the position of the car on the given environmental map. This position infor-
mation is then merged with the motion estimation coming from the vehicle
odometry, to obtain an accurate and predictive estimate of the vehicle’s po-
sition. The current pose of the vehicle is sent to the EKF task.

CANbus polling. This task snoops the key vehicle information (steer, wheel,
brake, acceleration status, etc) from the on-board CAN bus and sends it to
the Localization, Planner, and EKF tasks.

Path Planner. The main purpose of this component is to calculate and follow
a vehicle trajectory. This trajectory is represented as a spline defining the
sequence of positions and orientations that the vehicle shall follow. The
spline can be enriched with additional information such as speed to hold,
stops, etc. The Planner task sends the goal state of the vehicle (i.e., target
steer and speed) to the DASM task that is in charge of writing the actuation
commands to the CAN bus.

Car Controller + Can Writing. This task computes and establishes the speed
and steer that must be effectively employed from the information that is
provided by the Path Planner task. In order to implement this functionality
two different controllers are used:

9

• A Pure Pursuit controller calculates the steering angle to follow the
given trajectory.

• A PID controller to follow the speed profile defined by the given tra-
jectory.

The calculated commands are sent via CAN bus to the engine control
unit in order to perform the final actuation.

EKF. The Extended Kalman Filter is the nonlinear version of the Kalman
filter method. This algorithm estimates the poses of the ego vehicle and
objects repeating two stages: prediction and correction. The data produced
is a matrix that corresponds to the object and ego vehicle estimation which
is sent to the Path Planner.

Lane detection (CPU/GPU). This task provides accurate locations of the
road boundaries and the shape of each lane. The output of this task is a
matrix of points representing the lane boundaries within the road, which is
sent to the Planner task.

Detection (GPU). This task is responsible for detecting and classifying the
objects on the road. It uses a machine learning approach, with an optimized
version of YOLOv3 [26] for the TX2 platform that exploits CUDNN and
TENSOR-RT 4. The neural network was re-trained in order to extend the
classification classes of the baseline version. The following object categories
are supported: pedestrians, cars, trucks, buses, motorbikes, bicycles, riders,
traffic lights, and traffic signs. All the objects detected are visualized and
the information produced is sent to the Planner task.

Structure-From-Motion (SFM) (CPU/GPU). Structure From Motion is a
method for estimating 3D structures (depth) from vehicle motion and se-
quences of 2D images. This task returns a matrix of points representing the
distance to objects in the image, and sends it to the Planner task.

Please note that each task shown in Figure 1 is characterized by period,
execution cycles, and a deadline which is in our case equal to the period.
Communication dependencies between tasks have sampling semantics, mean-
ing that each task is independently activated once per period and its output

4https://github.com/ceccocats/tkDNN

10

https://github.com/ceccocats/tkDNN

Task PU Avg. Ticks Min Ticks Max Ticks Period(ms)
Lid Grab A57, (Dvr) 23520000 20320000 27320000 33
CAN A57, (Dvr) 999360 799360 1199360 10
EKF A57, (Dvr) 8799340 7959340 9519340 15
Planner A57, (Dvr) 22743822 19243822 26483822 15
Car Control A57, (Dvr) 3219990 2599990 3719990 5
SFM A57, (GPU, Dvr) 53775310 48274300 59003000 33
Localizn. A57, (GPU, Dvr) 754439355 733039355 774839355 400
Pre Det A57, (Dvr) 7178560 6573410 7951921 200
Det GPU 165000000 162000000 174000000 200*
Post Det A57, (Dvr) 7561630 6999284 8513680 200*
Lane Det A57, (GPU, Dvr) 98689120 95689120 102089120 66
OS Ovhd A57, (Dvr) 100000000 100000000 100000000 100

Table 1: Task Characterization. Here PU refers to the processing unit, Min and Max
Ticks refer to the lower and upper bound of the ticks. Dvr is short for Denver. The
Detection task is split in three tasks due to the offloading to the GPU. The three tasks
are chained via inter process triggers. Det refers to detection, Ovhd is abbreviation for
overhead,Localizn. is short for localization and Lid Grab refers to the Lidar Grabber task

data is placed into an intermediate buffer (of size 1) such that the receiving
task always works on the most recently produced data. The core execution
time is of course mapping dependent. Table 1 shows the different tasks of the
provided model with the different mapping targets. Additional to the men-
tioned tasks there is also an additional task to represent the OS overhead.
The measured tick values are always related to A57 except for the Detec-
tion because this can only be executed on the GPU, therefore there are also
two additional tasks for pre- and post-processing. All necessary information
e.g. tick values for Denver is specified in the model. Further information
about the modeling can be found in the following Section 7 and the concrete
Amalthea model with all necessary information in [2] .

4. Overview of the Nvidia Tegra X2 Platform

We use the Jetson TX2 platform from Nvidia [13] as an example heteroge-
neous embedded board as the modelled HW in which the target application
will run. In this section we introduce the details of the hardware aspects
of the Nvidia TX2 platform needed to reason about the performance. At
a high-level abstraction, embedded heterogeneous SoCs (System on Chip)
featuring GPGPU accelerators are characterized by the following hardware
components: 1) Host Subsystem 2) Accelerator and 3) Memory hierarchy as
seen Figure 2.

11

Figure 2: Multi-heterogeneous hardware platform

Host Subsystem. As shown in Figure 3, the Nvidia Tegra X2 is composed of
two different CPU islands, a quad-core 1.9GHz ARMv8 A57 and a dual-core
2GHz ARMv8 Denver (NVIDIA ARM-based proprietary technology). Each
of the cores in the A57 subsystem integrates a private 32KB L1 data cache
and a 48KB L1 instruction cache, while the Denver features a per-core 32KB
L1 data cache and 48KB L1 instruction cache. Moreover, each of the islands
has a 2MB L2 cache.

Accelerator. The platform features an integrated GPU or iGPU Pascal-based
architecture “GP10b” with 256 CUDA cores grouped within two streaming
multiprocessors (SM). Each of the SM has a 64KB L1 cache, and both SMs
share a 512KB L2 cache. The GPU integrates two major hardware com-
ponents: an Execution Engine (EE) responsible for performing the parallel
workload execution and a Copy Engine (CE) responsible for high bandwidth
memory transfers.

Memory. In embedded devices, for example NVIDIA Tegra based boards, the
GPU and the CPU have access to a common shared memory. Allocations in
global memory are managed by the CPU host. The GPU is organized as an
array of Streaming Multiprocessors (SM) where the SMs share a common L2

12

Figure 3: Nvidia Tegra X2 hardware architecture

cache. With regard to memory, it is important to consider the bandthwidth
and how to allocate buffers to be accessed by CPU and GPU.

Memory bandwidth: The Tegra X2 SoC features a 8GB LPDDR4 128 bit
DRAM with a bandwidth of 58 GB/s. The Denver cores have approximately
three times the memory bandwidth of the ARM-A57 cores, i.e. approxi-
mately 14 vs 4.5 GB/s, hence memory accesses from the Denver cores have
shorter latencies for a single read operation throughout L2 and system RAM
accesses. The GPU can access the shared RAM banks with a bandwidth of
20GB/s.

Generally, the CUDA programming model allows the user to handle mem-
ory (allocation and data transfer) in many ways. GPU-side allocations might
involve data buffers that are pageable or pinned [16], or data can be simply
shared by both CPU and GPU (i.e. Unified Memory Models, UVM). We ar-
gue that explicit copies in real-time applications are to be preferred to unified
memory models [34], as the latter is more difficult to benchmark and forces
the analyses to account for hidden coherency mechanisms between CPU and
GPU address spaces.

As shown in Section 6, most of the issues in performance and predictabil-
ity in such complex hardware connect to concurrently accessing the shared
system resources. For this reason, the key challenge, and nearly most of the
proposed solutions, partly or completely focus on the memory hierarchy, both
on the host and accelerator complex (e.g., shared LLCs), and on the inte-
grated DRAM banks. Also, the hierarchical structure of GPGPUs compute
engines, where CUDA cores are clustered into SMs, is a challenging aspect,

13

mostly because the task scheduling strategy is somehow hidden inside the
(opaque) CUDA drivers. Nonetheless, one challenge tries an approach based
on a supply bound function, to model this aspect.

5. GPU Programming Concepts

A GPU function, also called command or kernel, refers to a C++ function
that is executed on the GPU. An application may be realized with one or
more GPU kernels in addition to regular CPU functions. A stream is a queue
of both compute and copy operations issued by an application [17]. Each
stream can therefore be composed of multiple kernels and copy operations.
An application can delegate its kernels and copy operations across multiple
streams; typically kernels that can run in parallel are assigned to different
streams. Kernels within a stream are executed in FIFO order whereas ker-
nels from different (custom) streams within the same application can execute
concurrently. Concurrency and parallelism are subject to the availability of
enough resources on the GPU [45]. Note that the above description regard-
ing streams is Nvidia specific, although the concept of streams can also be
found in other programming languages like OpenCL where it is referred to
as “command queues”.

Streams can be categorized as DEFAULT streams or custom streams.
When unspecified, all kernels are executed in the DEFAULT stream.

Streaming Multiprocessor (SM) resource occupancy relates to the num-
ber of threads per block, per-thread registers footprint and allocated shared
memory. Kernels dispatched from the same stream are implicitly synchro-
nized, whereas kernels in different streams must be synchronized with specific
CUDA artifacts (stream events). Potentially, a kernel on a stream can utilize
all the CUDA cores of all the SMs of the GPU. CUDA allows the user to
designate a stream to have either a high priority or a lower priority.

5.1. GPU Scheduling Model

A GPU-based application is a process that creates a so-called GPU-
context. For instance, two GPU applications belong to two different GPU
contexts reside in different memory spaces, following a standard UNIX-like
process execution scheme. Each application is associated with one (or more)
channels [18]. Only a channel associated with one application can execute
on the GPU at any given time. So, two applications cannot co-execute at
the same time, they may however have interleaved executions.

14

Figure 4: Illustration of channel scheduling with time slice allocation to channels in a
run-list. Notice in the lower diagram, how channel C2 is scheduled if C4 finishes earlier
than its time slot

The timeslice within a channel could be used to execute the copy or
the execution phases. When the channel has multiple streams, the copy
and execute phases may run in parallel as seen in Figure 5, depending on
availability of resources.

Figure 5: Parallelism with multiple streams. The figures on the left and right illustrate
the time distribution within C1’s timeslice when C1 has one or two streams respectively

Once a channel is selected, the GPU scheduler dispatches kernels of the
selected channel for execution to the SMs (or copy phases to the copy engine).
The GPU Host dispatches commands to the copy and/or execution engine.
By the time a kernel command arrives to the execution queue, commands
are translated into CUDA programming artifacts called thread blocks that
are allocated into SMs. Thread blocks, which in turn are composed of warps,
are managed by the Warp Scheduler. The warp scheduler organizes ready-to-
execute instructions from a set of available and ready warps. By the time a
kernel command arrives to the SM, the Warp Scheduler assigns instructions
to warps.

5.2. Thread block-to-SM mapping

The thread block scheduler is in charge of assigning thread blocks to the
SMs. This distribution is transparent to the user and it plays a key role
since it is the component that decides how applications effectively runs on

15

the GPU cores. To accomplish the thread block-to-SM allocation, the sched-
uler performs an occupancy test. In this test, the condition of each SM is
examined to determine its current degree of resource utilization. Specifically,
the test returns whether the current occupancy is such that a new block
can be allocated into the target SM. The metrics considered by the scheduler
are the following resource occupancy factors (i) number of threads/warps per
thread block(ii) shared memory per thread block and (iii) number of registers
per warp.

If kernels are dispatched onto a single stream, then, kernels are launched
sequentially and thread blocks are equally distributed through all the avail-
able SMs, first to the even numbered SMs and then to the odd numbered
SMs in increasing ID order. If kernels are however dispatched onto differ-
ent streams, multiple kernels can execute concurrently. More details can be
found in [45], in this paper authors present a model describing how the thread
block scheduler considers the occupancy metrics of each kernel to perform
the block-to-SM mapping.

5.3. GPU-CPU Interaction

In a typical GPU-CPU interaction, when a program starts, the CPU
copies the data and instructions from host memory domain to GPU memory,
this copy is performed using the Copy Engine (CE) as seen in Figure 6. After
this operation, the CPU launches one or more kernels: this execution can be
either synchronous or asynchronous. If synchronous, the CPU dispatches
the work to the GPU and then the CPU waits until the end of the kernel
execution. In the asynchronous case, it is possible to perform computations
on the CPU, immediately after dispatching the work to the GPU without
waiting for completion, in a work-conserving manner.

Note: Although copy engines are NVIDIA terminology, asynchronous
executions and copies on a separate device are a generic abstraction, required
in any host-accelerator programming model.

After having described the application use-case, the hardware model and
the programming model, we next describe the WATERs challenge.

6. Problem Description: The WATERS 2019 [21] challenge

The Industrial Challenge of the WATERS workshop 2019 [2] was con-
ducted in conjunction with the ECRTS [20] conference with the key objec-
tive to share ideas, experiences and solutions to concrete problems arising

16

Figure 6: Data transfer handled by the copy engine

from real industrial case studies. The key intention of the challenge was to
firstly model a real-world application spanning heterogeneous compute nodes
and demonstrate how this model could be used to solve an associated timing
analysis problem. The users were presented with an Amalthea model [21],
which captured details of the application use-case, programming model and
the hardware model.

6.1. Description of the Challenge

Given the above hardware platform and the application use-case, the
challenge proposed two main problems: response time computation and task
mapping.

Response Time Computation. Given the autonomous application described
above consisting of a set of dependent tasks and a given mapping, the prob-
lem is to calculate its end-to-end response time [49, 48]. The response time
should account for the time for the copy engine to transfer data between the
CPU and the GPU. It should also account for the time for the data trans-
fers between the CPU and the shared main memory considering a read/exe-
cute/write semantic. Note that while memory accesses are already accounted
within ticks of GPU tasks, CPU task response times must account memory
contention caused by tasks running on different processing units that use dif-
ferent memory controller clients and/or the GPU’s copy engine, and memory
access latencies in addition to ticks and preemption.

Optionally different offloading mechanisms (synchronous/asynchronous)
may be considered to further optimize the end-to-end latencies. The response

17

time analysis should also be memory contention aware. A model must be
devised to account for the memory interference when multiple CPU cores
and the GPU copy engine is accessing memory at the same time.

Mapping Challenge. Some tasks can either be mapped to different type of
CPUs (A57 or Denver Cores) or a GPU, defining a design space for explo-
ration. Find mappings that (Pareto-) optimize the latency of the different
task chains.

We made the following assumptions to better define the scope of the
problem.

On the CPU side. CPU tasks follow the read, execute and write semantics
similar to the implicit communication of AUTOSAR [22]. A CPU task of-
floads workload synchronously or asynchronously to the GPU. For the CPU,
priorities have to be set so as to meet deadlines. We assume that the task
period is equal to its deadline.

On the GPU side. We assume that applications do not use unified/paged
memory but only pinned memory. We consider that each application has
one custom stream associated with it. Furthermore, we assume that there is
a single copy engine to carry out host-to-device and device-to-host memory
transfers. We assume a channel per context (application), so as to have one
time slice per application. Different applications might have different time
slices. We assume no fine granular modeling of memory accesses from the
execution engine. Memory accesses from the EE stage are not explicitly
modeled (memory accesses are included in ticks, because copy engine also
make use of Level 2 Cache).

In general for the CPU and GPU, for simplicity, we assume that cache
lines are not evicted and tasks access labels only once per activation, from
memory. Although caches are not explicitly modeled, we assume that data
is always transferred as a complete cache line (64 bytes).

6.2. Memory Contention Model

For the memory contention model, we refer to the work in [34, 35]. The
idea is that the length of memory phases (read and write) during contention,
depends on how many other memory controller clients are accessing main
memory at the same time. The model accounts for increasing latencies for
GPU cpoy engine activity during the observed time window. The method to
compute memory contention for CPU and GPU tasks is presented below.

18

Modeling Memory Contention for CPU Tasks. Let π ∈ { Denver, A57} refer
to the CPU type and Kπ refer to the increase in memory access latency of
a task running on the observed core π when interfered by one external core.
It does not matter if the interfering core is Denver or A57: this number only
depends on the observed CPU core; so KA57 = 20ns and KDenver = 2ns.

For each CPU type π, we also define a baseline latency Bπ which is the
time taken to read or write a cache-line of 64 bytes from main memory to
the CPU registers in isolation (without any interference). From empirical
measurements, BA57 = 20ns and BDenver = 8ns.

Let nC refer to the number of interfering cores which ranges from 0 to
5 (as one of the 6 cores is the observed CPU core. An nC of 0 implies no
interference from other CPUs).

Since we also need to consider the sensitivity to the GPU copy engine
activity, we introduce the term δπ which represents an increase in memory
access latencies of a task running on the CPU type π if the GPU is performing
operations on the copy engine. Here, δA57 = 100ns and δDenver = 20ns. Also
let bG denote a boolean value which is 1 when the GPU operates the copy
engine, else 0.

Then the Latency Lπ is defined as the time to read/write a cache-line
(here assumed to be 64 bytes) from main memory to the cpu registers of
CPU type π when interfering with nC cores is given by

Lπ = Bπ +Kπ ∗ nC + δπ ∗ bG

So the first term accounts for the basic time (without contention) while
the second and third terms account for the interference from other CPUs and
the GPU.

Modeling Memory Contention for GPU Tasks. From the GPU side, we only
consider interference from the copy engine data movements. A GPU CE
data movement is a 100% memory bound runnable. Every memory access
is modeled as sequential access. Then the Latency LCE incurred by a GPU
operation when contending with nC other cores on the shared memory is
given by

LCE = G+ 0.5 ∗ nC
with LCE is defined as the time taken to transfer 64B using the copy engine
(cudaMemcpy) and the GPU baseline G is the time taken to transfer 64 bytes
using the copy engine with no interfering CPUs. Here G = 3ns.

19

We acknowledge that the model is rather simple and static in nature
on multiple accounts; it does not take into consideration the actual mem-
ory traffic generated by the contending cores and makes not assumptions on
the interconnect arbitration mechanism. Also memory controllers have op-
timization mechanisms that could speed up the access latencies. However,
we believe this is a good starting point for the discussion on the contention
effects.

The Amalthea model representing the hardware-software system described
in this paper along with a description of the challenge formulation can be
found in the WATERS community forum [21]. The challenge was also pub-
lished later in [3].

7. Amalthea Modeling Concepts

This chapter focuses on the modeling mechanisms which are necessary to
model a system in Amalthea which is capable to represent the ADAS appli-
cation described in section 3 on a heterogeneous platform. In the following
subsections, different modeling concepts in Amalthea are explained. We use
existing mechanisms of Amalthea to represent the offloading of a task from
a CPU to a GPU. For describing the system model, we use the Amalthea
meta-model version 0.9.3.

7.1. CPU Memory Access Semantics

As mentioned we assume that tasks executing on a CPU (in case ot the
TX2 platform a A57 or Denver core) follow a read/execute/write semantic.
In this model, the execution is decoupled into three different phases: a read
phase where the data is fetched from memory, an execution phase, where the
task performs pure computation and a write phase, when the core writes the
computed result back to memory. Memory accesses are usually represented
as label accesses in Amalthea (within a runnable). The size of the label as
well as the operation itself (read or write), are specified in the software model.
The mapping to memory is specified in the mapping model, while the access
latencies/data rates and access path can be specified in the hardware model.
Figure 7 shows an example for a Runnable within a Task following the read
(label access to l1) → execute (Ticks) → write (label access to offload1)
policy.

Then the total execution time of a task is the sum of the

1. Label Read access time

20

Figure 7: Runnable example for a CPU

2. Core execution time

3. Label Write access time

F is the frequency of the executing processing unit (CPU/GPU). The
core execution time T is calculated as:

T = Ticks/F

The label read access time R and write access time W is a function of
the label size L, read latency RL or write latency WL, the frequency of the
processing unit and the cache line size S. The label read access time R is
calculated as follows:

R = (L/S) ∗ (RL/F)

The write access time is computed similarly. Note that due to simplicity, read
and write latencies are always the same (we ignore store buffers, etc.). The
read and write latencies are specified for every processing unit. In the model
it can be found under Processing Unit → Access Element. Using different
read and write latencies and considering the write backs of a cache could also
be future extensions.

7.2. GPU Modeling

A GPU can be represented by a processing unit within the Amalthea
hardware model. Due to the assumption that every application consists of
one stream, it is not necessary to separate the copy engine from the execution
engine as this essentially implies that interleaving between copy and execu-
tion phases cannot occur. For the abstract modeling of a GPU, we do not
model the internal architecture like thread blocks, or the internal memory
hierarchy explicitly. Due to its complexity, we also abstract the GPU cache

21

system, this means that the explicit copy operations are executed (see Sec-
tion 7.3) but all data accesses during the execution on the graphics/compute
engine are already accounted in the Ticks specified in the runnable.

7.3. GPU Offloading

In Amalthea parallelism is expressed on task level, this means all items
(e.g. runnables) within a task are executed sequentially. Therefore, in case
a workload is offloaded to the GPU, this workload is modeled as a separate
task, which is shown in Figure 8. In addition to the offloaded workload to
the GPU, there is still some pre- and postprocessing to be executed which
is done on the host CPU and represented as two individual tasks. The tasks
are chained via interprocess stimuli, an example is shown in Table 1 for the
Detection task.

Figure 8: Synchronous and asynchronous offloading

The offloading to the GPU requires data to be transferred from the CPU
memory region to the GPU memory region (explained in Section 5.3). This
is accomplished by separating this offloading in three different runnables:

1. host to device copy operation

2. execution

22

3. device to host copy operation

Figure 9 shows an example with three runnables and the task calling the
runnables. In addition, the offloading can be performed in synchronous or
asynchronous manner. Figure 8 shows the two different mechanisms. The
workload WL1CPU is executed on a CPU. WL1CPU contains label accesses or
ticks (to specify the computational cost).

• In the synchronous case, the CPU task offloads the work to the GPU,
and then actively waits for the execution on the GPU to be completed.
After completion the execution on CPU side can directly start with a
latency of 0 due to the active waiting.

• In the asynchronous case the CPU task offloads the work to the GPU
and goes into a passive waiting mode, this implies that the scheduler
can schedule other workloads on the CPU. In case the offloaded GPU
task has finished and the CPU task is active again (responsibility of
the scheduler), additional costs due the async offloading have to be
accounted before the execution on the CPU can be continued.

Figure 9: GPU workload example with copy runnables

The concrete modeling is shown in Figure 10. The offloading is triggered
with the inter process trigger (detection stim) within the task mapped to a
CPU. This trigger activates a task which is mapped to a GPU (e.g. Figure 9).
The corresponding WaitEvent is entered, active in case of the synchronous
and passive in case of asynchronous offloading. After the workload of the
GPU is finished, the resulting data is copied back from the GPU to the CPU

23

and the corresponding event SetEvent is set by the GPU task (see Figure 10).
In the asynchronous case the additional offloading costs are modeled with an
extra runnable called asyncOffloadindCosts which include additional ticks.
In both scenarios, the ClearEvent resets the synchronization mechanism.

Figure 10: Modeling synchronous and asynchronous offloading of the Detection-
Preprocessing Task described in Table 1

7.4. GPU Scheduling

For the GPU Scheduling, we assume one combined scheduler for the GPU
(instead of having a separate scheduler for the copy engine and the execution
engine), this is possible due to the assumption that every application has
just one stream (currently represented with one task executed on the GPU).
Therefore, given an application, the time slice allocated to its channel is
used for both copying and execution. We do not explicitly model channels

24

in Amalthea but associate one GPU task to each application. These tasks
are scheduled by the custom time slice scheduler of the GPU with minimum
and maximum time slice of 1 ms and 500 ms respectively. These attributes
are set in the Amalthea model under Operating System → GPU Cluster →
GPU Sched → User Specific Scheduling Algorithm. The scheduling policy is
explained in Section 5.1. The aforementioned weighted round robin scheduler
policy is not directly supported in Amalthea, therefore a custom scheduler
is used. The individual time slices for the different tasks can be specified in
the mapping model when mapping a task to a scheduler TaskAllocation. An
example is shown in Figure 11. Note that this is just an example and do
not represent the best time slice configuration for the model. The time slices
have to be adapted based on the mapping of the tasks to the targets (A57,
Denver, GPU).

Figure 11: Specifying individual time slices for tasks

7.5. Mapping-dependent Resource Consumption

The number of ticks for a runnable is dependent of the executing pro-
cessing unit. To be able to express different tick values for different process-
ing units multiple potential mapping targets with their tick values can be
specified. This can be used for analysis to optimize end-to-end latencies by
changing the task mapping of the given model. Figure 12 shows an Amalthea
modeling example, which includes multiple tick values for different mapping
targets: e.g. workload WL3 requires a default of 6000 ticks when mapped to
the Cortex A57 (default), and 3000 ticks when mapped to the GPU. Note
these entries also implicitly define the possible mapping targets. An overview
about the different tasks of the presented application in section 3 with po-
tential mapping targets is shown in Table 1.

25

Figure 12: Extended ticks in Amalthea

The modeling concepts refer to Amalthea version 0.9.3; In the meanwhile
the WATERS example model was added to the included examples which
are part of the official Eclipse APP4MC distribution (starting from version
0.9.8). This means the model is also available in newer Amalthea versions and
is migrated to every new Amalthea release. The challenge model is available
in the latest Eclipse APP4MC version (starting from 0.9.8) which can be
directly downloaded one the official APP4MC homepage [1]. The model is
part of the included examples which are migrated to every new Amalthea
version.

Also, currently the modeling was done with respect to the Nvidia plat-
form. However most of the above concepts are common to most heteroge-
neous architectures and they can be modeled similarly with Amalthea.

8. Proposed Solutions

Different solutions for the above challenge were proposed during the
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2019), which was collocated with the Euromicro
Conference on Real-time Systems (ECRTS 2019). In the following, each so-
lution is briefly summarized. Please note that the challenge was not posed
in a way to allow for a quantitative comparison of the proposed solutions.
The goal was rather to explore the suitability of approaches from the real-
time community for different real-time analysis questions in the context of
a complex automated driving software stack that is executed on a modern
heterogeneous HW platform. For this reason, the comparison rather focuses
on the utilized approaches as well as on which (sub-)aspects of the challenge
have been addressed. It is to be further reiterated that the objective of the

26

challenge was not to deeply assess the technically solutions provided, but
rather to validate if the presented model presents sufficient information to
system designers or analysis tools towards performance analysis.

8.1. Solution 1: Applying an extended classical response time approach [27]

Authors in [27] employ conventional RTA for fully-preemptive tasks under
rate monotonic scheduling running on CPUs using the windowing technique
and combines it with weighted round robin (WRR) RTA for GPU tasks. Ad-
ditionally, they define a memory contention model for GPU copy engines as
well as differences of asynchronous and synchronous GPU offloading mecha-
nisms.

• CPU Response Time analysis considers task access latency, contention
latency and locking latency. A busy window analysis is used based on
the work in [36], where the interference from high priority tasks and
the different label access latencies are integrated.

• Additionally, the cases for synchronous and asynchronous offloading are
addressed for CPU RTA analysis, again using a busy window analysis
technique.

• The GPU response time analysis is based on the work in [36] and con-
siders the copy engine costs (to read from memory, write to GPU mem-
ory and vice versa). It takes into account queueing delays from earlier
copy operations and also contention with other CPU tasks while ac-
cessing the shared memory. Finally this contention delay is integrated
into the GPU RTA assuming a weighted round robin mechanism among
tasks on the GPU.

• Task mapping is done using genetic algorithms with a view to meet
3 different criterion. Three different fitness functions are employed
to minimize the response time, minimize the task-chain latency and
balance the load across the CPUs. The authors also compared the
different solutions derived from employing these criteria.

• The authors also address the issue of computing a right time slice to
enable the tasks to be scheduled on the GPU.

• Finally a method to compute the task chain latencies is suggested.
However the communication semantics are not spelled out clearly and

27

the latency seems to have some double accounting since the response
times and the periods of the tasks along the chain are simply added.

8.2. Solution 2: Design Space Exploration using an Evolutionary Algorithm [28]

The authors in [28] propose a model based approach of design space
exploration (DSE) employing an multi-objective evolutionary algorithm for
the task-to-core mapping and an SMT solver for the schedule synthesis. Tasks
follow an acquisition, execution and restitution (AER) model In addition
to the given assumptions of the challenge, the authors make the following
assumptions

• All memory transfers are performed asynchronously via the Direct
Memory Access (DMA) engine.

• DMA prefetching has no interference effects on latency due to serializ-
ing the requests.

• Bandwidth of DMA access equals those of the GPU.

• Single rate tasks and no task periods provided in the challenge nor
preemption is considered.

The authors highlight the fact that strategically prefetching data can help in
reducing the makespan of tasks by overlapping computation and communica-
tion. With this is mind they jointly explore task mappings and data transfers
strategies that are strongly coupled via common communication resources.
The evolutionary algorithm based DSE is used to map tasks to CPU cores or
the GPU, and and data transfers to the DMA unit. For each candidate map-
ping, the SMT scheduler and the temporal analysis are employed to estimate
the resulting communication latencies. They also compare the response time
of tasks with and without prefetching.

While this approach emphasizes on DMA transfers and the benefits of
prefetching, the additional assumptions made by the authors weaken the
usability of this approach. The scheduling on the GPU is not addressed,
and the memory contention effects are overlooked. Furthermore with the
assumption of non-preemptive single-rate tasks, the interference effects are
also not considered in detail. Also offloading cases are not addressed in this
solution.

28

8.3. Solution 3: Analytical approach with focus on end-to-end latencies [29]

The authors of [29] mainly focus on optimizing the end-to-end latencies,
considering the LET and implicit communication semantics. They also apply
standard response time analysis techniques for the fixed priority preemptive
scheduling on the CPUs (including offsets) [31] as well as weighted round-
robin scheduling on the GPUs [37].

• The CPU response time analysis basically uses the classic busy window
analysis [31]. CPU tasks that offload work to the GPU essentially
have a pre-processing, offloading (to the GPU) and post-processing
phase: for such tasks, the response time in each phase is computed by
considering an offset equal to the best (and worst-case) response time
of the previous phase. The release jitter is also computed accordingly.
The authors then apply the offset based analysis as proposed in [31].
With their approach, the authors therefore have a common analysis for
synchronous and asynchronous offloading scenarios.

• Tasks scheduled on the GPU are analyzed using the busy window anal-
ysis for weighted round robin scheduling proposed in [37]. The delay
accounted for the copy-in and copy-out operations is integrated in the
analysis.

• The authors then focus on optimizing the end-to-end latencies, consid-
ering the different communication semantics [32]. Memory access la-
tencies are computed according to the static analytic model presented
in the paper. Given that there are no tuning knobs with the LET se-
mantics since the end-to-end latency is dependent on the task periods
which cannot be changed, the authors do not attempt further optimiza-
tion. For implicit communication, the authors carry out a design space
exploration (DSE) using genetic algorithms, by tuning task priority as-
signments, task allocations and GPU time-slices to arrive at different
response times.

8.4. Solution 4:Applying the Self-Suspending Task Theory [30]

The authors of [30] provide a scheduling model description which consid-
ers the different specified task runtimes for different mapping targets, as well
as synchronous offloading to the GPU. Each task is modeled as an interleaved
sequence of execution region on the CPU and acceleration regions where the

29

Analysis Features Solution 1 Solution 2 Solution 3 Solution 4
CPU Response Time Analysis yes partially yes yes
GPU Response Time Analysis yes no yes yes

Task chain latencies partially partially yes yes
Synchronous offloading yes no yes yes

Asynchronous offloading yes no yes no
Optimize Task Mapping yes partially yes yes

Optimize GPU Time Slices yes no yes partially

Table 2: Problems tackled by different approaches

task waits for completion of a GPU operation.The authors model a form of
synchronous offloading scenario wherein on launching a GPU operation, the
CPU suspends itself. The offloading of acceleration regions to the GPUs by
the CPU tasks is thereby analyzed by means of the self suspending task the-
ory [38]. Tasks on the GPU are assumed to be scheduled using a weighted
round robin (WRR) mechanism. The response time analysis uses a supply
bound function to model the service provided by the GPU to each task in
an given time interval considering WRR. Response time analysis of tasks on
the CPUs is carried out using the self suspending task theory [38], where
acceleration regions(executed on the GPU) correspond to suspension regions
and the timing effects of suspensions are accounted as release jitter.

In order to meet the different criterion stated in the challenge, the authors
linearize the analysis and in include it in a Mixed-Integer Linear Program-
ming (MILP) with the goal to optimize the following objectives:

• minimize task chain latencies.

• task to core mapping (considering the GPU load and acceleration of
tasks).

• ensure schedulability.

• priority assignment.

Furthermore the solution proposes several potential extensions to their anal-
ysis and modeling approach as well as to the WATERS challenge.

8.5. Comparison of the Approaches

Summary. The purpose of the challenge presented in this paper was to ex-
plore the fit of state-of-the-art real-time modeling and analysis techniques for

30

an automated driving application executed on a heterogeneous HW platform
where time critical cause-effect chains span across general purpose micro-
processor cores and special accelerators like GPUs. It was expected that
an overall analysis incorporating all aspects (CPU scheduling, GPU schedul-
ing, task mapping, synchronous and asynchronous offloading, response time
analysis, end-to-end latency analysis) would be challenging using the avail-
able toolbox of real-time research.

The results, however, show that this is only partially true. While each
of the proposed solutions made some simplifying assumptions for parts of
the overall problem as seen in Table 2, they nevertheless proposed accurate
methods for other parts.

Each of the solutions interestingly used a different toolset from existing
real-time research for solving the same problem. While authors [27] and [29]
used genetic algorithms for design space exploration (with different objec-
tives), [30] used a Mixed Integer Linear Programming ToolKit and [28] used
an evolutionary algorithm with an SMT solver for schedule synthesis. Clas-
sical response time analysis using busy windows was used in [27] and [29],
while [30] applied the self-suspending theory for the same.

In summary, it can thus be concluded that the toolbox of real-time re-
search fits the proposed challenge. However, still work remains to be done
to develop a holistic approach that covers all the above-mentioned aspects
in detail and also covers future extensions of the challenge discussed in the
following section.

9. Additional Modeling Extensions

The case study presented in this paper contains simplifying assumptions.
Due to the interesting results obtained in the first round of solution propos-
als, it makes sense to introduce extensions to obtain a more realistic and
complete model as basis of a new Industrial Challenge in the context of the
ECRTS conference. Again, the main purpose of such an updated and far
more realistic challenge would be to evaluate the extent to which methods
from real-time research can answer various analytical questions.

9.1. GPU Modeling Extensions

GPU hardware. In the challenge model, the entire GPU hardware was ab-
stracted as a single execution unit. However we can further extend it to model

31

Figure 13: GPU modeling example

the GPU hardware in more detail as a hierarchical structure of streaming
multiprocessors, grids, blocks and threads, including the shared cache.

As a first step, instead of representing the entire GPU by a single pro-
cessing unit (PU), we can model more details as seen in Figure 13. Each
streaming multiprocessor (2) is modeled by a PU and furthermore the copy
engine can be modeled by another PU. This allows us the mapping of dif-
ferent tasks to the modeled PUs, e.g. a copy in task can be executed on the
copy engine parallel to the execution task of another stream on one of the
streaming multiprocessors like it was shown in Figure 5.

In addition, the Level-2 cache resides within the GPU structure and is
connected to the external interconnect via ports. In order to represent plat-
forms like the C2050 [19] that support a separate copy engine for each direc-
tion between the host and the device, we can model each of them explicitly.

Streams. In the current model, in line with the assumption of each applica-
tion having only a single stream, the Amalthea model can only handle single
streams. By explicitly modeling streaming processors and the copy engine in
the hardware model, we overcome this limitation and multiple streams can
be represented. Accordingly we adapt the representation of streams in the
software model. Instead of using one task with multiple runnables, we use
tasks for every sub-operation(copy in, execute and copy out). Each GPU
task in a given stream is therefore split into three different tasks representing
the copy in, kernel execution and copy out task. The copy in and copy out

32

(sub)tasks are assigned to the copy engine(s) while the execution task is as-
signed to one of the SMs. We ensure a ordered, serialized execution of the
copy in, execute and copy out tasks by using the interprocess trigger mech-
anism between them. In order to associate these three sub-tasks to the same
task, it is recommended that tasks have the same prefix name or be tagged
to a common application name.

Note: It is necessary to use tasks because tasks are the only scheduleable
entities in Amalthea and therefore the only possibility to model parallel ex-
ecution on multiple processing elements.

Figure 14: Scheduling the compute and copy tasks on the SMs and copy engines

A common GPU scheduler is responsible for scheduling all tasks on the
multiple SMs and the copy engine(s) as seen in Figure 14. By mapping the
different tasks to the responsible scheduler and using the affinity attribute of
the mapping element, the target for each task can be specified - e.g. copy in
and copy out tasks to the copy engine and the execute task with the affinity
for both streaming multiprocessors. Note that since only one application
context can run on the GPU at any given time, only streams of a given
application may be executed concurrently on the SMs.

Generally, we do not intend to model DEFAULT streams. Given the
non-determinism they bring in, it is unlikely that they will be considered
for applications needing strict timing guarantees. Something that we con-
sider interesting for future works is to consider the computing nature (i.e.,

33

memory intensive or compute intensive) of the streams. In [45], the authors
highlighted that memory intensive and compute intensive streams interleave
very well in the GPU (mainly because they do not interfere with each other
when they execute concurrently), while streams of the same nature lead to
stronger interference.

GPU memory hierarchy and types. Additionally, the current work does not
consider the specific memory regions to which applications are mapped –
these regions could be of type pinned, paged or unified, thereby impacting
the memory access times. On accounting for these details, we plan to arrive
at tighter estimates on the execution time of an application launched on
the GPU. We can use custom properties in Amalthea to mark a memory as
pinned or paged.

9.2. Memory Access Extensions

In the current model, only constant latencies are used for describing a
memory access. However in reality, memory access latency is dependent
on different components (like interconnects) in the access path to memory.
Furthermore in cache-based systems usually a whole cache line is transferred
and the access is defined by the latency, the bandwidth and the bit width in
combination with the maximum burst size of the interconnect. In order to
incorporate these parameters, the hardware model can be extended in terms
of more detailed access paths instead of using fixed latencies for memory
accesses.

In Amalthea, this can be realized by connecting the different ports of
ProcessingUnits, Caches, ConnectionHandlers and Memories with HwCon-
nections. Then, concrete HwAccessPaths through the system can be added
to the HwAccessElements of each processing unit. In this case, the sum of
annotated latencies of the different components of a specified HwAccessPath
e.g. at the interconnect (specified at the connection handler definition) are
summed up to the overall latency for an access to the specified target in the
HwAccessElement. In addition to the latency, the bandwidth can also be
specified. The used bandwidth of HwAccessPaths is the minimum annotated
bandwidth of all elements in the specified path.

By using information about the cache line size, the bit width of the ports,
burst size and information like latency and bandwidth of an HwAccessPath,
more detailed simulation regarding memory accesses and a more detailed
interference analysis compared to 6.2 can be done.

34

Figure 15: Access path example

9.3. QNX Adaptive Partitioning Scheduling

In this section, we show how we can further extend the modeling capabil-
ities to include more practically deployed schedulers like the QNX Adaptive
partitioned scheduler, in addition to the fixed priority schedulers which are
already modeled in Amalthea.

The QNX Neutrino OS offers regular schedulers like the round robin
scheduler and the sporadic scheduler. Additionally, it also offers the Adaptive
Partitioning Scheduler (APS), a global scheduler that has been designed with
the objective to globally guarantee specified minimum shares of CPU time
to groups of threads or processes residing within virtual containers called
partitions. The percentage of the CPU time allotted to a partition is called
budget. In effect, partitions are merely virtual containers for managing the
budget. Partitions are not directly scheduled and executed, this is done at
thread level as with other operating systems. The APS scheduler is invoked
at each scheduling event (timer tick, thread termination, message arrival,
etc.) and computes a priority metric for all the ready-to-run threads in the
system.

This metric is a function, among other aspects, of the thread priority, the
share of budget consumed by the parent partition, etc. The thread with the

35

highest priority metric is selected to execute. In general, without getting into
the specifics of the priority metric functions, the following behavior is visible.
Whenever partitions are below their budgets, the APS chooses the highest
priority ready thread to execute. In other words, when under-loaded, the
APS behaves like a priority-based real-time scheduler. In the case when all
partitions are out of budget, the APS divides time between them by the ratios
of their budgets. When a partition is not running and has budget (called idle-
time mode), it is distributed to other partitions with ready threads either by
thread priority or by the ratio of their budgets. The APS, thus, throttles
thread execution by measuring the average CPU usage of each partition.
The average is computed every 1ms (or scheduling event) over a configurable
averaging window (typically 100 milliseconds).

A ready thread whose partition is out of budget, meaning that the con-
sumption of CPU time over the averaging window exceeds the partition’s
budget, is not allowed to run, if there exist other ready threads from other
partitions with available budget. Only once enough time has elapsed for the
average consumed CPU time of its parent partition to fall below the assigned
budget, the thread will be allowed to run again. However, the thread is guar-
anteed to eventually run. For more details on the behavior, please refer to
the Adaptive Partitioning Scheduler Users Guide [44].

Figure 16: QNX Adaptive Partitioning Scheduler

In Amalthea the APS can be modeled as a hierarchical scheduler5 as

5Information on how to model hierarchical schedulers with Amalthea can be found in
the App4mc documentation [42]

36

depicted in Figure 16.
At the top-level, the APS is modeled as a fixed priority preemptive sched-

uler with budget enforcement. The size of the averaging window as well as
the overload strategy are not directly supported by Amalthea and need to
modeled as custom properties.

The nature of APS being a global scheduler is expressed by the Scheduler-
Allocation dependencies, assigning responsibility for all cores in the system.
The partitions are modeled as logical groups. The processor capacity assigned
to a partition is defined via the minBudget attached to the SchedulerAssoci-
ation edge between the APS and the partitions.

Tasks are allocated to the logical groups representing the APS partitions.
Every task is assigned with a (globally unique) priority. The core affinities of
tasks are optional, and can be used to restrict the task migrations performed
by the global APS scheduler.

9.4. Extensions to Handle Publish-Subscribe Middleware Systems

Classically, real-time systems are built with precise knowledge about the
activation patterns of concurrently executed applications. A large part of
real-time theory is, for instance, based on the assumption that applications
are activated strictly periodically. This periodic model can easily be extended
with the notion of activation jitter, indicating that the individual points of
execution may vary to a certain extent. For many applications (e.g. control)
assumptions like periodic execution make perfectly sense, and most real-
time operating systems come along with built-in support for realizing such
behavior (e.g. through periodic tasks).

However, when looking at middleware systems such as ROS2 [39] or
MQTT [40] which heavily use the publish-subscribe messaging pattern, con-
trolling and understanding the activation patterns of applications is far more
involved.

Publish-subscribe is a messaging pattern implemented by most popular
middleware systems. Messages are sent asynchronously by so-called publish-
ers without the knowledge how many (if any) so-called subscribers receive the
messages. This decoupling of senders and receivers provides great flexibility
since dependencies are not explicitly programmed, and can even be added
dynamically during runtime. Messages are usually “delivered” by the execu-
tion of callback-functions giving the subscriber(s) the possibility to react and
process the received data. In addition to this data-driven activation, most

37

middleware system also support time-driven activation of callback-function
through timers.

When it comes to building real-time systems, the publish-subscribe ab-
straction can cause problems. For instance, since activated callback-functions
can publish messages themselves, complex behavior can emerge making it po-
tentially very hard to understand the dynamic behavior of an application.

Figure 17: Publisher, Subscriber modeling

In the following, we describe how the publish-subscriber messaging pat-
tern can be modeled in Amalthea. Thereby, the focus lies on a steady-state
model of the system. Dynamic changes can be modeled but are out of scope
in this work. The approach is illustrated in Figure 17. Please note, that we
use the term node to denote a process publishing and subscribing to topics.

Between every publish/subscriber pair, a data Channel is modeled in
Amalthea. In order to simplify the modeling effort, we model every node
that subscribes to multiple topics into several Tasks in Amalthea. The node
itself is not modeled in Amalthea. This split into individual tasks allows us
to model different behavior (e.g. publishing new data) and execution times

38

for each callback.
Since we are modeling each callback as a separate task, we need to ensure

that a node subscribing to multiple callbacks is executing them in FIFO
manner, which is assumed to be the default behavior in this paper. To that
end, we use a common Semaphore for each node to sequentialize the execution
order.

The activation of callbacks can be either data or time-triggered. In Fig-
ure 17 callback3B is triggered every 10ms by a PeriodicStimulus. In Amalthea
we model an additional ModeLabel as a boolean flag to ensure, that the call-
back functionality is only executed when new data is available. The callbacks
of Node1 and Node2 are triggered on data availability. An Event sent out
by the publisher activates the corresponding EventStimulus, which, in turn,
triggers the corresponding callbacks of all subscribers.

Please note, that in the above proposed modeling approach, all callbacks
are assumed to be executed in FIFO manner. In reality, existing middle-
ware systems often exhibit more complex semantics that are implementation
defined and not well documented. ROS2, for instance, repeatedly fetches
all messages that have arrived in the underlying communication system (i.e.
DDS) and executes the corresponding callbacks until completion. Only then
newly arrived messages are fetched. During execution, callbacks triggered
by timers are prioritized, afterwards callbacks triggered by messages are pro-
cessed in the order they have been registered in the source code [41]. For
now these sources of non-determinism and complex delays are not modeled
in this work, hoping that future ROS2 releases exhibit a more well-defined
callback execution behavior.

10. Conclusion

System designers and practitioners across the industry and academia are
grappling with the problem of mastering the complexity of adopting het-
erogeneous systems in emerging automotive applications. In this work, we
highlighted the existing gaps in available modeling tools and also presented
different factors that must be considered while efficiently deploying applica-
tions on heterogeneous hardware considering a modern autonomous driving
use case. We demonstrated how we can model these systems (the software
and hardware) using the Amalthea modeling tool. We then presented the
WATERS industrial challenge and the solutions presented by the different
participants. Extensions to handle newer scheduling paradigms (like the

39

QNX APS), newer communication paradigms (publish-subscribe) and more
detailed hardware modeling are also proposed. Different approaches in tack-
ling the response time analysis and mapping problem were evaluated. We
believe that since performance effects for modern systems, such as for the pre-
sented automated driving application, are much more difficult to predict and
master compared to classical micro-controller based systems, performance
modeling and analysis, as presented in this work will play in future an in-
creasingly important role in automotive systems engineering.

Acknowledgment

This work was partially funded by the PANORAMA project of the Ger-
man Federal Ministry for Education and Research with the funding IDs
01IS18057A.

This work has been supported by the European Union’s Horizon 2020
research and innovation program under grant agreement No 871669.

The responsibility for the content remains with the authors.

References

[1] Eclipse APP4MC, https://www.eclipse.org/app4mc/

[2] Industrial Challenge, WATERS 2019, https://www.ecrts.org/waters/

[3] F. Wurst et al., ”System Performance Modelling of Heterogeneous HW
Platforms: An Automated Driving Case Study,” 2019 22nd Euromicro
Conference on Digital System Design (DSD)

[4] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein and M. Wolf, ”Future
Automotive Systems Design: Research Challenges and Opportunities”,
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Turin, Italy, 2018.

[5] Rafik Henia and Laurent Rioux. The 2015 fmtv challenge. see https:

//waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf,
2015

[6] A. Hamann, D. Ziegenbein, S. Kramer and M. Lukasiewycz, ”Demo
Abstract: Demonstration of the FMTV 2016 Timing Verification
Challenge,” 2016 IEEE Real-Time and Embedded Technology and

40

https://www.eclipse.org/app4mc/
https://www.ecrts.org/waters/
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf

Applications Symposium (RTAS), 2016, pp. 1-1, doi: 10.1109/R-
TAS.2016.7461330.

[7] Hamann, A., Dasari, D., Kramer, S., Pressler, M., Wurst, F., and Ziegen-
bein, D. (2017, June). Waters industrial challenge 2017. In International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS).

[8] OMG MARTE Group. A UML profile for MARTE:Modeling and anal-
ysis of real-time embedded systems,beta 2 (convenience document with
change bars). InOMG MARTE documentation, pages 1–676, 2008.

[9] Timing Architects Tool Suite, https://www.vector.com/int/en/

products/products-a-z/software/ta-tool-suite/

[10] Capella, Open Source Solution for Model-Based Systems Engineering,
https://www.eclipse.org/capella/

[11] M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palencia Gutier-
rez and J. M. Drake Moyano, ”MAST: Modeling and analysis suite for
real time applications,” Proceedings 13th Euromicro Conference on Real-
Time Systems, 2001, pp. 125-134, doi: 10.1109/EMRTS.2001.934015.

[12] ChronSIM, Unleash the Power of Timing Simulation https://www.

inchron.com/chronsim/

[13] Jetson TX2 Module, https://developer.nvidia.com/embedded/buy/
jetson-tx2

[14] S. Kramer, D. Ziegenbein and A. Hamann. ”Real world automotive
benchmarks for free”, 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[15] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst and D. Ziegen-
bein, ”WATERS industrial challenge 2017”, 8th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Sys-
tems (WATERS), https://waters2017.inria.fr/challenge

[16] How to Optimize Data Transfers in CUDA C/C++, https://

devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc

41

https://www.vector.com/int/en/products/products-a-z/software/ta-tool-suite/
https://www.vector.com/int/en/products/products-a-z/software/ta-tool-suite/
https://www.eclipse.org/capella/
https://www.inchron.com/chronsim/
https://www.inchron.com/chronsim/
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://waters2017.inria.fr/challenge
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc

[17] CUDA C++: Streams and Concurrency. Available at:
https://developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf

[18] N. Capodieci, R. Cavicchioli, M. Bertogna and A. Paramakuru,
”Deadline-Based Scheduling for GPU with Preemption Support”, IEEE
Real-Time Systems Symposium (RTSS), Nashville, 2018.

[19] How to Overlap Data Transfers in CUDA C/C++ Available at: https:
//devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/

[20] Euromicro Conference on Real-time Systems 2019, https://www.

ecrts.org/

[21] Description of the WATERS Industrial Challenge 2019, https://www.
ecrts.org/forum/viewforum.php?f=43

[22] AUTOSAR: Specification of RTE Software, https://www.autosar.

org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_

RTE.pdf

[23] M. Bechtel et al. ”Deeppicar: A low-cost deep neural network-based
autonomous car”, 24th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2018.

[24] N. Otterness et al. ”An evaluation of the NVIDIA TX1 for supporting
real-time computer-vision workloads”, IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[25] Kato, Shinpei, et al. ”Autoware on board: Enabling autonomous vehi-
cles with embedded systems”, ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS) 2018.

[26] J. Redmon and F. Ali, “YOLOv3: An Incremental Improvement”,
CoRR Journal abs/1804.02767 (2018)

[27] R. Höttger, J. Ki, T. B. Bui, B. Igel, and O. Spinczyk. ”CPU-GPU
Response Time and Mapping Analysis for High-Performance Automotive
Systems”, WATERS Industrial Challenge, ECRTS 2019, https://www.
ecrts.org/forum/viewtopic.php?f=43&t=134

42

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://www.ecrts.org/
https://www.ecrts.org/
https://www.ecrts.org/forum/viewforum.php?f=43
https://www.ecrts.org/forum/viewforum.php?f=43
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.ecrts.org/forum/viewtopic.php?f=43&t=134
https://www.ecrts.org/forum/viewtopic.php?f=43&t=134

[28] A. Diewald, S. Barner, and S. Saidi. ”Combined Data Transfer Response
Time and Mapping Exploration in MPSoCs”, WATERS Industrial Chal-
lenge, ECRTS 2019, https://www.ecrts.org/forum/viewtopic.php?

f=43&t=135

[29] L. Krawczyk, M. Bazzal, R. Govindarajan, and C. Wolff. ”An analytical
approach for calculating end-to-end response times in autonomous driving
applications”, WATERS Industrial, Challenge, ECRTS 2019, https://
www.ecrts.org/forum/viewtopic.php?f=43&t=136

[30] D. Casini, P. Pazzaglia, A. Biondi, G. Buttazzo, and M. Natale. ”Ad-
dressing Analysis and Partitioning issues for the WATERS 2019 Chal-
lenge”, WATERS Industrial Challenge, ECRTS 2019, https://www.

ecrts.org/forum/viewtopic.php?f=43&t=137

[31] J. C. Palencia and M. Gonzalez Harbour. ”Schedulability analysis for
tasks with static and dynamic offsets”, Proceedings 19th IEEE Real-
Time Systems Symposium (Cat. No.98CB36279), Madrid, Spain, 1998,
pp. 26-37.

[32] A. Hamann, D. Dasari, S. Kramer, M. Pressler and F. Wurst. ”Com-
munication centric design in complex automotive embedded systems”,
29th Euromicro Conference on Real-Time Systems (ECRTS), Dubrovnik,
2017.

[33] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter and R. Ernst,
”System level performance analysis - The SymTA/S approach”, IEE Pro-
ceedings - Computers and Digital Techniques, vol. 152, no. 2, pp. 148-166,
March 2005.

[34] R. Cavicchioli, N. Capodieci and M. Bertogna, ”Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms”, 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Limassol, 2017.

[35] N. Capodieci et al. “Detailed characterization of platforms”, High-
Performance Real-time Architectures for Low-Power Embedded Systems
(HERCULES), http://hercules2020.eu/wp-content/uploads/2017/
03/D2.2_Detailed_Characterization_of_Platforms.pdf

43

https://www.ecrts.org/forum/viewtopic.php?f=43&t=135
https://www.ecrts.org/forum/viewtopic.php?f=43&t=135
https://www.ecrts.org/forum/viewtopic.php?f=43&t=136
https://www.ecrts.org/forum/viewtopic.php?f=43&t=136
https://www.ecrts.org/forum/viewtopic.php?f=43&t=137
https://www.ecrts.org/forum/viewtopic.php?f=43&t=137
http://hercules2020.eu/wp-content/uploads/2017/03/D2.2_Detailed_Characterization_of_Platforms.pdf
http://hercules2020.eu/wp-content/uploads/2017/03/D2.2_Detailed_Characterization_of_Platforms.pdf

[36] I. Sanudo, P. Burgio, and Marko Bertogna. ”Schedulability and Timing
Analysis of Mixed Preemptive-Cooperative Tasks on a Partitioned Multi-
Core System”, International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, WATERS, 2016.

[37] R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst, ”Improved response
time analysis of tasks scheduled under preemptive Round-Robin”, Pro-
ceedings of the 5th IEEE/ACM International Conference on Hardware
Software Codesign and System Synthesis (CODES+ISSS ’07). Associa-
tion for Computing Machinery, New York, NY, USA, 179–184

[38] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K.
Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Rajkumar, D.
de Niz, and G. von der Brüggen, ”Many suspensions, many problems: a
review of self-suspending tasks in real-time systems” Real-Time Systems,
Sep 2018.

[39] ROS2 - Robotic Operating System 2, https://index.ros.org/doc/

ros2/

[40] MQTT - Message Queuing Telemetry Transport, http://mqtt.org/

[41] D. Casini, T. Blaß, I. Lütkebohle, and B.B. Brandenburg, ”Response-
Time Analysis of ROS 2 Processing Chains Under Reservation-
Based Scheduling”, 31st Euromicro Conference on Real-Time Systems
(ECRTS), 2019.

[42] Description of hierarchical scheduling concept of App4mc,
https://www.eclipse.org/app4mc/help/app4mc-0.9.8/index.

html#section2.2.6

[43] Sprunt, Sha, and Lehoczky ”Scheduling Sporadic and Aperiodic Events
in a Hard Real-Time System”, 1989

[44] QNX User Guide http://www.qnx.com/developers/docs/6.5.0/

index.jsp

[45] I.Sanudo, N.Capodieci, J.Martinez, A. Marongiu and M. Bertogna,
”Dissecting the CUDA scheduling hierarchy: a Performance and Pre-
dictability Perspective Ignacio Sañudo University of Modena and Reggio

44

https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
http://mqtt.org/
https://www.eclipse.org/app4mc/help/app4mc-0.9.8/index.html#section2.2.6
https://www.eclipse.org/app4mc/help/app4mc-0.9.8/index.html#section2.2.6
http://www.qnx.com/developers/docs/6.5.0/index.jsp
http://www.qnx.com/developers/docs/6.5.0/index.jsp

Emilia”, IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

[46] G Brilli and P. Burgio, ”Interference analysis of shared last-level cache
on embedded GP-GPUs with multiple CUDA streams”, in Workshop
on Analysis Tools and Methodologies for Embedded Real-Time Systems
(WATERS) 2019

[47] I. Sanudo, N. Capodieci and R. Cavicchioli, ”A Perspective on Safety
and Real-Time Issues for GPU Accelerated ADAS”, IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, 2018.

[48] M. Becker, S. Mubeen, D. Dasari, M. Behnam and T. Nolte, ”A generic
framework facilitating early analysis of data propagation delays in multi-
rate systems (Invited paper),” 2017 IEEE 23rd International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2017, pp. 1-11, doi: 10.1109/RTCSA.2017.8046323.

[49] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. 2018.
Analyzing end-to-end delays in automotive systems at various levels
of timing information. SIGBED Rev. 14, 4 (November 2017), 8–13.
DOI:https://doi.org/10.1145/3177803.3177805

45

	Introduction
	Organization of the work

	Need for Modelling
	Amalthea Modelling Concepts
	Related work
	Other Industrial Challenges in the Real-time systems domain

	Application Use Case
	Overview of the Nvidia Tegra X2 Platform
	GPU Programming Concepts
	GPU Scheduling Model
	Thread block-to-SM mapping
	GPU-CPU Interaction

	Problem Description: The WATERS 2019 DescriptionChallenge challenge
	Description of the Challenge
	Memory Contention Model

	Amalthea Modeling Concepts
	CPU Memory Access Semantics
	GPU Modeling
	GPU Offloading
	GPU Scheduling
	Mapping-dependent Resource Consumption

	Proposed Solutions
	Solution 1: Applying an extended classical response time approach Solution1Hottger
	Solution 2: Design Space Exploration using an Evolutionary Algorithm Solution2Diewald
	Solution 3: Analytical approach with focus on end-to-end latencies Solution3Krawczyk
	Solution 4:Applying the Self-Suspending Task Theory Solution4Casini
	Comparison of the Approaches

	Additional Modeling Extensions
	GPU Modeling Extensions
	Memory Access Extensions
	QNX Adaptive Partitioning Scheduling
	Extensions to Handle Publish-Subscribe Middleware Systems

	Conclusion

