

Personalised Health Monitoring and Decision Support Based

on Artificial Intelligence and Holistic Health Records

D3.8 – Standardisation and Quality

Assurance of Heterogenous Data II
WP3 Personalised Holistic Health Records

Dissemination Level: Public
Document type: Report

Version: 1.0
Date: August 31, 2022

The project iHelp has received funding from the European Union’s Horizon 2020 Programme for

research, technological development, and demonstration under grant agreement no 101017441.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 1

Document Details

Project Number 101017441

Project Title
iHelp - Personalised Health Monitoring and Decision
Support Based on Artificial Intelligence and Holistic Health
Records

Title of deliverable
Standardisation and Quality Assurance of Heterogenous
Data II

Work package WP3 Personalised Holistic Health Records

Due Date August 31, 2022

Submission Date August 31, 2022

Start Date of Project January 1, 2021

Duration of project 36 months

Main Responsible Partner UPRC

Deliverable nature Report

Authors’ names
George Manias, Eleftheria Kouremenou (UPRC), Fabio
Melillo (ENG), Ainhoa Azqueta (UPM)

Reviewers’ names
Athanasios Dalianis (ATC), Aristodemos Pnevmatikakis
(iSPRINT)

Document Revision History

Version History

Version Date Author(s) Changes made

0.1 2022-06-30 George Manias (UPRC)
Initial version and Table of
Contents

0.2 2022-07-04 George Manias (UPRC) Input in Sections 3 and 5

0.3 2022-07-15 Fabio Melillo (ENG) Input provided in Section 6

0.4 2022-07-18 Ainhoa Azqueta (UPM) Input provided in Sections 4

0.5 2022-07-21 Eleftheria Kouremenou (UPRC) Input Update

0.6 2022-07-25
George Manias, Eleftheria
Kouremenou (UPRC)

Input Update in Section 8
and Section 1.3 added

0.7 2022-08-01 George Manias (UPRC)
Internal Review and input
update

0.8 2022-08-09 Athanasios Dalianis (ATC) 1st Internal Review

0.9 2022-08-14
Aristodemos Pnevmatikakis
(iSPRINT)

2nd Internal Review

0.9.1 2022-08-25 George Manias (UPRC)
Update and revision of the
document based on

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 2

comments and feedback
from Internal Reviewers

0.9.2 2022-08-29 Pavlos Kranas (LXS) Quality Review

1.0 2022-08-31 Dimosthenis Kyriazis (UPRC) Final version

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 3

Table of Contents
Executive summary ... 6

1 Introduction... 7

1.1 Objective of the Deliverable ... 7

1.2 Structure of the Deliverable ... 7

1.3 Updates since D3.7 ... 8

2 Standardisation and Quality Assurance Mechanism ... 9

2.1 Overview ... 9

2.2 Internal Architecture .. 9

2.3 Overall Objectives ... 11

2.4 Positioning and Relations with other components .. 12

3 Data Cleaner .. 15

3.1 Data Validator ... 17

3.2 Data Cleanser .. 18

3.3 Data Verifier ... 20

3.4 Interface ... 21

3.5 First Prototype Overview .. 23

3.5.1 Baseline Technologies .. 23

3.5.2 Source code .. 23

4 Data Qualifier .. 25

4.1 Dataset Qualifier ... 26

4.2 Datasource Qualifier ... 26

4.3 Interface ... 26

4.4 First Prototype Overview .. 27

4.4.1 Baseline Technologies .. 27

4.4.2 Source code .. 27

5 Data Harmonizer ... 30

5.1 Semantic & Syntactic Analysis .. 30

5.2 Ontology & Structure Mapping .. 31

5.3 Ontology-based Domain Terminology Mapping .. 32

5.4 Interface ... 33

5.5 First Prototype Overview .. 35

5.5.1 Baseline Technologies .. 35

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 4

5.5.2 Source code .. 35

6 Data Mappers .. 37

6.1 Primary Data Mapper ... 37

6.1.1 First Prototype Overview.. 37

6.2 Secondary Data Mapper ... 40

7 Conclusion ... 42

Bibliography .. 43

List of Acronyms .. 44

Annex A – Cleaning Action and Constraints .. 45

Pilot #1 - UNIMAN ... 45

Sample Datasets .. 45

Conceptual Diagram .. 48

List of Entities .. 48

Constraints – Cleaning Actions .. 49

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 5

Table of Figures
Figure 1: Standardisation & Quality Assurance mechanism. .. 10

Figure 2: Data to Knowledge path. .. 12

Figure 3: iHelp Data Ingestion pipeline. .. 13

Figure 4: Data Cleaner internal workflow. .. 15

Figure 5: Data Validator Conceptual Diagram. .. 18

Figure 6: Data Cleanser Conceptual Diagram. ... 19

Figure 7: Data Verifier Conceptual Diagram.. 20

Figure 8: Data Qualifier internal workflow. ... 25

Figure 9: Apache Flink Dashboard. .. 28

Figure 10: Data Harmonizer internal workflow. .. 30

Figure 11: Ontology Mapping Steps. ... 32

Figure 12: Ontology-based Domain Terminology Mapping internal workflow. ... 33

Figure 13: High-level architecture of Secondary Data Mapper. .. 40

Figure 14: Snapshot of UNIMAN pilot Risk_factors_1 sample dataset. .. 45

Figure 15: Dictionary and description of Risk_factors_1 sample dataset. .. 45

Figure 16: Snapshot of UNIMAN pilot Wellbeing sample dataset. ... 46

Figure 17: Snapshot of UNIMAN pilot Food group sample dataset. ... 46

Figure 18: Snapshot of UNIMAN pilot Physical Activity sample dataset. .. 47

Figure 19: Example of dataset’s entities UML Conceptual Diagram ... 48

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 6

Executive summary
This deliverable (titled “Standardisation and Quality Assurance of Heterogenous Data II”) describes the

initial implementations and first prototypes of the iHelp Standardisation and Quality Assurance Mechanism.

As introduced in D3.7 – “Standardisation and Quality Assurance of Heterogenous Data I”, the

Standardisation and Quality Assurance Mechanism is a unified and integrated mechanism consisting of

three (3) core sub-components, the Data Cleaner, the Data Qualifier, the Data Harmonizer, and two (2)

integrated sub-components: the Primary Data Mapper and the Secondary Data Mapper, which are

responsible for providing the mapping operations between the raw data resources and the Holistic Health

Records (HHRs) resources. This holistic mechanism is the core component that seeks to provide various

cleaning, pre-processing, harmonization, and mapping functionalities and services on the incoming raw

data. Specifically, it provides to the wider research and healthcare community a wide range of innovative

solutions for the cleaning, qualification, transformation, harmonization, and mapping of raw healthcare-

related data.

The current document builds upon the initial design and specifications of D3.7 – “Standardisation and

Quality Assurance of Heterogenous Data I”, aiming to provide the initial implementation, the first

prototypes and a concrete overview of how the proposed mechanism integrates with the overall

architecture of the iHelp platform and other components in the Data Ingestion pipeline, and specifically (i)

how to retrieve the incoming data from the Data Gateways; (ii) how to interexchange data with the already

identified project’s message bus; and (iii) how to send the final processed, transformed and HHR aligned

data to iHelp’s Big Data Platform.

To support the aforementioned functionalities, the iHelp Standardisation and Quality Assurance

Mechanism specifications exemplify the respective sub-components, the overall data pipeline and

workflow, the internal functionalities supported by each sub-component, the interaction points with

different components as well as the technical details that drive the implementation and deployment of this

holistic mechanism. Finally, this document - in different subsections, e.g., in Section 5.2, - seeks to review

the current state of the art in order to identify the baseline technologies and approaches for the realization

of the implemented Standardisation and Quality Assurance Mechanism.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 7

1 Introduction
iHelp aims to develop standardisation and quality procedures to ensure that the data modelling,

transformation, and management operations facilitate data sharing and analytics, not only in the context

of the iHelp project, but also in the wider healthcare ecosystem. Given the challenge that in modern

societies healthcare-related data are being obtained from various sources and in divergent formats, this

deliverable aims to provide technologies for dealing with this issue through the harmonization and

transformation of the raw collected health data into the project’s common HHR format, through finding

common links or similarities between primary and secondary data types and available HHR resources.

Moreover, these raw data also include missing values, non-matching words and partially overlapping

concepts, hence state-of-the-art cleaning approaches and techniques are utilized to provide cleaned and

qualified data.

In summary, the Standardisation and Quality Assurance Mechanism consists of five (5) sub-components

with many different internal architectures and functionalities to cover all the different requirements of the

project’s stakeholders and the overall data processing and data mapping procedures that are implemented.

In the following Sections of this document, the implementation and utilization details of the iHelp

Standardisation and Quality Assurance Mechanism are analysed in detail.

1.1 Objective of the Deliverable
The main objective of this deliverable is to provide the software demonstrations for the subcomponents of

the iHelp Standardisation and Quality Assurance Mechanism and to report the work that has been

conducted in the context of task T3.4 (“Standardisation and Quality Assurance of Heterogeneous Data”) at

this phase of the project. On top of this, it introduces and analyses the internal architecture and data

workflow, the initial design and the specifications of this holistic mechanism, and the first prototypes that

have been implemented based on them. In addition, the deliverable outlines the main sub-components

and their internal functionalities and clarifies the reason for their existence and particular implementation.

Moreover, the internal integration between these sub-components, as well as the external integration with

other components of the iHelp Data Ingestion pipeline, are analysed. Finally, this deliverable seeks to

describe the overall positioning of the Standardisation and Quality Assurance Mechanism into the iHelp

platform.

1.2 Structure of the Deliverable
This document is structured as follows: Section 1 introduces the deliverable, its main objectives and the

updates on top of the first iteration of this series of deliverables (i.e., D3.7 – “Standardisation and Quality

Assurance of Heterogenous Data I”), while Section 2 introduces the architecture, the objectives and the

overview of the Standardisation and Quality Assurance Mechanism, discussing its scope, and the basic

concepts and key features of its design. The subsequent sections introduce the five (5) main sub-

components of the Standardisation and Quality Assurance Mechanism and analyse the implementation of

the first prototypes implementing them, and the integration activities. Specifically, Section 3 covers the

data cleaning, data verification and data validation aspects focusing on the Data Cleaner sub-component,

Section 4 focuses on the data qualification functions of the Data Qualifier sub-component, while Section 5

focuses on transformation and harmonisation solutions to support interoperability and transformation of

incoming data through the analysis and description of the Data Harmonizer sub-component. On top of this,

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 8

Section 6 focus on the primary data mapping and the secondary data mapping functionalities respectively,

hence the sub-mechanisms of the Primary Data Mapper and the Secondary Data Mapper, that are

incorporated and strongly integrated with the Data Harmonizer sub-component, are further analysed.

Finally, Section 7 concludes the document and states any future work and deliverable concerning the task

T3.4 (“Standardisation and Quality Assurance of Heterogeneous Data”).

1.3 Updates since D3.7
This document is consistent with D3.7 – “Standardisation and Quality Assurance of Heterogenous Data I”

which provided the overall architecture and initial design and specifications of Standardisation and Quality

Assurance Mechanism and its internal sub-components. It provides more technical details of the

implementation of the software components and the first prototypes that were developed in accordance

with the initial design and specifications. In this context, an overview of the first prototypes and the ways

to further exploit and utilize them are introduced in this deliverable. What is worth to mention is that a

major update and revision in the internal architecture and functionality of the Data Harmonizer has been

identified and introduced in this deliverable. More specifically, the Automated Machine Translation

subfunction has been dropped, as it is not required by any pilot scenario, since the primary and secondary

data that are fetched and populated into the iHelp platform are already translated into the English

language. Moreover, an Ontology-based Domain Terminology Mapping mechanism has been introduced to

integrate and map different medical terminology standards into the iHelp project. An additional revision is

also introduced in the context of the Data Qualifier. The “Reliability Window” subfunction has updated to

“Datasource Qualifier”, hence offering a better description and explainability of the overall functionality

and goal of this subfunction. In addition, the interfaces introduced in D3.7 have been further updated and

revised in this deliverable, as a result of the integration phase and the overall implementation of the end-

to-end Data Ingestion pipeline of the iHelp project. Finally, it should be noted that, as the project

progresses, the Standardisation and Quality Assurance Mechanism will be further evaluated and perhaps

revised. The final possible set of updates and enhancements will be reported in D3.9 – “Standardisation

and Quality Assurance of Heterogenous Data III” that is the last iteration of this series of deliverables.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 9

2 Standardisation and Quality Assurance Mechanism
This section describes the scope and the overall architecture of the iHelp Standardisation and Quality

Assurance Mechanism, while it also places this holistic mechanism into the iHelp data ingestion pipeline

and further analyses its correlation and integration with other technical components and mechanisms of

the project.

2.1 Overview
Nowadays, the healthcare domain faces various challenges related to the diversity and variety of data, their

huge volume, and their distribution, thus processing and analysis of these data become more and more

complex and challenging. Hence, approaches, applications, and solutions to address issues that derive from

the wealth of healthcare Big Data are vitally important. The collection, the quality estimation, as well as the

interpretation and the harmonization of the data, that derive from the existing huge amounts of

heterogeneous medical devices and data sources, face a dramatic increase of interest in the healthcare

domain. To this end, to address all these issues this specific task of the iHelp project has four objectives and

targets. On one hand it seeks to assure the incoming data accuracy, integrity, and quality, while on the

other hand it seeks to perform different types of transformation, interoperability, and integration

operations on the raw data. On top of this, this task aims – through the utilization of specific measures and

rules – to ensure data quality and to provide a predictive selection mechanism for achieving data sources’

reliability during runtime and for providing the decision whether a connected data source is considered as

reliable or not. Finally, advanced data mappers are introduced and implemented to provide an automated

structure mapping mechanism between data resources and widely known and approved in the healthcare

domain HHR resources and data model (K., M., M., + 19) following the mapping approaches that are

identified under the scopes of task T3.1 (“Data Modelling and Integrated Health Records”) of the iHelp

project.

2.2 Internal Architecture
As presented in the above sub-section the Standardisation and Quality Assurance Mechanism seeks to

enhance the quality, interoperability and harmonization of the incoming data, and the extraction of

valuable information and knowledge out of them. To this end, three (3) core sub-components have been

identified and are incorporated into the internal workflow and architecture of the Standardisation and

Quality Assurance Mechanism. These specific three (3) subcomponents are being depicted in Figure 1 and

are the Data Cleaner, the Data Qualifier, and the Data Harmonizer. The implementation and utilization of

the above-mentioned components aim to enhance the value of the incoming/raw data.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 10

Figure 1: Standardisation & Quality Assurance mechanism.

Following the Data Ingestion step, one of the preliminary actions of this mechanism is to deal with data

derived from data sources of different reliability, that may have produced uncleaned and faulty data. Thus,

from the very beginning of the overall processing pipeline it aims to clean all the collected data and to

measure and evaluate the quality of both the connected data sources and their produced data. To

successfully achieve that, the mechanism exploits two (2) separate modules, the Data Cleaner sub-

component and the Data Qualifier sub-component. Sequentially, in the harmonization phase, the

interpretation and transformation of the collected cleaned and reliable data takes place through the

implementation and utilization of the Data Harmonizer. The latter incorporates two (2) sub-mechanisms,

the Semantic and Syntactic Analysis mechanism and the Ontology and Structure Mapping Mechanism, in

order to transform the cleaned and reliable data and to provide interoperable and harmonized data. Finally,

the transformed and interoperable data are mapped to the common HHR format through the utilization of

the Primary and Secondary Data Mapper, external sub-components and closely integrated with the Data

Harmonizer, as also depicted in Figure 1. The specifications, internal architectures and implementation

procedures of all the above introduced sub-components are further explained and detailed in the next

sections of this deliverable. At this point, it should be noted that this deliverable includes only a brief

introduction and description regarding the Secondary Data Mapper sub-components, as this sub-

component will start being designed and implemented after the final modelling and establishment of the

common HHR model and format that will be followed across the iHelp project and platform and that will

be introduced in the context of task T3.1. Moreover, as the project progresses and in collaboration and

alignment with the parallel work that is being implemented under the scopes of T3.1, more details about

the implementation and architecture of these two sub-components will be outlined.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 11

2.3 Overall Objectives
Data have long been a critical asset for organizations, businesses, and governments and their analysis is of

major importance for every stakeholder in order to be able to handle and extract value and knowledge out

of them. The advances in the fields of IoT, cloud computing, edge computing and mobile computing have

led to the rapidly increasing volume and complexity of data, thus the concept and term of Big Data have

experienced enormous interest and use over the last decade. The spectacular growth in the creation,

storage, sharing and consumption of data during the last decade indicates the need for modern

organizations to fuse advanced analytical techniques with Big Data in order to deal with them and to get

significant value from them. Hence, Big Data and their analysis facilitate personalised healthcare and risk

assessment, therefore clinicians are able to identify patients who are eligible for appropriate treatments,

which results in savings of time and cost. On top of this, R&D on personalised healthcare makes diagnostics

smarter and more targeted, like in the case of Pancreatic Cancer, while early identification and personalised

treatments can help in the design of improved screening programs and can also allow people to live longer,

healthier, and more productive lives. The ability to identify which preventive measure and intervention is

delivering the desired impact can massively help in the development of new diagnostic and treatment

regimes. Especially when it comes to the healthcare domain, the successful exploration and interpretation

of all these data play a vital role (J., F. + 20). On top of this, healthcare data are available in different formats

(e.g., images, signals and wavelengths) and may derive from different healthcare stakeholders (i.e. patients

themselves, healthcare professionals, etc.). Hence, many healthcare organizations find themselves

overwhelmed with data, but lacking truly valuable information. At the same time, due to the improvement

in the automatic collection of data from medical devices and systems, researchers and analysts can monitor

data or information that can be accessed in electronic configuration (Pan. 16).

Moreover, the term Big Data defines a two-fold meaning in these data. On one hand, it describes a change

in the quality and type of data that modern healthcare organizations possess, which has potential impacts

throughout the entire healthcare domain and stakeholders. On the other hand, it describes a massive

volume of both structured and unstructured data that is huge and complicated to be processed using

traditional database and software techniques (C., P. 14). On top of this, unstructured data can be defined

as data that do not comfort in predefined data models and traditional structures that can be stored in

relational databases. Data generated by medical reports, medical advice, texts in questionnaires or even

posts on modern social networks are such types of unstructured data and their main characteristic is that

they include information that is not arranged according to a predefined data model or schema. Therefore,

these types of data are usually difficult to be managed, and as a result analysing, aggregating, and

correlating them in order to extract valuable information and knowledge is a challenging task. Hence,

deriving value and knowledge from this type of data based on the analysis of their semantics, meanings and

syntactic is of major importance (M., B. + 10). The latter demonstrates the need for the modern

stakeholders in the healthcare domain to implement techniques, mechanisms, and applications that focus

their operations on the concept of providing cleaned, qualified and interoperable data, for offering more

precise and personalised prevention & intervention measures, higher experience for patients’ health

monitoring, risk assessment and personalised decision support, hence actionable and valuable knowledge

as depicted in Figure 2.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 12

Figure 2: Data to Knowledge path.

To this end, the Standardisation & Quality Assurance mechanism is the key mechanism for addressing all

the above issues and challenges and for deriving actionable knowledge from the raw data. The initial design

of this holistic mechanism is based on the following basic objectives, to be addressed through the

implementation of the different sub-functions that have been introduced in previous sub-sections.

▪ Data Cleaner aims to assure the incoming data’s accuracy, integrity, and quality.

▪ Data Qualifier aims to provide a decision whether a connected data source will be considered as

reliable or not.

▪ Data Harmonizer aims to:

o support data coming from divergent sources in order to deal with different formats and to

enhance the interoperability of data.

o provide automated health data transformation to the identified HHR format.

o consolidate data physically and virtually into knowledge graphs.

▪ Primary Data Mapper aims to provide a structure mapping mechanism between primary data

resources and HHR data format.

▪ Secondary Data Mapper aims to provide a structure mapping mechanism between secondary data

resources and HHR data format.

2.4 Positioning and Relations with other components
As presented in Section 6 of the D2.4 – “Conceptual model and reference architecture I”, the iHelp platform

consists of four main big blocks that represent core functionalities and solutions that the iHelp project aims

to provide. One of these main blocks is the Data Ingestion block, which represents all those components

that are used to fetch, process and store data derived from heterogeneous sources. Processed data will

comply with the common HHR data model and will be stored into the project’s central Data Storage.

Moreover, as it has been introduced by the above sub-sections of this deliverable, the Standardisation and

Quality Assurance Mechanism has strong integration and dependencies with various components that are

part of the overall data ingestion pipeline, which is presented in Figure 3. At first, raw data from

heterogeneous data sources should be fetched into the iHelp platform. Once the data are profiled and

encoded into the appropriate data schema, they are ingested either as batches or through a streaming

process. The overall ingestion process is being accomplished through the utilization of Data Connectors and

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 13

the Data Gateway of the project that will be designed and implemented under the scopes of task T3.2

“Primary Data Capture and Ingestion”. Once data are extracted from source systems, their structure or

format need to be adjusted, therefore these raw data should be further cleaned, processed and

harmonized. To this end, the Standardisation and Quality Assurance Mechanism and its sub-components

will be utilized. Then, quality assured, cleaned and harmonized data should be mapped and transformed

into the project’s common format and model, the HHR. Hence, the Primary and Secondary Mapper sub-

functions that will also be implemented under the scopes of this task, will rely on the specification of the

common data model, the HHR, that will be defined under the scopes of T3.1 (“Data Modelling and

Integrated Health Records”). Finally, the HHR Importer mechanism, which will be provided by the T4.4 (“Big

Data Platform and Knowledge Management System”), is responsible to store data into the relational data

schema of the iHelp’s Big Data Platform. To summarize, the Standardisation and Quality Assurance

Mechanism can be utilized every time a sample of data or a new dataset is ingested into the iHelp platform.

Once, the data are ingested and become available into the whole iHelp platform by the Data Gateway

component, then this holistic mechanism is responsible for the final processing, cleaning, qualification,

harmonization, and transformation to the needed HHR format of these data.

Figure 3: iHelp Data Ingestion pipeline.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 14

Futhermore, as depicted in Figure 3, all the components that are being incorporated into the Data Ingestion

pipeline of the iHelp platform will inter-exchange their input and output data through the utilization of

specific Kafka queues. Kafka1 has been identified as the project’s internal message bus and data inter-

exchange system. The latter implies that each of these sub-components involved into the Data Ingestion

pipeline will consume data from one Kafka topic and will produce the output into another Kafka topic, so

that the next involved sub-component can retrieve the processed data.

At this point, it should be noted that as the initial software prototypes of the Standardisation and Quality

Assurance Mechanism and its sub-components have already been released and are further described in the

context of this deliverable in the next sections. Furthermore, the overall functionality and performance of

this mechanism have been validated and evaluated in project’s different pilot scenarios and the input and

output parameters, the internal workflows and functionalities have been revised, updated, and extended.

As the project progresses further updates will be reported at the next and final version of this deliverable,

due in M32.

1 https://kafka.apache.org/

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 15

3 Data Cleaner
The Data Cleaner sub-component is utilized as an integrated sub-component in the overall iHelp Data

Ingestion pipeline, and its main objective is to deliver the software implementation that provides the

assurance that the provided data coming from several heterogeneous data sources are clean and complete,

to the extent possible. This sub-component is designed to minimize and filter the non-important data, thus

improving the data quality and importance. To address a portion of these challenges, referring mainly to

reducing the complexity and facilitating the analysis of large datasets, data cleaning procedures attempt to

improve the data quality and to enhance the analytical outcomes, since wrong data can drive an

organization to wrong decisions, and poor conclusions.

To this end, this sub-component seeks to assure the incoming data’s accuracy, integrity, and quality. The

Data Cleaner sub-component is utilized for every new incoming dataset, as well as new data samples in the

case of prospective data, in the platform since it seeks to detect and correct (or remove) inaccurate or

corrupted data from the datasets. The input to this sub-component is provided by the shared message bus

which is utilized in the scopes of the iHelp project (i.e., Kafka). The topic from which data in the format of

messages are consumed is set dynamically, as a parameter whenever the sub-component is called. The

input message is batches of data samples that are consumed by the appropriate Kafka topic, along with a

set of cleaning rules identified by the stakeholder or the data provider. The latter allows the sub-component

to provide all the necessary cleaning actions and to produce consistent and cleaned data and datasets.

Finally, the Data Cleaner acts also as a producer providing cleaned data to another Kafka topic, in order

cleaned data to be passed to the rest sub-components of the data ingestion pipeline.

Specifically, the Data Cleaner workflow comprises of three discrete, but integrated steps, each one of them

being provided as an individual sub-function. These sub-functions are being depicted in Figure 4 and are

analyzed in the following sub-sections.

Figure 4: Data Cleaner internal workflow.

The architecture and design of the Data Cleaner sub-component seeks to address the volatility of the

incoming data information towards the aim of providing data accuracy, consistency, and completeness to

the iHelp platform. Thus, the Data Cleaner sub-component implements all the processes that identify

inaccurate or corrupted datasets that may contain incorrect, incomplete, or irrelevant data elements and

consequently replace, modify, or delete these data elements safeguarding the reliability and

appropriateness of the incoming data information. The software prototypes of the Data Cleaner sub-

component are driven by this specification. Moreover, in order to facilitate the overall cleaning functions

and procedures and to collect and identify specific pilot needs concerning the data schemas, data

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 16

constraints and cleaning actions of the different pilots’ datasets, a document has been circulated to each

pilot. This document, which was introduced during one of the iHelp consortium meetings, is a live

document, and is being introduced in the Annex A – Cleaning Action and Constraints where a corresponding

example template for cleaning actions and constraints concerning Pilot#1 of the iHelp project in being

presented.

To this context, the Data Cleaner component is composed by one main internal function, namely the

DataCleaningService, which in turn consists of three internal services utilized by each sub-component: the

ValidationService, the CleaningService, and the VerificationService. The main service, DataCleaningService,

handles all the incoming and outgoing traffic of the Data Cleaner sub-component and is the only service

exposed to the rest of the platform components. The DataCleaningService is the main service of the Data

Cleaner sub-function, which is in charge of executing the data cleaning workflow of iHelp platform. Since

the data cleaning workflow comprises of several sequential steps, each one implemented by one of the

internal services of the component, the DataCleaningService is responsible for the orchestration of these

internal services as well as for monitoring their execution, and thus providing the execution results to the

requestor. Contrary to the main service, the three internal services are not exposed to the rest of the

platform components, whereas the DataCleaningService is interacting with these services internally to

realize the overall data cleaning workflow. The main service of the Data Cleaner is introduced below, while

the provided functionalities of the services are discussed in the following sub-sections.

initiateCleaning ("datasourceID": string, " datasetID": string, "schema": json, "schemaKey": json,

"confParameters"."cleaning": array_of_rules, "values": array_of_values_for_each_record, "batchSize":

number_of_batches, "currentBatchStart": start_of_batch, "currentBatchEnd": end_of_batch). This is the

main function that initiates the DataCleaningService. It receives as input:

▪ the datasourceID and the datasetID, to further identify the source and to forward this information

also in the other components of the data ingestion pipeline and especially to the Data Qualifier to

perform the final qualification of both the datasource and the dataset itself,

▪ the data schema and the schemaKey of the dataset, to recognize and analyze the schema and

structure of the data sample, as well as its primary key,

▪ the cleaning rules to be performed as confParameters,

▪ the values of each record to further orchestrate the rest of the internal services towards the

execution of the Data Cleaner workflow,

▪ the batchSize, which indicates the number of data samples to be processed and consumed as

message from the respective Kafka topic,

▪ the currentBatchStart and the currentBatchEnd parameters that indicate the exact numbering of

records that the current batch of data samples starts and ends.

To better describe and analyze the different parameters the below example follows based on the incoming

data from the HDM pilot of the iHelp project.

▪ "datasourceID": "HDM", the ID of the data source or the data provider,

▪ "datasetID": "ConditionOccurrence", the ID of the processed dataset,

▪ "schema": {"name": "conditionOccurrence", "namespace": "eu.ihelp.hdm",

"type": "record", "fields": [{"name": "person_id", "type": "int"}, {"name":

"condition_concept_id", "type": "int"}, {"name": "condition_start_date",

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 17

"type": {"logicalType": "timestamp-millis", "type": "long"}}, {"name":

"condition_start_datetime", "type": {"logicalType": "timestamp-millis",

"type": "long"}}, {"name": "condition_end_date", "type": {"logicalType":

"timestamp-millis", "type": "long"}}, {"name": "condition_end_datetime",

"type": {"logicalType": "timestamp-millis", "type": "long"}}, {"name":

"condition_type_concept_id", "type": "int"}, {"name": "stop_reason", "type":

"string"}, {"name": "provider_id", "type": "int"}, {"name":

"visit_occurrence_id", "type": "int"}, {"name":

"condition_source_concept_id", "type": "int"}]}, which indicates the exact schema of

the data samples as provided by the Data Gateway component of the iHelp project,

▪ "schemaKey": {"name": "conditionOccurrencePK", "namespace": "eu.ihelp.hdm",

"type": "record", "fields": [{"name": "condition_occurrence_id", "type":

"int"}]} that describes and is provided also by the Data Gateway component,

▪ "values": [[1799773, 12367, 4112752, 1542841200000, null, null, null, 32817,

null, null, 18772122.0, null], [236218, 12367, 443597, 1309298400000, null,

null, null, 32817, null, 6.0, 3568304.0, null]], the set of values for each record of

data,

▪ "confParameters": {"cleaning": [{"visit_occurrence_id": ["int", "not_null", "max_12_digits"]},

{"person_id": ["int", "not_null", "max_12_digits"]}, {"condition_concept_id": ["int", "not_null",

"max_12_digits"]}, {"condition_start_datetime": ["date", "not_null"]}, {"condition_start_date":

["simple_date", "not_null"]}], where different cleaning rules are introduced as a parameter. For

instance, the "visit_occurrence_id" should exist in each record (not_null), should be integer (int)

and of maximum 12 digits (max_12_digits). Thus, any record that does not follow this rule is

considered as an erroneous record from the Data Validator and the Data Cleanser performs the

needed cleaning actions on this.

▪ "batchSize": 10, that indicates the total number of records to be processed,

▪ "currentBatchStart": 11, the first record of the processed batch,

▪ "currentBatchEnd": 20, the last record of the processed batch.

3.1 Data Validator
The Data Validator sub-function performs the data validation functionality with the purpose of identifying

errors associated with the conformance to a specific set of constraints and schemas. Therefore, the Data

Validation service performs the validation of the incoming information data with the purpose of identifying

errors based on conformance to a specific set of constraints. As depicted in Figure 5 this sub-function

incorporates two specific steps. At first, it receives as input the data along with the needed data schema

(Data Load & Data Schema), in order then to be able to review the conformance of the provided data to

their schema and provide the corresponding validation reports and identify possible errors (Review Data,

Validation Reports).

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 18

Figure 5: Data Validator Conceptual Diagram.

The ValidationService is the internal service responsible for the data validation processing of the incoming

data. The ValidationService performs a series of validation checks in order to evaluate the conformance to

a set of constraints currently integrated in the business logic of the service. The current list of validation

rules includes the following:

o Conformance to specific data type.

o Conformance to mandatory fields.

o Conformance to specific value length.

o Conformance to specific value representation.

o Conformance to specific value range.

o Identification of duplicate values for the data elements.

o Identification of duplicate data elements.

At this point, it should be noted that the list of the validation rules will be furtherly enriched as the project

evolves.

As for its provided functions, the ValidationService implements the following sub-functions:

▪ validateData(dataset: File, dataschema: Pandas_schema): List: This is the main function that

initiates the ValidationService. It receives as an input the provided dataset (in csv format), as well

as its corresponding data schema, being responsible for identifying and returning the list of errors

based on the evaluation of the set of the constraints that have been set. In order to properly work,

validateData exploits the following sub-functions:

o checkString(i: String): Boolean: This is an internal function validating the conformance to

the specific data type.

o checkDecimal(d: Decimal): Boolean: This is an internal function validating the

conformance to the specific data type.

o checkInt(i: Integer): Boolean: This is an internal function validating the conformance to the

specific data type.

o checkMaxDigits(i: Numerical): Boolean: This is an internal function validating the

conformance to the specific value length.

o checkRange(i: Numerical, j: Numerical): Boolean: This is an internal function validating the

conformance to the specific value range.

3.2 Data Cleanser
The Data Cleanser sub-function seeks to correct or remove all the data elements for which validation errors

were raised, considering missing, irregular, unnecessary, and inconsistent data. This sub-function entails

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 19

the main sub mechanism of the Data Cleaner sub-function and its main goal is to correct or remove all the

data elements for which validation errors were raised, considering missing, irregular, unnecessary, and

inconsistent data. Thus, the Data Cleanser sub mechanism performs the necessary corrections or removal

of errors identified by the ValidationService. Under this scope, several steps of the overall cleaning process

are implemented, such as Parsing, Collection, Standardizing, Matching and Consolidation that are also

depicted in Figure 6. To successfully perform the above-mentioned steps, the Data Cleanser service exploits

the several python tools and libraries, such as Pandas2, Keras3, NumPy4, and Scikit-learn5.

Figure 6: Data Cleanser Conceptual Diagram.

The CleaningService is the internal service responsible for the cleaning of the incoming data. The

CleaningService eliminates the list of errors identified by the ValidationService by applying all the necessary

corrective actions on the data elements marked with errors. Cleaning is performed in an automated way

based on a set of actions currently integrated in the business logic of the component. The current list of

cleaning actions includes the following:

o Deletion (drop) of the complete record (row).

o Replacement of data element’s value with the mean value.

o Replacement of data element’s value with the maximum value.

o Replacement of data element’s value with the minimum value.

o Replacement of data element’s value with the most frequent value.

At this point, it should be noted that the list of the cleaning actions will be further enriched as the project

evolves.

As for its provided functions, the CleaningService implements the following functions:

▪ cleanData (errors: List, dataset: File): This is the main function that initiates the CleaningService. It

receives as an input the provided dataset (in csv format), as well as the identified list of errors

produced by the ValidationService, being responsible for constructing and returning the cleaned

dataset. In order to properly work, cleanData exploits the following internal functions:

o dropRow (row_num: Integer): Void: This is an internal function rejecting the complete record

(row).

o replaceWithMean (column: String, row_num: Integer): Void: This is an internal function

replacing the data element’s value with the mean value.

2 https://pandas.pydata.org/
3 https://keras.io/
4 https://numpy.org/
5 https://scikit-learn.org/stable/

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 20

o replaceWithMax (column: String, row_num: Integer): Void: This is an internal function

replacing the data element’s value with the maximum value.

o replaceWithMinimum (column: String, row_num: Integer): Void: This is an internal function

replacing the data element’s value with the minimum value.

o replaceWithMostFrequent (column: String, row_num: Integer): Void: This is an internal

function replacing the data element’s value with the most frequent value.

3.3 Data Verifier
The Data Verifier sub-function aims to check the data elements of a dataset for accuracy and inconsistencies

and to verify the compliance to the identified iHelp’s HHR data models, exploiting the libraries of Pandas

and Scikit-learn. The main objective of this sub-function is to check the data elements of a dataset for

accuracy and inconsistencies after the steps of data validation and cleaning are performed. To this end, it

ensures that all the corrective actions performed by the CleaningService are executed in compliance with

the data models design of the iHelp platform. To this end, this service, conceptually comprising the Accuracy

and Consistency step as depicted in Figure 7, seeks to ensure that data are accurately corrected or

completed, and that the dataset is eventually error free.

Figure 7: Data Verifier Conceptual Diagram.

The VerificationService is the internal service responsible for the verification and evaluation of the

corrective actions undertaken by the CleaningService, aiming to ensure the accuracy and the consistency

of the updated incoming data according to the iHelp platform requirements.

Based on the aforementioned, the VerificationService checks and confirms that the CleaningService has

successfully performed all the needed cleaning actions, returning a null list since no further corrective

actions are needed to take place.

▪ LoggingService: It is the internal service responsible for keeping the records that contain all the

identified errors and the corrective actions undertaken, in order to address these errors during the

data cleaning workflow execution by the rest of the internal services of the Data Cleaner

component. This information is also communicated to the Data Qualifier to further calculate the

level of quality and trust of both the dataset and the data source. For each execution of the data

cleaning workflow a unique record is created and stored in the list of the records kept by the

LoggingService. In the current implementation the list of the records is kept in a csv file in the local

file system where the LoggingService is running. In order to achieve that, the LoggingService

implements the following main function:

o createLog(errors: List): Void: This is the main function that initiates the LoggingService. It

receives as an input the identified list of errors, being responsible for creating a new record

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 21

(i.e. log file) based on the information provided as input. This new record is appended as

a new csv file.

3.4 Interface
The Data Cleaner component is integrated asynchronous with the Kafka message bus of the iHelp project.

The execution of the Data Cleaner component is initialized by the whole data ingestion process and provides

the cleaned and the faulty data as a result of the execution. The Data Cleaner expects the dataset for which

the data cleaning workflow is executed, accompanied by its corresponding data schema, the values of each

record, as well as the cleaning rules that will be performed. This set of parameters is further analysed and

explained in the introduction of Section 3 and documented below:

{

 "datasourceID": "data_provider",

 "datasetID": "dataset_name",

 "schema": {

 "name": "dataset_name",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "name_of_the_attribute",

 "type": "value_type_of_the_attribute"

 }

 …

]

 },

 "schemaKey": {

 "name": "name_of_the_key_attribute",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "name_of_the_key_attribute",

 "type": "value_type_of_the_key_attribute"

 }

]

 },

 "confParameters": {

 "cleaning": [

 {

 "name_of_the _attribute": ["cleaning_rule1", "cleaning_rule2", …, "cleaning_ruleN"]

 }

 …

],

 "harmonizer": {

 "key1": "value1",

 "key2": "value2"

 }

 },

 "values": [

 [

 array_of_values_for_each_record

],

 …

],

 "batchSize": number_of_batches,

 "currentBatchStart": start_of_batch,

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 22

 "currentBatchEnd": end_of_batch

}

The output is a JSON object produced by both the VerificationService that contains information about the

cleaned and the faulty data. The latter is produced to a Kafka topic from which the Data Qualifier consumes

the message to further provide the reliability and qualification measures for both the dataset and the data

source.

{

 "dataProvider": "data_provider",

 "dataset": "dataset_name",

 "schema": {

 "name": "dataset_name",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "name_of_the_attribute",

 "type": "value_type_of_the_attribute"

 }

 …

]

 },

 "schemaKey": {

 "name": "name_of_the_key_attribute",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "name_of_the_key_attribute",

 "type": "value_type_of_the_key_attribute"

 }

]

 },

 "confParameters": {

 "cleaning": [

 {

 "name_of_the _attribute": ["cleaning_rule1", "cleaning_rule2", …, "cleaning_ruleN"]

 }

 …

],

 "harmonizer": {

 "key1": "value1",

 "key2": "value2"

 }

 },

 "values": [

 [

 array_of_values_for_each_record

],

 …

],

 "faultyData": [

 array_of_cleaned_records

]

 "batchSize": number_of_batches,

 "currentBatchStart": start_of_batch,

 "currentBatchEnd": end_of_batch

}

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 23

3.5 First Prototype Overview
The scope of the Data Cleaner sub-component is to undertake all the processes regarding the data

validation and data cleaning of all the incoming heterogeneous data, to the extent possible. The Data

Cleaner component provides the interface that implements the data cleaning workflow as documented in

deliverable D3.7 – “Standardisation and Quality Assurance of Heterogenous Data I” of the project as also in

the previous subsection of this deliverable. The Data Cleaner is utilized by the iHelp platform ensuring data

accuracy and consistency of the incoming datasets.

The architecture and design of the Data Cleaner sub-component was documented in D3.7 –

“Standardisation and Quality Assurance of Heterogenous Data I” with the purpose of addressing the

volatility of the incoming data information towards the aim of providing data accuracy, consistency, and

completeness to the iHelp platform. Thus, the Data Cleaner component implements all the processes that

identify inaccurate or corrupted datasets that may contain inaccurate, incorrect, incomplete, or irrelevant

data elements and consequently replace, modify, or delete these data elements safeguarding the reliability

and appropriateness of the incoming data information. The software prototype of the Data Cleaner

component was driven by this specification.

3.5.1 Baseline Technologies
The Data Cleaner sub-component has started to being developed based on the utilization of Python 3.7 and

the Flask6 python micro web framework. Flask is a powerful framework written in Python and based on the

Werkzeug toolkit and Jinja2 template engine that is independent from particular libraries or tools and that

supports a large list of extensions for application features. Besides the Flask framework, a list of libraries

and tools has been used in the context of the Data Cleaner to support several functionalities of the

component and are introduced in the previous sub sections. On top of this, for the data structure handling

Pandas7 library has been selected, while NumPy8 library is used for all the numerical computations.

3.5.2 Source code
This sub-section offers valuable information with regards to the overall availability and utilization of the

code that has been implemented in the context of the Data Cleaner.

3.5.2.1 Availability

The first software prototype of the Data Cleaner is provided in iHelp’s GitLab repository and can be found

under the URL:

https://gitlab.ihelp-project.eu/ihelp/t34-data-cleaner

3.5.2.2 Installation and Use

The Data Cleaner software prototype is a Python and dockerised project. As a result, in order to be able to

run the prototype manually, docker should be properly preinstalled and preconfigured on the system. In

order to use the Data Cleaner, it is highly recommended to make use of a docker container. Firstly, the user

needs to download the current version of the binaries by executing the following:

6 https://flask.palletsprojects.com/en/2.0.x/
7 https://pandas.pydata.org/
8 https://numpy.org/

https://gitlab.ihelp-project.eu/ihelp/t34-data-cleaner

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 24

$ git clone https://gitlab.ihelp-project.eu/ihelp/t34-data-cleaner

Then assuming the docker is already installed in the host machine, the user needs to create the

corresponding docker image, by executing the following:

$ docker build –t gitlab.ihelp-project.eu:5050/ihelp/t34-data-cleaner/cleaner .

If the user does not select to clone the whole code of the subcomponent, then he/she can directly pull the

corresponding docker image from the project’s Gitlab Container Registry. The latter assumes that the user

has an account in the project’s registry.

$ docker pull https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-cleaner/cleaner

After building or pulling the image, he/she can check that it is available in the host machine’s docker

catalogue and finally can run it by executing the following:

$ docker run -d gitlab.ihelp-project.eu:5050/ihelp/t34-data-cleaner/cleaner

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 25

4 Data Qualifier
The goal of the Data Qualifier sub-component is to automatically categorize both known and unknown data

sources to specific reliability levels. To this end, the provided microservice seeks to provide a predictive

selection mechanism for achieving data source’s reliability during runtime providing a trustfulness of the

connected data sources.

The Data Qualifier sub-component classifies data sources as reliable or non-reliable both during the primary

and secondary data injection. A data source will be classified as reliable when most of the datasets received

from this data source have most if the data correct, otherwise it will be considered as non-reliable. This

sub-component receives data by subscribing to a Kafka topic, specifically it acquires the cleaned and faulty

data produced by the Data Cleaner sub-component. The cleaned data is the dataset with the appropriate

changes applied by the CleaningService of the Data Cleaner sub-component. The faulty data informs about

the values that have been cleaned by the CleaningService. For instance, if one or more attributes (i.e.,

column) in a record (row) is cleaned in a data set, the faulty data will contain the array with the original

fault values of the row.

The Data Qualifier sub-component is divided into different sub-functions shown in Figure 8. The Dataset

Qualifier sub-function processes the cleaned dataset and the faulty data to evaluate the dataset reliability.

For that purpose, it calculates the size of the dataset and takes into account the amount of cleaned data in

that dataset. The reliability is provided for the whole data set. These values range from 0-1, where 1 is the

highest reliability and 0 the lowest. First it calculates the reliability of each column, per column, the

reliability is one minus the total number of faulty values divided by the total number of occurrences of the

column in the dataset. The Datasource Qualifier sub-function calculates the reliability of a specific device

that produces the data. For instance, a smart watch monitors the heartbeats, sleeping time, number of

steps, blood pressure among other metrics. If the heartbeat values are considered faulty for a batch of data

or period of time, the heartbeat sensor is considered not reliable. Finally, the Data Qualifier sub-component

output is published to a Kafka topic. The output is composed by the data source identifier, the reliability of

each data set took into account to calculate the data source reliability and data source reliability.

Figure 8: Data Qualifier internal workflow.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 26

4.1 Dataset Qualifier
The Dataset qualifier sub-function receives the data source identifier, the data set identifier, the cleaned

dataset and faulty data, among other information produced by the Data Cleaner sub-component and

classifies the dataset. This information is obtained from the Kafka topic iHelp-DataCleaner. To do so, the

Dataset qualifier calculates the percentage of attributes cleaned per column in relation to the total number

of elements for that attribute in the data set. For instance, if 20% of the data in one column was cleaned by

the Data Cleaner, the reliability of the column will be 0.8 (1 - 0.2). This is calculated by the Dataset Qualifier

for every column. The Dataset reliability is calculated as the average of the reliability of each attribute. This

component outputs this information together with the source identifier, data set identifier, i.e.: HDM,

Persons, 0.0909, where HDM is the datasource identifier, Persons is the dataset identifier and 0.0909

is the dataset reliability.

4.2 Datasource Qualifier
The Datasource Qualifier sub-function receives as input the information from the Dataset Qualifier and

periodically calculates the reliability of a data source. The periodicity is a configuration parameter that

depends on the application (i.e., how frequent the datasets are generated). The datasets from the same

data source may be generated every 5 minutes or every hour or once per day. Based on this frequency the

reliability of the data source is calculated for a time period (window) that must also be configured. For

instance, the reliability of the data source may be calculated once per day, if the datasets are received every

hour. The reliability of a data source can be calculated every hour, if datasets are received every five

minutes. This component will output the name of the data source, the reliability of each dataset and the

aggregation of the reliabilities of all datasets cleaned during that period (window), i.e.: HDM,

[{Persons, 0.0909,{Persons2, 0.0892},…], 0.09. Where HDM is the datasource

identifier, next it is the array of all datasets reliability processed during that period and 0.09 is the

datasource reliability.

4.3 Interface
The Data Qualifier is integrated with the Kafka message bus of the iHelp project. The Data Qualifier is

subscribed to the iHelp-DataCleaner Kafka topic from which receives the output generated by the Data

Cleaner sub-component and publish the result to the iHelp-DataQualifier Kafka topic. Data arrive to the

Data Qualifier sub-component through a JSON object, defined in section 3.4, where the datasourceID field

contains the data source identifier, the datasetID contains the dataset identifier, the schema field contains

the information related to the non-key columns of the dataset, the schemaKey field contains the

information of the columns that takes part in the dataset key, the values field contains the data set with

the cleaned values and the faultyData field contains the array of cleaned records. The rest of fields that

appear in the DataCleaner JSON object are used by other components of the data ingestion pipeline.

The output is a JSON object produced by the Datasource Qualifier that contains the data source identifier

(datasourceID field), the reliability of each dataset considered to calculate the datasource reliability

(datasetsQuality field) and the datasource reliability (datasourceQuality field).

{
 "dataProvider": "data_provider",

 "datasetQuality": [

 {

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 27

 "dataset": "dataset_name",

 "datasetQuality": dataset_reliability,

 },…

],

 "datasourceQuality": datasource_reliability
}

4.4 First Prototype Overview
The initial design and specifications of the Data Qualifier was presented in deliverable D3.7 –

“Standardisation and Quality Assurance of Heterogenous Data I” of the project. In that deliverable was

defined the internal architecture and the first prototype of the Data Qualifier component and the

functionality of each sub-function.

The Data Qualifier provides the iHelp project with a system to control the quality of the data being received,

allowing it to decide whether the data source that is producing the data is reliable or whether it may be

corrupted and sending erroneous data.

4.4.1 Baseline Technologies
The Data Qualifier component is implemented using Kafka Client and Flink9. The Data Qualifier consumes

data asynchronously from a Kafka topic and directly produces data asynchronously to another Kafka topic.

More specifically, this sub-component receives the input message to its system by subscribing to a Kafka

topic the JSON object produced by the Data Cleaner sub-component. Finally, the Data Qualifier sub-

component output is published to a Kafka topic. The output is a JSON object composed by the reliability of

the data source and the reliability of the datasets. Flink is a framework and a distributed processing engine

that provides Kakfa connectors to subscribe and to publish to different topics. Flink applications are

implemented using a set of stateless and stateful operators that connected among them create a direct

acyclic graph (DAG) also called query. A continuous query is deployed and ready to process the JSON objects

received from the Kafka topic as soon as they are published by the Data Cleaner component and the result

is published using the Kafka connector that allows to publish JSON objects to the Kafka messages bus.

4.4.2 Source code
This sub-section offers valuable information with regards to the overall availability and utilization of the

code that has been implemented in the context of the Data Qualifier.

4.4.2.1 Availability

The first data qualifier prototype code is available at the iHelp Gitlab repository:

https://gitlab.ihelp-project.eu/ihelp/t34-data-qualifier

4.4.2.2 Installation and Use

The Data Qualifier is a java-based component that is containerized. Actually, the Data Qualifier is running

in the iHelp Kubernetes cluster but can be deployed locally using a docker distribution or within another

Kubernetes cluster.

9 https://flink.apache.org/

https://gitlab.ihelp-project.eu/ihelp/t34-data-qualifier
https://gitlab.ihelp-project.eu/ihelp/t34-data-qualifier
https://gitlab.ihelp-project.eu/ihelp/t34-data-qualifier

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 28

Docker containerized deployment

The docker-based distribution allows the user to deploy the data qualifier on their own local machine. To

do this, the user needs to have Docker desktop installed to run the data qualifier and a Kafka distribution

to consume and publish the JSON objects with the structure indicated in Section 3.4.

The first step is to clone the project from the iHelp git repository:

$git clone git@gitlab.ihelp-project.eu:ihelp/t34-data-qualifier.git

Next, access the Docker folder inside the project and configure the Data Qualifier with the kafka

bootstrapServers endpoints and the period to be considered to classify the data source reliability:

$cd t34-data-qualifier/Docker

$vim data-qualifier.properties

Once it is configured, save the file and run the following command to create the image:

$docker build -t data-qualifier .

Finally, run the command to deploy the container and check that the data-qualifier is running accessing the

localhost:8081 endpoint, as depicted in Figure 9:

$docker run -d -p 0.0.0.0:8081:8081 --name ihelp-data-qualifier ihelp-data-qualifier

Figure 9: Apache Flink Dashboard.

Kubernetes cluster deployment

To deploy the Data Qualifier within a Kubernetes cluster, the user must clone the repository, configure the

Kakfa bootstrapServers endpoints, create the image and push the image into a docker registry. In this

examen the iHelp docker registry is being used to push the image:

$ git clone git@gitlab.ihelp-project.eu:ihelp/t34-data-qualifier.git

$ cd t34-data-qualifier/Docker

$ vim data-qualifier.properties

$ docker build -t gitlab.ihelp-project.eu:5050/ihelp/t34-data-qualifier/qualifier-
1.0 .
$ docker push gitlab.ihelp-project.eu:5050/ihelp/t34-data-qualifier/qualifier-1.0

mailto:git@gitlab.ihelp-project.eu:ihelp/t34-data-qualifier.git

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 29

Once the image is available at the docker registry it is time to deploy it, first the iHelp-DQ-Deployment.yaml

has to be configured to set the image endpoint, by default is configured with the iHelp docker registry image

endpoint(gitlab.ihelp-project.eu:5050/ihelp/t34-data-qualifier/qualifier-

1.0:latest). And then, deploy the pod:

$ cd ..

$ vim iHelp-DQ-Deployment.yaml

$ kubectl apply -f iHelp-DQ-Deployment.yaml

To check that the pod is running execute the following command:

$ kubectl get pods -o wide | grep dataqualifier

ihelp-dataqualifier-6c967ff8fd-6fzln 1/1 Running 0 177m

10.42.1.161 k8s-2 <none> <none>

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 30

5 Data Harmonizer
The Data Harmonizer sub-component is utilized as an integrated sub-component in the overall iHelp Data

Ingestion pipeline, and its main objective is to support and harmonize data coming from heterogeneous

sources into a common format. To this end, it seeks to provide annotated health data & harmonize them

with the HHR format. The sub-component utilizes its own internal sub-functions in order to correlate data

resources to be compliant with the HHR model that are defined in the scope of the Τask 3.1 (“Data

Modelling and Integrated Health Records”).

The Data Harmonizer sub-component is utilized asynchronous and is integrated with the provided message

bus mechanism, as it consumes and produces corresponding messages to the provided Kafka queues. The

message that is being consumed are cleaned and qualified data, which are further harmonized and

transformed. Hence an annotated, transformed and HHR-aligned message is the output of this specific sub-

component. To this end, the Data Harmonizer sub-component has been determined to internal integrate

closely with the Data Cleaner and Data Qualifier sub-components.

The Data Harmonizer sub-component incorporates the use of two integrated sub-functions, as shown in

Figure 10.

Figure 10: Data Harmonizer internal workflow.

This sub-component seeks to support data coming from several sources in order to deal with different

formats, thus, to enhance the interoperability of data. In recent years many approaches, standards,

ontologies, and vocabularies have been proposed as means of achieving various tasks of interoperability

between heterogeneous and independent datasets. More specifically in the healthcare domain, an

advanced Semantic Interoperability technique was introduced with emphasis on the utilization of Structural

and Ontology Mapping services along with Terminology Linking services in order to transform the clinical

information into interoperable and processable data using eHealth standards and terminologies (K., M., M.

+ 19). The above introduced approach provides the means for common representation of domain specific

datasets and the means for achieving interoperability across diverse databases and datasets.

5.1 Semantic & Syntactic Analysis
To exploit what the Data Harmonizer offers, data first needs to be structured and annotated. To this end,

in the first subcomponent, the Semantic & Syntactic Analysis, cleaned and qualified data are analyzed,

transformed, and annotated with appropriate URI metadata. In next phases and steps, semantic and

syntactic URI-annotated data (Unified Resource Identifier) are interlinked through the task of Ontology

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 31

Mapping. The main objectives of this first sub-function of the Data Harmonizer are the identification and

recognition of entities, which are further used for interconnection and interlinking with the HHR resources

and model that have been identified in the context of the T3.1 “Data Modelling and Integrated Health

Records”. Moreover, classifying named entities found in data into pre-defined categories, such as persons,

places, organizations, dates etc., makes it possible to identify, design and use proper widely used and

controlled vocabularies and standards. The overall Data Harmonizer sub-function is further enhanced and

completed in the next step by the utilization of Ontology Mapping submechanism, where an Ontology and

Structuring Mapping service is utilized in order to interlink not only URI-annotated data with proper

ontologies, but also to interlink and correlate datasets among them.

5.2 Ontology & Structure Mapping
The Structural Mapping sub-function takes advantage of well-established ontology alignment approaches

to perform the mapping between the schema/model of incoming document with the use-case specific

target schema/model in the iHelp platform.

Ontology alignment approaches can be utilized for finding structural mappings between two different data

models. A number of tools and frameworks have been developed for aligning Ontologies, which vary in the

degree of user intervention required to produce accurate mappings. In typical Ontology alignment

approaches, data models or Ontologies are usually converted to a graph representation before being

matched. Such graphs can be represented in the Resource Description Framework (RDF) line of languages

by triples of the form <subject, predicate, object>. In this context, aligning ontologies is sometimes referred

to as "ontology matching".

Successful annotation, transformation and mapping of data and corresponding ontologies in terms of

semantic and syntactic interoperability of data is one of the key elements of the Data Harmonizer sub-

function. To this end, one of the main objectives of the Ontology Mapping subcomponent is to save

correlated, annotated and interoperable data in JSON-LD format and as linked ontologies. Hence, it is

feasible to store semantic facts and the support of the corresponding data schema models. Moreover, this

subcomponent seeks to map concepts, classes, and semantics defined in different ontologies and datasets

and to achieve transformation compatibility through extracted metadata. In addition, a data modelling

subtask by standard metadata schemas is defined in order to specify the metadata elements that should

accompany a dataset within a domain. To this end, semantic models for physical entities (e.g. specific

grading features of Pancreatic Cancer) and measures (e.g. specific grading features of Pancreatic Cancer)

will be identified. These models are based on a set of transversal and domain-specific ontologies and could

provide a foundation for high-level interoperability and rich semantic annotations across the healthcare

ecosystem. As shown in Figure 11, there are several levels of structuring before reaching proper ontologies.

At the beginning, the annotation and creation of metadata representations through the utilization of JSON-

LD technology is a key point. Afterwards, vocabularies and taxonomies expressed by RDFs are created and

in the final step they are correlated and interlinked into ontologies with high semantic expressivity through

the utilization of OWL technology.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 32

Figure 11: Ontology Mapping Steps.

On top of this, ontologies are central to the Data Harmonizer as they allow applications to agree on the

terms that they use when communicating and they enable the correlation of divergent data and datasets

from various sources. To this end, the utilization of ontologies under the scope of Data Harmonizer

facilitates communication by providing precise notions that can be used to compose messages (queries,

statements) about the healthcare domain. In stakeholders and user level, the ontology helps to understand

messages by providing the correct interpretation context. Thus, ontologies, if shared among stakeholders,

may improve system interoperability in the healthcare ecosystem. The overall approach that is followed

brings together techniques in modeling, computation linguistics, and information retrieval in order to

provide a semi-automatic mapping method and a prototype mapping system that support the process of

Ontology Mapping for the purpose of improving and enhancing interoperability and usage of data during

the whole data lifecycle.

The novelty of the proposed Ontology Mapping sub-function is not solely the use of formal application

ontologies as an initial mechanism to achieve meaningful interoperability, but moreover the utilization of

divergent ontologies to support the formal application ontologies mapping process, integrated into an

architectural framework.

5.3 Ontology-based Domain Terminology Mapping
One of the main functionalities of the Ontology Mapping submechanism is the Ontology-based Domain

Terminology Mapping. This sub-function provides a set of intelligent services to manage terminology

resources and make the data semantically interoperable. In addition, it provides a set of operations on

widely used and known medical terminologies used for the coding of medical knowledge, which further

enhance the information structures that are provided as outputs from the Data Harmonizer sub-

component. To this end, a set of functionalities has been integrated and implemented in the context of the

design and initial implementation of this sub-function. More specifically, this sub-function utilizes two

different sources of terminologies. In one hand, it utilizes the domain-specific Ontology introduced and

provided in the context of T3.1 (“Data Modelling and Integrated Health Records”), while in the other hand

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 33

it also utilizes the Unified Medical Language System (UMLS)10 that integrates and distributes key medical

terminologies and coding standards to further facilitates the creation of interoperable solutions (Bod, 04).

The internal workflow of the proposed sub-function is depicted in Figure 12.

Figure 12: Ontology-based Domain Terminology Mapping internal workflow.

The design and implementation of this sub-function offers the availability to load different terminologies

both from widely used standards and vocabularies, as also from the domain-specific ontology that is being

created in the context of the iHelp project. In addition, it provides the flexibility to the whole project to

utilize new releases of terminologies and to provide mappings or translations between different

terminologies and standards. The latter is addressed through the extensible searching and querying

functionality for specific elements of the different examined terminologies and standards, such as ICD-10

and SNOMED CT International. This way, it is possible to provide a series of functionalities (semantics) about

these information elements found within more complex structures. The overall workflow of the introduced

sub-function can be encapsulated through the below steps:

▪ Cleaned and qualified data are semantically analysed and mapped to concepts and instances of the

ontology provided through T3.1 (“Data Modelling and Integrated Health Records”).

▪ Data are standardized into project’s common data model and domain standard.

▪ The Unified Medical Language System (UMLS) and the different terminologies, coding standards

and vocabularies that are offered through this system are utilized to further transform the medical

terms between terminologies in a controlled and supervised manner.

▪ Finally, standardised and harmonized data are fed into the Primary and Secondary Data Mappers

to be transformed into the HHR FHIR compliant format. Both the Primary and Secondary Data

Mappers are further described in Section 6.

5.4 Interface
The Data Harmonizer sub-component is utilized in an asynchronous way and integrated with the Kafka

message bus of the iHelp project. Hence, no endpoint or API call is available in order to trigger the execution

10 https://www.nlm.nih.gov/research/umls/index.html

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 34

of this specific functionality. The Data Harmonizer is subscribed to the iHelp-DataQualifier Kafka topic form

which receives the output generated by the Data Qualifier sub-component and produces the result to the

iHelp-DataHarmonizer Kafka topic. Cleaned and qualified Data arrive to the Data Harmonizer sub-

component as an annotated JSON object, defined both in sections 3.4 and 264.3. Once, the internal

functionalities of the Data Harmonizer are finished, then the standardized data are communicated either

to the Primary or to the Secondary Data Mapper, depending on the nature of the data (i.e., primary or

secondary). The response of the mappers is the final harmonized and standardized into HHR format data

that then are populated to the iHelp-DataHarmonizer Kafka topic to finally stored into the iHelp’s Big Data

Platform. Thus, the final output is a JSON object produced by the Data Harmonizer that contains the data

transformed into the HHR format and based on the different attributes and coding standards into which

they have been standardized and mapped. It should be noted that the main concepts are mapped using a

unique ID of the concept they represent as also stated in next sections and in the description of the internal

functionalities of the iHelp’s Mappers. For instance, the below code snippet depicts the final output of the

transformed to HHR format data.

{

 "dataProvider": "data_provider",

 "dataset": "dataset_name",

 "schema": {

 "name": "dataset_name",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "name_of_the_attribute",

 "type": "value_type_of_the_attribute"

 }

 …

]

 },

 "schemaKey": {

 "name": "name_of_the_key_attribute",

 "namespace": "dataset_ihelp_internal_id",

 "type": "record",

 "fields": [

 {

 "name": "HHR_name_of_the_key_attribute",

 "type": "HHR_value_type_of_the_key_attribute",

 {

 "id": "HHR_value_id"

}

 }

]

 },

 "confParameters": {

 "cleaning": [

 {

 "name_of_the _attribute": ["cleaning_rule1", "cleaning_rule2", …, "cleaning_ruleN"]

 }

 …

],

 "harmonizer": {

 "key1": "value1",

 "key2": "value2"

 }

 },

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 35

 "values": [

 [

 HHR_array_of_values_for_each_record

],

 …

],

 "batchSize": number_of_batches,

 "currentBatchStart": start_of_batch,

 "currentBatchEnd": end_of_batch

}

5.5 First Prototype Overview
The scope of the Data Harmonizer sub-component is to undertake all the processes regarding the final

transformation and harmonization of data into common health information structures, and code systems

or medical terminologies that enhance the interoperability of the healthcare-related data. The Data

Harmonizer sub-component provides the interface that implements the data harmonization workflow as

documented in deliverable D3.7 – “Standardisation and Quality Assurance of Heterogenous Data I” of the

project as also in the previous subsection of this deliverable. The Data Harmonizer is utilized by the iHelp

platform ensuring data standardization and homogeneity of the incoming datasets.

The architecture and design of the Data Harmonizer sub-component was documented in D3.7 –

“Standardisation and Quality Assurance of Heterogenous Data I” with the purpose of providing technologies

for harmonizing and transforming the collected health data into HL7 FHIR format, through finding common

links or similarities between primary and secondary data types and available HL7 FHIR resources. Thus, the

Data Harmonizer sub-component implements all the processes that utilize widely used and known coding

standards and terminologies, coupled with domain-specific ontologies. The first software prototype of the

Data Harmonizer sub-component was driven by these specifications and further facilitates the aggregation

of the distributed heterogeneous data coming from multiple health related datasets and provides data

mapped into globally recognized standards and a common format.

5.5.1 Baseline Technologies
The overall code has started to be implemented based on Python3.7 programming language. Moreover,

SPARQL, a widely used RDF query language, is being utilized in order to identify and interlink standards and

resources that have been identified in the context of D3.1 – “Data Modelling and Integrated Health Records:

Design and open specification I” with the provided incoming data. The latter is being used to perform

queries on Knowledge bases to identify and interlink appropriate entities based on the ones that have

already been recognized from the raw data. In addition, the Unified Medical Language System (UMLS) is

utilized, as also different python packages and libraries for the utilization of ontologies and the terminology

mapping services.

5.5.2 Source code
This sub-section offers valuable information with regards to the overall availability and utilization of the

code that has been implemented in the context of the Data Harmonizer.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 36

5.5.2.1 Availability

The first software prototype of the Data Harmonizer is provided in iHelp’s GitLab repository and can be

found under the URL:

https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer

5.5.2.2 Installation and Use

The Data Harmonizer software prototype is a Python and dockerised project. As a result, in order to be able

to run the prototype manually docker should be properly preinstalled and preconfigured on the system. In

order to use the Data Harmonizer, it is highly recommended to make use of a docker container. Firstly, the

user needs to download the current version of the binaries by executing the following:

$ git clone https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer

Then assuming the docker is already installed in the host machine, he or she needs to create the

corresponding docker image, by executing the following:

$ docker build –t gitlab.ihelp-project.eu:5050/ihelp/t34-data-
harmonizer/harmonizer .

If the user does not select to clone the whole code of the subcomponent, then the user can directly pull the

corresponding docker image from the project’s Gitlab Container Registry. The latter assumes that the user

has an account in the project’s registry.

$ docker pull https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-
harmonizer/harmonizer

After building or pulling the image, he/she can check that it is available in the host machine’s docker

catalogue and finally can run it by executing the following:

$ docker run -d gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/harmonizer

https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer
https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer
https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/harmonizer
https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/harmonizer

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 37

6 Data Mappers
The overall functionality of the Data Harmonizer is complemented by the internal utilization and integration

with the iHelp Data Mappers sub-mechanisms. These sub- mechanisms perform the mapping procedures

between the data elements and the HL7 FHIR resources to finally provide data into HHR FHIR compliant

format. The Data mappers are internal integrated with the Data Harmonizer sub-component as depicted in

Figure 12. More specifically, the Primary Mapper sub-component will enable the mapping of primary data,

that is the clinical data from the electronic health records, into the common data format that will be used

in the iHelp platform (HHR). While the Secondary Mapper sub-component will enable the mapping of

secondary data (e.g., from mobile, wearable, and social-media platforms) into the data format (schema,

model) used in the iHelp platform (HHR).

6.1 Primary Data Mapper
The Primary Data Mapper sub-component seeks to enable the mapping of primary data, that is the clinical

data from the Electronic Health Records (EHRs), into the common data format that are used in the iHelp

platform (HHRs). To this end, this specific component provides the necessary transformation functions that

are required to map the primary data to the HHRs stored in the iHelp platform. Initial information about

the HHRs and the mapping process can be found at Sections 4 and 5 of D3.1 – “Data Modelling and

Integrated Health Records Design and open specification I” (K., D., P. + 21).

The Primary Data Mapper receives cleaned, qualified, and harmonized data as part of the overall ingestion

pipeline. Sequentially, the harmonized health records that are being received from the Data Harmonizer

are mapped to the HHR ontology-based records, through semantic matching and harmonization

techniques. Finally, after the necessary mapping/transformation process, the Primary Data Mapper

produces and sends the new HHR aligned record, through a Kafka topic to the HHR Importer component.

6.1.1 First Prototype Overview
The scope of the Primary Data Mapper sub-component is to syntactically transform the data coming from

a data model to the internal HHR data model defined in D3.1 – “Data Modelling and Integrated Health

Records Design and open specification I” (K., D., P., + 21). The first prototype Is based on a specific pilot,

HDM (Hospital de Dénia-MarinaSalud). That organization internally uses the standard Ohdsi OMOP data

model11, therefore the module developed in T3.4 Standardisation and Quality Assurance of Heterogeneous

Data, converted between two standards, OMOP toward HHR (based on HL7/FHIR)12.

The Primary Data Mapper sub-component provides a REST API interface that implements that conversion

and is publicly available at GitHub13. The mapper, in this first version, allows to convert a single OMOP

resource or list of them, simply invoking the related endpoint.

The current implementation also allows two different methods for ensuring the translation. Specifically, in

OMOP, the main concepts are mapped using a unique ID of the concept they represent. The Ohdsi initiative,

mapped many standard dictionaries in a common database, available for consultation at the Athena14

11 https://www.ohdsi.org/data-standardization/the-common-data-model/
12 https://hl7.org/FHIR/
13 https://github.com/ihelp/omop2fhir.json
14 https://athena.ohdsi.org/search-terms/start

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 38

website, and every concept present in the OMOP data model should refer those unique IDs. In the current

implementation of the iHelp Primary Data Mapper for HDM, some of those IDs were included in the

mapper, as a facility, until the whole dataset will be ready (thanks to WP3 and WP6 joint work) and until

the final version of the Ontology-based Domain Terminology Mapping that will provide the right concept

using the FHIR standard. The dictionaries included in this release are: OMOP, SNOMED CT15, LOINC16, and

RxNorm17.

The other method allowed by the module expects the filling of the necessary attributes for generating the

whole code, following the FHIR standard, and not only the OMOP concept ID as above.

A simple example is the following: the first option uses the ID of the measurementConcept as the one

mapped by OHDSI and refers to the SNOMED CT ontology.

{…

"measurementConcept": { "id": 4042059 },

…}

In this case, the supported dictionary has to be included in the sub-component container.

The second option allows to invoke the service by passing the details like the following:

{ …

"measurementConcept": { "conceptName”: “Serum HDL cholesterol level”, "vocabularyId": "SNOMED",
"conceptCode": "166832000"},

…}

In this case, there is no need to include any dictionary, because the mapping will be only syntactically and

all the details will come from the Ontology-based Domain Terminology Mapping sub-function developed in

iHelp.

Both the invocations will generate the FHIR attribute, and conform to the HHR, like the following:

{ …

"code": {

"coding": [

{ "system": "http://snomed.info/sct", "code": "166832000", "display": "Serum HDL cholesterol measurement"

}]

},

…}

6.1.1.1 Source code

This sub-section offers valuable information with regards to the overall availability and utilization of the

code that has been implemented in the context of the Primary Data Mapper.

6.1.1.1.1 Availability

The first software prototype of iHelp Primary Data Mapper for HDM is provided in iHelp’s GitLab repository

and can be found under the URL:

https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer/

15 https://www.snomed.org/
16 https://loinc.org/
17 https://www.nlm.nih.gov/research/umls/rxnorm/index.html

https://gitlab.ihelp-project.eu/ihelp/t34-data-harmonizer/

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 39

6.1.1.1.2 Installation and Use

The Primary Data Mapper for HDM software prototype is a SpringBoot Java dockerised project and a

prefilled postgress database, including the dictionaries listed above.

As a result, in order to be able to run the prototype manually docker should be properly preinstalled and

preconfigured on the system. In order to use the Primary Data Mapper, it is highly recommended to make

use of a docker container.

The user can directly pull the corresponding docker image from the project’s Gitlab Container Registry. The

latter assumes that the user has an account in the project’s registry.

$ docker pull https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-
harmonizer/omop2fhir-ihelp

$ docker pull https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-
harmonizer/postgres-ihelp

After building or pulling the image, he/she can check that it is available in the host machine’s docker

catalogue.

To compose the container the docker-compose file should have the following:

version: '3.7'

services:

 converter:

 container_name: omop2fhir-ihelp

 image: ${DOCKER_IMAGE_REPO}omop2fhir-ihelp # pushing to ihelp docker registry

 build: ./

 ports:

 - "8080:8080"

 depends_on:

 - dbpostgresql

 dbpostgresql:

 container_name: dbpostgresql-ihelp

 image: ${DOCKER_IMAGE_REPO}postgres-ihelp

 restart: always

 logging:

 options:

 max-size: 10m

 max-file: "3"

 ports:

 - "5432:5432"

 environment:

 - POSTGRES_PASSWORD=omop

 - POSTGRES_USER=omop

 - POSTGRES_DB=omop_db

https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/omop2fhir-ihelp
https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/omop2fhir-ihelp
https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/postgres-ihelp
https://gitlab.ihelp-project.eu:5050/ihelp/t34-data-harmonizer/postgres-ihelp

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 40

6.2 Secondary Data Mapper
The Secondary Mapper sub-component will enable the mapping of secondary data (e.g. from mobile,

wearable and social-media platforms) into the standard data format (HHR schema, model) used in the iHelp

platform. The component will provide the necessary transformation functions that are required to map the

secondary data from heterogeneous sources to the holistic health records stored in the iHelp platform. The

Secondary Mapper will be an integral part of the iHelp platform as it supports the enrichment of typical

health records with the secondary (e.g., lifestyle, social etc.) data of the individuals.

Based on the adoption of microservices architecture model in the iHelp project, the Secondary Data Mapper

component will be exposed as a microservice in the iHelp platform. As shown in Figure 13, it will offer

dedicated converter/mapper functions that will handle data from different secondary data devices or

interfaces. Since, during the project, iHelp platform will support secondary data ingestion from a specific

number or type of devices (e.g., the mobile application or Fitbit activity tracker), thus the mapper functions

can be designed and configured to deal with the data (interfaces, models, formats, syntax) associated with

those devices. However, the secondary data mapper services will be extensible in nature, thus allowing the

development and integration of mapping functions that deal with other types of devices or data models.

A controller mechanism with the secondary data mapper will be responsible for assigned the incoming data

to the relevant mapper functions. The controller will work on the basis of interpreting meta data associated

with the incoming data (batch or stream) and forwarding the data to the relevant mapper function.

Figure 13: High-level architecture of Secondary Data Mapper.

The Secondary Data Mapper microservice will be utilized either asynchronous or synchronous depending

on the deployment status; and it will be integrated with the iHelp message bus mechanism. The interaction

with the message bus will allow the microservice to produce secondary data derived from different mobile

and wearable devices in the standardised HHR format. To this context, this microservice seeks to apply the

relevant mapping function to convert the harmonized data, which are derived from the Data Harmonizer

and are the input to its system, according to the standard HHR format that will be defined under the scope

of T3.1 (“Data Modelling and Integrated Health Records”) and expose the converted data or the outcome

of the mapping function to the provided message bus (Kafka) topic. To this end, the secondary data mapper

microservice will serve as the final stage of the data cleaning and standardisation operation, before the

data is passed on to the iHelp’s Big Data Platform through the HHR Importer mechanism, which will be

provided by T4.4 (“Big Data Platform and Knowledge Management System”). As the recruitment process

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 41

from pilots’ side has just started and the collection of patients’ secondary data will follow the next months,

thus the overall implementation of this mapper will be described and analyzed in the next and final version

of this series of deliverables, i.e., D3.9 – “Standardisation and Quality Assurance of Heterogenous III” due

on M32.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 42

7 Conclusion
This document reports the work that has been currently done in the scope of T3.4 – “Standardisation and

Quality Assurance of Heterogeneous Data”, whose main objective it is to provide the main data processing

components of the project. To this end, this deliverable describes the first software prototype of the

Standardisation and Quality Assurance Mechanism. The provision of the early prototype facilitates the

evaluation and feedback provision as the project progresses. Five different subcomponents have been

explained including the interfaces, the baseline technologies, where they are available and how to install

and use them. The prototypes are built upon open-source technologies that have been developed by solid

communities.

The specifications that have been introduced the context of D3.7 – “Standardisation and Quality Assurance

of Heterogenous Data I” have been utilized and revised for the realization and implementation of this

holistic mechanism, encompassing its main functionalities regarding the assurance of the incoming data’s

accuracy, integrity, and quality, the interoperability of data, the automated data transformation to the HHR

model, and their aggregation into unique turn-key offerings. On top of this, this report describes the

baseline technologies adopted and the sub-mechanisms developed to ensure effective contributions

towards standardisation and quality assurance of healthcare data. The deliverable highlights the

functionalities used for various purposes (e.g., for data management, data cleaning, data transformation,

data mapping etc) and the approaches/techniques implemented to make sure that the data remains within

the quality constraints while being used by different stakeholders and applications in the project.

The next release will include new functionalities that will be explained in the forthcoming deliverable.

Moreover, part of the introduced mechanism will also be open-source and offered to the healthcare,

research, and business communities to take advantage of the work done in the context of the project and

to further enhance the overall exploitation and impact of the iHelp platform. Moreover, as already stated,

this deliverable includes the first prototypes of the incorporated sub-components, as also an initial and

brief outline concerning the Secondary Data Mapper sub-component. The latter will start being developed

and evaluated after the final modelling of the common HHR model and format of the secondary data that

will be introduced in the context of task T3.1 (“Data Modelling and Integrated Health Records”). In next

deliverable, more details about the implementation and architecture of this sub-component will be

outlined.

To conclude, the current document is delivered in M20 (August 2022) and is the second version of a series

of documents and reports that are planned to be released under the scopes of task T3.4 (“Standardisation

and Quality Assurance of Heterogeneous Data”) and throughout the project’s lifetime. On M32 (August

2023), a third version is planned to be delivered on M32 (August 2023) to cover remaining aspects and to

correct potential erroneous decisions or unnecessary implementation that might have been identified

earlier, so that it can drive the final definition and implementation of the Standardisation and Quality

Assurance Mechanism.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 43

Bibliography
O. Bodenreider, “The Unified Medical Language System (UMLS): integrating biomedical terminology”,

Nucleic Acids Research, D267-270, 2004.

Y.E. Bulut, “AI for data science: artificial intelligence frameworks and functionality for deep learning,

optimization, and beyond”, Technics Publications, 2018.

V. Chavan, and R.N. Phursule, “Survey paper on big data”, Int. J. Comput. Sci. Inf. Tech-nol, vol. 5, no. 6, pp.

7932-7939, 2014.

P. P. Jayaraman, A. R. M. Forkan, A. Morshed, P. D. Haghighi, and Y. B. Kang, “Healthcare 4.0: A review of

frontiers in digital health”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 10,

no. 2, p. e1350, 2020.

M. Kalogerini, A. Dalianis, C. Pandolfo, F. Melillo, and G. Manias, “D3.1 - Data Modelling and Integrated

Health Records: Design and open specification I”, iHelp, 2021.

A. Kiourtis, A. Mavrogiorgou, A. Menychtas, I. Maglogiannis, and D. Kyriazis, “Structurally mapping

healthcare data to HL7 FHIR through ontology alignment”, Journal of medical systems, vol. 43, no. 3, pp. 62,

2019.

G. Manias et al., “D3.7 - Standardisation and Quality Assurance of Heterogenous Data I”, iHelp, 2021.

M. Mosley, M. H. Brackett, S. Earley, and D. Henderson, “DAMA guide to the data management body of

knowledge”, Technics Publications, 2010.

K. Muir et al, “D6.1 - Coordination of pilot scenarios for personalised healthcare - early risk identification,

prevention and intervention measures I”, iHelp, 2022.

S. C. Pandey, “Data mining techniques for medical data: a review”, In 2016 International Conference on

Signal Processing, Communication, Power and Embedded System, pp. 972-982, 2016.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 44

List of Acronyms
AI Artificial Intelligence

API Application Programming Interface

CA Consortium Agreement

CSV Comma Separated Values

D Deliverable

DoA Description of Action

EHRs Electronic Health Records

EU European Union

HHRs Holistic Health Records

JSON-LD JavaScript Object Notation – Linked Data

M Month

NER Named-Entity Recognition

NLP Natural Language Processing

OWL Web Ontology Language

R&D Research and Development

RDF Resource Description Framework

REST Representational State Transfer

T Task

URI Uniform Resource Identifier

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 45

Annex A – Cleaning Action and Constraints

Pilot #1 - UNIMAN
The pilot focuses on Genomics and Epigenomics Markers for Early Risk Assessment of Pancreatic Cancer.

Sample Datasets

Risk_factors_1 Sample Dataset

Figure 14: Snapshot of UNIMAN pilot Risk_factors_1 sample dataset.

Dictionary

Figure 15: Dictionary and description of Risk_factors_1 sample dataset.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 46

Wellbeing Sample Dataset

Figure 16: Snapshot of UNIMAN pilot Wellbeing sample dataset.

Dictionary

Table 1: Dictionary and description of Wellbeing sample dataset.

Food group Sample Dataset

Figure 17: Snapshot of UNIMAN pilot Food group sample dataset.

Dictionary

Table 2: Dictionary and description of Food group sample dataset.

Code frequency Description of code

Code Description

1 None of the time

2 Rarely

3 Some of the time

4 Often

5 All of the time

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 47

1 Never or less than once a month

2 1-3 times per month

3 once a week

4 2-4 times per week

5 5-6 times perweek

6 once a day

7 2-3 times per day

8 4-5 times per day

9 6+ times per day

-9 missing values

Physical Activity Sample Dataset

Figure 18: Snapshot of UNIMAN pilot Physical Activity sample dataset.

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 48

Dictionary

Table 3: Dictionary and description of Physical Activity sample dataset.

Type of physical activity Description Code Meaning

Moderate physical activity

On average have you undertaken at least 30 minutes of

moderate physical activity per day – either at home or at

work. (These activities can be made up of many

components, for example, moving a table, pushing a

vacuum cleaner, bowling or playing golf).

0 No

1 Yes

Vigorous physical activity

On average have you undertaken 20 minutes or more of

energetic activity at least 3 times per week whilst NOT at

work. (These include, for example, keep fit, dancing or

exercises, swimming or other brisk sport, long walks,

jogging or running, hard work in a job at home or in the

garden, cycling).

0 No

1 Yes

Conceptual Diagram
Provide a simple UML (or any other graphic class) diagram representing the names of entities described in

the dataset, their relationship and cardinality. Just for reference, the following figure provides an example

of a class diagram to be replaced with the actual diagram of the dataset.

Figure 19: Example of dataset’s entities UML Conceptual Diagram

List of Entities
List and describe the entities reported in the conceptual diagram of the previous section using a table as in

the following example.

Table 4: Example table listing entities of a sample dataset.

Entity name Description

1 Patient Demographics and other administrative information about an individual
receiving care or other health-related services

2 Clinical visit An interaction between a patient and healthcare provider for the purpose of
providing healthcare services or assessing the health status of a patient

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 49

3 Medical Observation Measurements and simple assertions made about a patient

Constraints – Cleaning Actions
Mandatory Constraints that must be fulfilled for each unique attribute:

▪ Specific data type (e.g. Numeric, String)
▪ Mandatory field
▪ Specific value length (e.g. maximum 20 digits)

Optional Constraints that could be fulfilled for each unique attribute:

▪ Specific coding standard (e.g. LOINC, SNOMED, ICD10)
▪ Value representation (e.g. text formatting "123-45-67" or "1234567" or "123 45 67")
▪ Value uniformity (e.g. all times are provided in UTC, all weight values in KGs, etc.)
▪ Value range constraints (minimum and maximum values)
▪ Pre-defined values (e.g. values selected from a drop-down list)
▪ Regular expression patterns - data that has a certain pattern in the way it is displayed, such as

phone numbers)
▪ Separation of values (e.g. complete address in free form field without any indication where street

ends, and city begins)
▪ Uniqueness - data that cannot be repeated and require unique values (e.g. social security

numbers)
▪ Logical Error (e.g. female individual with prostate cancer medications prescribed)
▪ …

For the different constraints described, the list of cleaning (corrective) actions should be documented in

the table. The following list includes some examples that can be used or combined for the described

constraints. Note: This is an indicative and not an exhaustive list. Additional cleaning actions can be

introduced and described by the UC partner in case they are not covered in the list below.

▪ Deletion of value that does not conform to a constraint by:
o Drop whole entity
o Drop specific attribute
o …

▪ Replacement of value that does not conform to a constraint through:
o Transformation of wrong data type value
o Prediction of erroneous/missing value
o Prediction of erroneous/missing value based on similar values in the past
o Creation of a list of features with high percentage of similarity with the same value

o ……

Risk_factors_1 Sample Dataset

ID (example)
Table 5: Example table for specifying constraint rules and cleaning actions for the ID attribute.

 # Constraint Type Constraint Description Cleaning Action

M
an

d
at

o
ry

 1 Specific data
type

The expected value must be a
Numeric value

Replacement of value through
transformation of non-numeric
value with a numeric one

2 Mandatory field The value is mandatory Deletion of value by dropping the
whole entity

GA-101017441

D3.8 – Standardisation and Quality Assurance of Heterogenous Data II 50

3 Specific value
length

Positive integer max 5 digits Deletion of value by dropping the
whole entity

O
p

ti
o

n
al

4 Uniqueness All the values must be unique Deletion of value by dropping the
duplicate entries and keep only
the first one

5 Value
representation

“1234567890” Replacement of value through
transformation to the expected
format

