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Graphical Abstract

Summary
The genetic relationship between male reproduction and economically relevant traits is unknown. Here, we 
used genome-wide imputed genotypes to estimate genetic correlation between 6 estimates of male fertility 
and 57 dairy traits. We used allele substitution effects calculated with an additive regression approach for 
11,804,781 genome-wide sequence variants. Correlations between male reproduction and other traits were 
small (r = −0.0681–0.0787). However, we observed correlations among various semen quality parameters and 
sire reproductive success (head anomalies and tail anomalies: r = 0.8380, head anomalies and motility: r = 
−0.7083, tail anomalies and motility: r = −0.7739, motility and volume: r = −0.1266, concentration and volume: 
r = −0.3503, nonreturn rate and motility: r = 0.1598, nonreturn rate and head anomalies: r = −0.1640, nonreturn 
rate and tail anomalies: r = −0.1580). To identify QTL responsible for the correlation among these traits, we 
conducted a multitrait meta-analysis; this revealed pleiotropy of a known QTL on chromosome 6 and identified 
a novel QTL for sperm head anomalies on chromosome 11.

Highlights
• Correlations between male fertility and other economically relevant traits were low in Brown Swiss cattle.
• Motility was correlated with anomalies and volume; volume and concentration were correlated. 
• Sire nonreturn rate was correlated with sperm anomalies and motility.
• Correlation among male fertility traits suggests the presence of pleiotropic QTL. 
• Meta-analysis recovered QTL for male fertility on chromosomes 6 and 11. 
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Abstract: Undisturbed reproduction is key for successful breeding of beef and dairy cattle. Improving reproductive ability can be difficult 
because of antagonistic relationships with other economically relevant traits. In cattle, thorough investigation of female fertility revealed 
unfavorable genetic correlations with various production phenotypes. However, the correlation between male reproductive ability and 
production traits remains poorly understood. Here, we investigated the genetic relationships among and between male fertility charac-
teristics and economically relevant traits in a population of Brown Swiss cattle. We performed GWAS with imputed genotypes at nearly 
12 million sequence variants for semen quality (sperm head and tail anomalies, motility, concentration, and volume), male fertility, and 
57 production phenotypes. Allele substitution effects were then correlated on a trait-by-trait basis to estimate genetic correlations. Cor-
relations between male reproductive characteristics and traits of economic value were small and ranged from −0.0681 to 0.0787. Among 
the semen quality parameters, sperm motility was negatively correlated with anomalies (head: r = −0.7083 ± 0.0002; tail: r = −0.7739 ± 
0.0002) and volume (r = −0.1266 ± 0.0003), whereas volume was negatively correlated with concentration (r = −0.3503 ± 0.0002). Sire 
nonreturn rate was negatively correlated with sperm anomalies (head: r = −0.1640 ± 0.0002; tail: r = −0.1580 ± 0.0002) and positively 
correlated with motility (r = 0.1598 ± 0.0002). A meta-analysis of male reproductive traits identified 2 quantitative trait loci: a previously 
described region on chromosome 6 showed pleiotropic effects and a novel region on chromosome 11 was associated with sperm head 
anomalies. In conclusion, our results suggest that selection for economically important dairy and production phenotypes has little impact 
on semen quality and fertility of Brown Swiss bulls.

Efficient and successful reproduction is crucial to both the dairy 
and beef industries. Repeated breedings incur costs and may 

interfere with the production scheme. However, improving cattle 
fertility by selection is challenging because of its low heritabil-
ity (Berry et al., 2014; Butler et al., 2019). Moreover, pleiotropic 
QTL can cause antagonistic relationships between fertility and 
production (Kadri et al., 2014; de Souza Fonseca et al., 2018). This 
phenomenon is exemplified when considering female reproduc-
tive ability and production characteristics in dairy cattle: fertility 
and milk production demonstrate unfavorable relationships with 
moderate genetic correlations (Oltenacu et al., 1991; Roxström et 
al., 2001; Pryce et al., 2004). Indeed, antagonistic relationships 
between phenotypes have been thoroughly documented for dairy 
cows and heifers (VanRaden et al., 2004; Kadri et al., 2014; Mi-
glior et al., 2017). However, the relationship between production 
and male fertility is not well understood, despite male reproductive 
ability having a significant economic impact on the dairy industry 
(Braundmeier and Miller, 2001).

Evidence that semen quality is correlated with production traits 
has been identified in species other than cattle (Oh et al., 2006; 
Wolf, 2009). In cattle, previous studies have identified genetic cor-
relations between scrotal circumference (which is correlated with 
semen quality; Palasz et al., 1994) and both linear conformation 
characters and female fertility (Meyer et al., 1991; Martínez-
Velázquez et al., 2003; Boligon et al., 2010). Kealey et al. (2006) 
found correlations between birth weight and semen characteristics 

in Hereford cattle. However, these studies were conducted in beef 
or indicine breeds and generally did not consider dairy traits. Thus, 
characterizing the relationship between dairy traits and male repro-
duction is warranted to improve dairy herd management.

Although the heritability of semen quality traits varies consid-
erably by population (Butler et al., 2019), moderate heritability 
estimates of certain characteristics, such as sperm motility and 
concentration, have been repeatedly recovered (Berry et al., 2014). 
Several QTL that affect bull fertility and ejaculate characteristics 
have been identified in beef and dairy breeds (Peñagaricano et al., 
2012; Rezende et al., 2018; Butler et al., 2019). In Brown Swiss 
(BSW) cattle, considerable heritable variation in male reproduc-
tive success has been identified between bulls (Hiltpold et al., 
2020; Pacheco et al., 2021). Some of this variation is due to large-
effect QTL for sperm motility, sperm anomalies, and bull fertility 
located on chromosomes 1,6, 18, 25, and 26 (Hiltpold et al., 2020, 
2021). However, the largest proportion of heritable variation in 
semen quality and male fertility is due to unknown small-effect 
QTL. Previously, meta-analyses of multiple correlated phenotypes 
increased the power to detect QTL (Bolormaa et al., 2014; Fang 
and Pausch, 2019); thus, implementing a meta-analysis with male 
fertility characteristics may reveal undescribed small-effect QTL.

Here, we leverage genome-wide polymorphism data, consisting 
of imputed genotypes for nearly 12 million sequence variants, and 
an array of densely sampled phenotypes to explore the relationship 
between male fertility and production traits in BSW cattle. Specifi-
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cally, we used allele substitution effects inferred for 63 phenotypes 
to assess genetic correlations between male reproduction and 
economically relevant traits. In addition, we performed a multitrait 
meta-analysis to detect QTL that influence semen quality and bull 
fertility.

We used the score for sperm head and tail anomalies, percent of 
motile sperm, sperm concentration (million sperm/mL), ejaculate 
volume, and insemination success (sire nonreturn rate) to describe 
male reproduction. Briefly, we considered only ejaculates that ful-
filled minimum quality requirements for AI, which were collected 
from bulls between 400 and 1,000 d of age. The ejaculate phe-
notypes considered, including collection and filtration methods, 
are described in detail in Hiltpold et al. (2020, 2021). Ejaculate 
characteristics and reproductive success were assessed in 30,885 
fresh ejaculates and 850,708 AIs, respectively, for 983 bulls. Each 
ejaculate was fitted with the linear model

 y = 1μ + ha + df + Ct + Sn + e, 

for all considered phenotypes to account for confounding vari-
ables, where y is a vector of trait-value for each ejaculate, μ is the 
intercept, h is a vector of bull’s age (in days) at semen collection, 
d is a vector of number of days since the preceding ejaculate was 
collected, C is an incidence matrix relating the phenotype to the se-
men collector, and S is an incidence matrix relating the phenotype 
to collection date (4 seasons for each year); a, f, t, and n are the 
respective effects of the aforementioned variables, and e is a vector 
of random residuals. The random residuals were averaged for each 
individual and used as the input phenotype in subsequent analyses. 
We used R v4.0.5 (R Core Team, 2021) to construct the linear 
model and for subsequent analyses, unless otherwise specified.

Estimates of sire fertility were provided by Swissgenetics (Zol-
likofen, Switzerland). Insemination success was not available on 
an ejaculate level. Instead, a bull’s reproductive ability was quanti-
fied as the 56-d nonreturn rate following the first insemination in 
both cows and heifers in the 12 successive months with the most 
inseminations. Sire nonreturn rate was computed using the linear 
mixed model proposed by Schaeffer (1993), which accounts for 
insemination month, parity (cow or heifer), cost of the semen dose, 
insemination technician, the combination of the bull’s and cow’s 
breed, and herd. Hiltpold et al. (2020, 2021) provides a detailed 
description of the model. Additionally, 57 phenotypes of economic 
importance were available from routine breeding value estima-
tions in the form deregressed EBVs (drEBV) and belonged to the 
following categories: dairy (n = 7), linear conformation (n = 29), 
longevity (n = 1), slaughter–adult (n = 3), slaughter–calf (n = 3), 
calving (n = 8), cell count (n = 1), and female fertility (n = 5). A 
list of these traits can be found in Figure 1. The number of BSW 
sires considered for each production trait varied and ranged from 
1,698 to 5,843.

Procedures used to obtain sequence variant genotypes from 
the bulls are outlined in Lloret-Villas et al. (2021). In brief, sire 
genotypes were inferred with either low- to medium-density (Illu-
mina 20k to 150k) or high-density (Illumina 777k) chips, and then 
partially imputed to 683,609 SNPs using 1,166 BSW animals that 
had 777k genotypes as a reference. Subsequently, a reference panel 
of 368 sequenced BSW individuals was used to further impute the 

partially imputed genotypes to 27,214,878 sequence variants with 
Beagle (version 5; Browning et al., 2018).

Genome-wide association studies were conducted for all traits 
using the GCTA-MLMA tool (Yang et al., 2011, 2014) and a 
standard linear mixed model that included a genomic relation-
ship matrix (GRM) to model the random polygenic term. The 
model also included the top 4 principal components of the GRM 
as fixed effects to account for population stratification and weights 
to consider either the number of observations per individual for 
male fertility characteristics or the effective daughter contributions 
(EDC) for the deregressed proofs (drEBV). Weights for ejacu-
late characteristics were computed for each sire as (1/number of 
ejaculates), and weights for sire nonreturn rate were inferred as (1/
number of inseminations). Weights for the drEBV were computed 
as (1/EDC). The GRM was constructed with 589,791 autosomal 
variants from the aforementioned partially imputed data set that 
had minor allele frequencies (MAF) >0.5%. Association tests 
were conducted for 11,804,781 sequence variants that had MAF 
>1% and model-based imputation accuracy >0.5. Variants with a 
P-value less than 4.24 × 10−9 were deemed significant, as informed 
by a 5% Bonferroni-corrected significance threshold. Heritabilities 
of ejaculate characteristics were inferred with the average infor-
mation REML estimation algorithm in AIREMLF90 (Misztal et 
al., 2002) and followed the approach described in Hiltpold et al. 
(2020).

For each trait pair, we estimated genetic correlations using the 
allele substitution effects obtained from the single-trait GWAS. 
Following the approach proposed by Bolormaa et al. (2014), we 

inferred signed t-values for each trait with t b
se b

=
( )

, where b is 

the allele substitution effect and (se)b is the standard error. Variants 
for which the t-value deviated more than 5 standard deviations 
from the mean were removed. The filtered t-values were used to 
compute a Pearson correlation coefficient for each trait pair, thus 
producing a correlation matrix.

We administered a multitrait meta-analysis to identify QTL 
contributing to the correlation among semen quality and male fer-
tility traits. Specifically, we performed a multitrait chi-squared (χ2) 
test with the test statistic described as χdf n i it t=

−= ′2 1V  in Bolormaa 
et al. (2014), where n is the number of traits considered, ′ti  is a n × 
1 matrix of signed t-values at the ith sequence variant across n 
traits, and V−1 is the inverse of the correlation matrix calculated as 
described above. The same significance threshold used in the sin-
gle-trait GWAS (P < 4.24 × 10−9) was used to identify significant 
loci.

A correlation matrix constructed from the estimated substitution 
effects is visualized in Figure 1. Our analysis recovered multiple 
relationships previously described in BSW cattle; specifically, 
negative correlations between milk yield and content (e.g., milk 
yield and fat percentage, r = −0.6642 ± 0.0002; milk yield and 
protein yield, r = −0.8032 ± 0.0001), an antagonism between milk 
yield and female fertility (e.g., milk yield and cow nonreturn rate, 
r = −0.1415 ± 0.0002), and a positive correlation between stat-
ure and milk yield (r = 0.1418; de Haas et al., 2007; Gibson and 
Dechow, 2018; Martinez-Castillero et al., 2021), thereby support-
ing the general validity of our findings. Correlations between male 
reproductive characteristics and traits of economic value were 
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small and ranged from −0.0681 to 0.0787. Both the most-positive 
and the most-negative relationships were observed with calving 
phenotypes (ejaculate volume and weight of calves, r = 0.0787 ± 
0.0003; ejaculate volume and share of normal births, r = −0.0681 
± 0.0003). Other studies found that testis size (e.g., scrotal cir-
cumference, length, volume) is genetically correlated with calving 
interval, ADG, and daughter pregnancy rates (Toelle and Robinson 
1985; Meyer et al., 1991; Raidan et al., 2017). However, testis 
measurements were not available for the BSW bulls considered 
in our study. In addition, Kealey et al. (2006) found that live birth 
weight is positively correlated with sperm motility and concentra-
tion. Although the lack of correlation between male fertility and 
other traits in our data set could be attributed to differences in beef 
and dairy breeds, it is still interesting to note that the strongest 
relationships we identified were with calving phenotypes.

Many of the relationships we observed within the ejaculate qual-
ity traits have been described in other dairy breeds (Butler et al., 
2019). Correlation coefficients among ejaculate characteristics are 
reported in Table 1. Sperm head and tail anomalies were positively 
correlated (r = 0.8380 ± 0.0001) while being negatively correlated 
with motility (head: r = −0.7083 ± 0.0002; tail: r = −0.7739 ± 
0.0002). Sperm motility was negatively correlated with ejaculate 
volume (r = −0.1266 ± 0.0003), and ejaculate volume was nega-
tively correlated with sperm concentration (r = −0.3503 ± 0.0002). 
Most of these associations are in agreement with those of other 
studies, particularly the relationships between anomalies and mo-
tility, motility and volume, and volume and concentration (Ducrocq 
and Humblot, 1995; Druet et al., 2009; Karoui et al., 2011). We did 
not recover other frequently observed relationships, such as a posi-
tive correlation between motility and concentration (Berry et al., 

122Mapel et al. | Correlation between bull fertility and production

Figure 1. Correlation matrix of the allele substitution effects estimated from single-trait GWAS. Traits considered and their abbreviations are listed in the 
bottom left key. Colors correspond to correlation category (high, moderate, low, and none) and direction (red: negative, blue: positive).
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2019; Burren et al., 2019; Olsen et al., 2020). However, a majority 
of these studies have investigated the relationships among semen 
quality parameters in small samples of AI bulls, and thus inferred 
correlation coefficients with large standard errors. Differences in 
semen quality phenotyping and the stringent filtering of raw data 
(cf. Hiltpold et al., 2020) may explain the differences between our 
results and those previously reported.

In accordance with other studies (Gredler et al., 2007; Gebreye-
sus et al., 2021), bull fertility was associated with several ejaculate 
characteristics. Correlation coefficients between ejaculate charac-
teristics and male reproductive success are reported in Table 1. We 
observed a negative correlation between sperm anomalies and sire 
nonreturn rate (head: r = −0.1640 ± 0.0002; tail: r = −0.1580 ± 
0.0002). Sperm motility was positively correlated with bull fertil-
ity (r = 0.1598 ± 0.0002). Ejaculate volume and sperm concentra-
tion were not correlated with sire nonreturn rate. The association 
between motility and sire nonreturn rate agrees with Gebreyesus 
et al. (2021), where they observed a positive genetic correlation 
between post-thaw motility and fertility. In addition, Gredler et al. 
(2007) identified a positive correlation between bull fertility and 
motility. Our results further support the possibility of motility—or 
motility-related measures such as head and tail anomalies—as a 
predictive measure of bull fertility. We further hypothesize that 
our study underestimates the correlations between semen quality 
and sire nonreturn rate, because semen doses from ejaculates of 
inferior quality are compensated for. Therefore, doses from lower-
quality ejaculates contain more sperm. In addition, our stringent 
filtering removed low-quality ejaculates and large outliers from the 
data set, furthering the possibility that the inferred correlations are 
underestimated.

To identify QTL responsible for the correlated semen quality 
and fertility characteristics, we conducted a sequence-based mul-
titrait meta-analysis. The meta-analysis recovered a total of 132 
significant variants (P < 4.24 × 10−9) clustered in 2 distinct QTL 
regions on chromosomes 6 and 11 (Figure 2). A QTL on BTA 6 was 
delimited by 119 significantly associated markers (P < 4.22 × 10−9, 
MAF = 0.20–0.21) between positions 56643511 and 60068785 
(ARS-UCD1.2; ftp: / / ftp .ncbi .nlm .nih .gov/ genomes/ refseq/ 

vertebrate _mammalian/ Bos _taurus/ latest _assembly _versions/ 
GCF _002263795 .1 _ARS -UCD1 .2/ ), with the lead located at 
57946201 bp (P = 4.00 × 10−12, MAF = 0.24). The QTL on BTA 6 
was also identified in the individual trait GWAS for motility (P = 
5.69 × 10−11), head anomalies (P = 8.35 × 10−12), and tail anomalies 
(P = 3.81 × 10−13), suggesting pleiotropic effects. This QTL harbors 
a putatively causal variant that activates cryptic splicing in WDR19 
encoding WD repeat domain 19 (Hiltpold et al., 2020, 2021). The 
QTL on BTA 11 was located between positions 55996705 and 
56001087 (P < 4.02 × 10−9, MAF = 0.09) with 2 leading SNPs 
that had identical P-values (56001085 and 56001087, P = 2.66 × 
10−9). However, this region was only significant in the single-trait 
GWAS for sperm head anomalies (P = 3.42 × 10−11). The top vari-
ants were within an intron of CTNNA2 (encoding catenin α-2, a 
testis-expressed gene, http: / / cattlegeneatlas .roslin .ed .ac .uk/ ) that 
has yet to be associated with bull fertility or semen quality. The 
multitrait meta-analysis did not reveal associations at putative 
QTL underpinning male reproduction on chromosomes 1, 18, 25, 
and 26, which were reported in the same cohort by Hiltpold et al. 
(2021). These QTL act recessively, but their effect on male fertil-
ity traits is lower than that of the BTA 6 QTL, thus they likely 
remained undetected in our meta-analysis that assumed an additive 
mode of inheritance.

In conclusion, we did not observe notable genetic correlations 
between male fertility and other economically relevant traits in 
the BSW cattle population. The genetic correlations were calcu-
lated using allele substitution effects estimated from an additive 
regression model; we did not consider other modes of inheritance 
that have been shown to contribute to variation in male reproduc-
tion (Peñagaricano et al., 2012; Nani et al., 2019; Hiltpold et al., 
2021). Future studies that also consider recessive and dominant 
modes of inheritance may provide further insight into the genetic 
relationships between economically relevant traits and bull fertil-
ity. Moreover, our genetic correlation estimates were based on 
genome-wide markers. It is plausible that individual QTL exhibit 
pleiotropic effects on the traits studied and remain undetected by 
correlation coefficients estimated from genome-wide approaches. 
Our male reproductive trait GWAS, from which we obtained allele 
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Table 1. Phenotypic and genetic correlations among male fertility characteristics1

Trait
Head 

anomalies
Tail 

anomalies Motility Concentration Volume Sire nonreturn rate

Head anomalies 0 0.8380 −0.7083 −0.0018 0.0278 −0.1640
(0.0001) (0.0002) (0.0003) (0.0003) (0.0002)

Tail anomalies 0.8363 0 −0.7739 −0.0131 0.0588 −0.1580
(0.0203) (0.0002) (0.0003) (0.0003) (0.0002)

Motility −0.6767 −0.7380 0.1160 0.0858 −0.1271 0.1598
(0.0273) (0.0250) (0.0410) (0.0003) (0.0003) (0.0002)

Concentration NS2 NS NS 0.2588 −0.3503 0.0174
(0.0517) (0.0002) (0.0003)

Volume 0.1044 0.1143 −0.1671 −0.3629 0.2102 −0.0745
(0.0368) (0.0367) (0.0364) (0.0345) (0.0436) (0.0003)

Sire nonreturn rate −0.2344 −0.2336 0.2340 NS −0.1392 NA
(0.0360) (0.0260) (0.0360) (0.0366)  

1Genetic correlation was estimated from allele substitution effects from linear regression-based GWAS (upper diagonal) 
and phenotypic correlation was inferred with filtered observations (lower diagonal). Standard errors are reported in 
parentheses. Heritability for ejaculate quality traits can found on the diagonals. Heritability for sire nonreturn rate was 
not calculated (NA), because insemination success was not available on an ejaculate level.
2Nonsignificant relationship (P > 0.05).

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Bos_taurus/latest_assembly_versions/GCF_002263795.1_ARS-UCD1.2/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Bos_taurus/latest_assembly_versions/GCF_002263795.1_ARS-UCD1.2/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Bos_taurus/latest_assembly_versions/GCF_002263795.1_ARS-UCD1.2/
http://cattlegeneatlas.roslin.ed.ac.uk/
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substitution effects to estimate the genetic correlations with pro-
duction phenotypes, relied on 983 individuals. This small sample 
size may have hindered our ability to identify minor relationships 
between these trait categories. However, our recovery of other 
well-documented instances of genetic correlation (e.g., milk yield 
and cow nonreturn rate, stature and milk yield) demonstrates the 
possibility of identifying common relationships with small data 
sets. A large-effect QTL on BTA 6 with pleiotropic effects on male 
fertility characteristics did not exhibit notable effects on other traits 
of economic relevance. Large mapping cohorts with well-defined 
phenotypes may reveal further QTL underpinning male fertility. 
However, such QTL are likely either to be rare in BSW cattle or to 
have low-to-moderate effects on the traits studied, otherwise they 
would have been detected in the current study or in Hiltpold et al. 
(2020, 2021).
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