

Inter-comparison of High-Resolution SST Climatologies over the Australian region

Yuwei Hu¹, Helen Beggs² and Xiao Hua Wang¹

 The Sino-Australian Research Consortium for Coastal Management, School of Science, UNSW Canberra, Canberra, ACT, Australia
 Bureau of Meteorology, Melbourne, Australia

Uncertainty of using different SST climatology datasets?

Spatial and temporal features?

Optimal climatology dataset for extreme event studies?

Products and Method

Climatology	Attributes						
Datasets	Spatial Resolution	Temporal Resolution	Reference Period	Data Source	Calculation Algorithm		
CCI CCI_1985 CCI_1992 CCI_1994	0.05° (~5 km)	Daily Monthly Daily Daily	1981-2016 (36 years) 1985-2012 (28 years, Re-centered to 1988 + 2/7 date) 1992-2016 (25 years) 1994-2016 (23 years)	Climate Change Initiative (CCI) SST version 2.0 L4 analyses (daily SST0.2m)	Daily and Monthly averaging		
AVHRR_OI	0.25°(~25km) to 0.05° (~5 km)	Daily	1981-2016 (36 years)	NCEI 0.25° daily AVHRR- Only optimum interpolation SST L4 analysis (OISST v2.0)	Daily averaging		
CRW	0.05° (~5 km)	Monthly	1985-2012 (28 years, Re-centered to 1988 + 2/7 date)	OSTIA SST L4 Reanalysis (1985 - 2002) NOAA Geo-Polar Blended SST L4 reanalysis (2002 – 2012) (daily night-time SST0.2m)	Monthly averaging		
SSTAARS	0.02° (~2 km) to 0.05° (~5 km)	Daily	1992-2016 (25 years)	IMOS AVHRR L3S composite (daily night-time SST0.2m)	Parametric model fitting		
BRAN	0.1° (~10 km) to 0.05° (~5 km)	Daily	1994-2016 (23 years)	BRAN_2016 ocean model reanalysis (daily SST2.5m)	Daily averaging		

Main attributes of the climatology datasets

Products and Method

	Control Factors						
Comparison Pairs	Day and Night time	Reference Period	Central Year	Calculation Algorithm	SST depth		
(a) AVHRR_OI – CCI	V	V	V	V	V		
(b) CRW – CCI_1985	×	V	V	V	V		
(c) SSTAARS – CCI_1992	×	V	V	×	V		
(d) BRAN – CCI_1994	V	V	V	V	×		

Experiment pairs and main control factors

(a) SSTAARS domain(b) TAO/TRITONPlatform Codeand location

Relative Mean Difference

- STD ≤ 0.20°C
- R > 0.97
- Colder: AVHRR_OI/CRW
- Warmer: SSTAARS/BRAN

	Results					
Comparison Pairs	Mean Bias	Mean STD	Mean R (correlation			
	(°C)	(°C)	coefficient)			
(a) AVHRR_OI – CCI	-0.09	0.15	0.981			
(b) CRW – CCI_1985	-0.12	0.20	0.976			
(c) SSTAARS – CCI_1992	0.02	0.19	0.980			
(d) BRAN – CCI 1994	0.06	0.17	0.986			

- STD
- (a) smallest STD
- (b) noise pattern
 (geostationary satellite)
- (c) larger bias (L3S composite data)
- (d) similar to (c) but smaller

- Similar distributions
- 90% > 0.95

R

 Smaller amplitudes of seasonal cycle

Temporal distribution along latitudes

- (a), (b) and (d) relative cold bias band in tropical
- Cloud coverage (monsoon season)
- (c) constant cold bias in tropical
- (c) larger amplitude (~0.3°C) in midlatitude region

Density distribution along CCI uncertainty

- (a) and (b) larger cold bias tail larger uncertainty
- (c) evenly distributed larger scattering areas
- (d) evenly distributed warm mean bias

TAO/TRITON mooring validation

• Removed data in east tropical

Platform	Latitude	Longitude	CCI			SSTAARS			
Code	(°N)	(°E)	Bias	STD	R	Bias	STD	R	Error
52318	0	147	-0.01	0.06	0.94				
52317	0	156	-0.06	0.07	0.93	-0.16	0.14	0.76	0.07
52321	0	165	-0.05	0.08	0.92				
52307	2	137	-0.03	0.08	0.95	-0.12	0.16	0.84	0.06
52301	2	147	-0.07	0.08	0.89	-0.08	0.13	0.78	0.06
52011	2	156	-0.03	0.07	0.94	-0.06	0.14	0.83	0.07
52001	2	165	-0.05	0.06	0.97				
52012	-2	156	-0.02	0.06	0.94	-0.08	0.12	0.81	0.06
52002	-2	165	-0.05	0.07	0.93				
52314	5	137	-0.03	0.10	0.97				
52302	5	147	-0.03	0.08	0.97	0.02	0.10	0.95	0.07
52084	5	156	-0.08	0.10	0.94	-0.07	0.13	0.84	0.08
52086	-5	156	-0.03	0.08	0.98	-0.05	0.13	0.90	0.06
52004	-5	165	-0.03	0.07	0.93	-0.11	0.12	0.84	0.07
52007	-8	165	-0.03	0.09	0.98	0.02	0.11	0.95	0.06
Mean			-0.04	0.08	0.97	-0.07	0.14	0.86	0.07

- Unmatched location and period
- Low input data density of SSTAARS
- Red mark: Rcci < 0.9 Rsstaars<0.8
- Unmatched seasonal cycle

TAO/TRITON mooring validation

- Day and night time data
- Diurnal warming
- Receiving station distance

Daily difference

Cloudiness

- The International Comprehensive
 Ocean-Atmosphere Data Set
 (ICOADS)
- 2 degree
- Monthly climatology (1981-2010)
- Eastern tropical areas in summer
- Lower data density
- Low R-values

Specific humidity

- Transition around 20°S
- Sharp decrease in surface water vapor
- Different cloud detection method
- Abruption of bias at 20°S in pair (c)
 SSTAARS CCI_1992

Marine Heatwave (MHW)

- Temperature over threshold
- Longer than five consecutive days (after Hobday et al., 2016)

MHW case study

- CCI L4 CCI_1992
- IMOS AVHRR-only L3S SSTAARS
- IMOS Multi-sensor L3S SSTAARS
- 1st February 2013
- SSTAARS warmer than CCI
- Agreements on SST gradients

MHW case study

- 1st March 2016
- SSTAARS CCI_1992: a combination of warm and cold differences
- AVHRR-only warmer than Multisensor

Summary

- SSTAARS has the closest agreement with the CCI.
- BRAN_2016 is warmer than CCI over the west and south, AVHRR_OI and CRW climatology are generally colder.

• Bias in the east tropical region should be considered for SSTAARS.

• CCI; SSTAARS: finer SST gradient features

• Decision-making

Thanks for your attention!

The full contents are available in this published paper:

Hu, Y., Beggs, H., & Wang, X. H. (2021). Intercomparison of high-resolution SST climatologies over the Australian region. Journal of Geophysical Research: Oceans, 126, https://doi.org/10.1029/2021JC017221