Building End-to-End IoT Applications
with QoS Guarantees

Arne Hamann', Selma Saidi?, David Ginthoer!, Christian Wietfeld?, and Dirk Ziegenbein1

!Corporate Research, Robert Bosch GmbH, Germany, firstname.lastname@de.bosch.com
2Technical University of Dortmund, Germany, firstname.lastname@tu-dortmund.de

Abstract—Many industrial players are currently challenged in
building distributed CPS and IoT applications with stringent end-
to-end QoS requirements. Examples are Vehicle-to-X applica-
tions, Advanced Driver-Assistance Systems (ADAS) or function-
alities in the Industrial Internet of Things (IloT). Currently, there
is no comprehensive solution allowing to efficiently program,
deploy, and operate such distributed applications. This paper
will focus on real-time concerns, in building distributed CPS
and IoT systems. Thereby, the focus lies, on the one hand, on
mechanisms required inside of the IoT (compute) nodes, and, on
the other hand, on communication protocols such as TSN and
5G connecting them. In the authors’ view, the required building
blocks for a first end-to-end technology stack are available.
However, their integration into a holistic framework is missing.

1. INTRODUCTION AND MOTIVATION

The product portfolios in various industrial domains cur-
rently evolve from classical non-connected cyber-physical
system (CPS) applications (e.g. engine management) over
cloud enhanced CPS that use networking and cloud computing
for non-critical functional extensions (e.g. sending monitoring
data to the cloud for predictive maintenance) to dynamic dis-
tributed CPS where time and safety critical parts of the func-
tionality might get shifted to the (edge) cloud. Examples for
these dynamic distributed CPS are Vehicle-to-X applications
(e.g. platooning or intersection assistance), Advanced Driver-
Assistance Systems (ADAS) where smart sensors/actuators
communicate over in-vehicle networks with centralized vehicle
computers, or adaptive and flexible manufacturing solutions in
the Industrial Internet of Things (IloT).

In this context, we witness a convergence of technologies
from the embedded and IT domains which leads to an unprece-
dented level of heterogeneity on all levels of the technology
stack. This includes classic “hard-wired” software architec-
tures and real-time operating systems (e.g. AUTOSAR) as
well as publish-subscribe and service-oriented middlewares
(e.g. ROS2, MQTT) and POSIX operating systems (e.g. QNX,
Linux), embedded micro-controllers with dedicated I/O units
and on-chip SRAM as well as micro-processors with network
on chips, GPUs and off-chip DRAM, and wired as well as
wireless communication media with a plethora of different
protocols.

On the application level, the consequence of dynamic dis-
tributed CPS with time-critical application parts being dis-
tributed to the (edge) cloud is that there are now cause-
and-effect chains spanning multiple distributed compute and
communication resources. The quality of service (QoS) re-
quirements for these applications include safety, security,

E2E Latency

A > E-E > E -

Application Level

& el &)
Sensors Exgcution Failure Rate Actuators
TransmlsslonTlme
[cPuE|recvrde
\4 # Band E_'?_O T.:. N t'_ll() * /
=
Glasnclty

Resource Level

Fig. 1. System-wide QoS requirements (denoted by red arrows) on application
level are broken down to resource specific QoS requirements

availability, reliability as well as timing. In this paper, we
mainly focus on timing such as end-to-end (E2E) latencies
along cause-and-effect chains in distributed IoT applications.

Figure 1 shows one application with an E2E latency re-
quirement from sensors to actuators. When this application is
deployed to a distributed system involving embedded compute,
wired and wireless communication as well as cloud resources,
the E2E latency requirement still has obviously to be fulfilled.
However, as a consequence of the deployment the E2E latency
requirement is broken down to different resource specific QoS
requirements such as execution time and memory bandwidth
requirements for the embedded compute and minimum trans-
mission rates and failure rates for the communication network.

Resources are typically shared by multiple applications
with heterogeneous QoS requirements. Some require hard
guarantees of latency bounds while others are more concerned
with a best effort average throughput. Thus, adequate resource
provisioning to applications and isolating the applications
against each other are of utmost importance to be able to
guarantee QoS requirements. This is even more relevant, since
most of the available technologies are built with best effort in
mind and do not support hard QoS guarantees out of the box.

In this paper, we will have a look at the different technology
domains, namely the embedded compute and wired/wireless
communication, and discuss promising solution approaches to
guarantee end-to-end QoS properties for distributed CPS and
IoT applications.

II. EMBEDDED COMPUTE

Heterogeneous System-on-Chip (SoC) platforms are cur-
rently being increasingly used in embedded real-time systems
to satisfy the tremendous compute power demands of new

10.1109/DAC18072.2020.9218564 ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

dynamic distributed CPS applications in various domains
including automated driving, the factory of the future, and
augmented/extended reality. These SoCs are usually pP-based
featuring a variety of integrated special purpose accelerators
including GPUs and FPGAs. Examples for theses class of
SoCs include NXP’s S32V vision processor family, or the
Tegra series developed by Nvidia.

Figure 2 shows a schematic example highlighting the char-
acteristics of importance for this paper: the memory hierarchy
(caches and DRAM) shared between different execution en-
gines, as well as the interconnect fabric connecting different
master components such as CPU clusters and special purpose
accelerators. The architecture of these SoCs is usually driven
by the goal of achieving high throughput and optimized
average performance. As a result, they only provide “best-
effort” performance from real-time systems point-of-view.

Core 3 Core4

Core 1 (e.g.
Cortex A53)

LiD LiD LiD LiD

L2 +scu L2+SCU

Coherency

Accelerator

(e.g.
embedded

GPU)

Interconnect

DRAM controller + DRAM

Fig. 2. Schematic example of a pP-based compute platform considered in
this paper

One big challenge that engineers in different industrial do-
mains are currently facing, is that heterogeneous applications
following different models of computation (e.g. perception,
planning, control, (deep) learning, etc.) must be integrated onto
these powerful SoC platforms, while ensuring that individual
real-time and safety requirements are met.

In order to tackle this highly complex integration task,
engineers currently resort to richer and more complex software
stacks borrowed from the IT world including POSIX-based
operating systems, and middleware systems. While these IT
technologies are based on powerful abstractions hiding the
underlying system complexity and offer (highly needed) flex-
ibility, scalability, and dynamic adaptability to implement and
integrate complex applications, they do not support the engi-
neer in catering for real-time requirements of the applications
built on top.

This is not astonishing since the individual technologies
were originally not intended to be used for timing-critical
applications where predictable real-time behavior is key. The
task at hand is, thus, to extend the utilized technology stack
with mechanisms enabling engineers to handle real-time re-
quirements (where needed) constructively. Thereby, two key
requirements need to be satisfied: 1) efficiency of the resulting
system in terms of power and cost, and 2) preservation of the
level of abstraction as well as ease-of-use to shield engineers
from the complexity of the underlying technology stack.

Figure 3 visualizes the technology stack of uP-based em-
bedded compute platforms, as they are currently deployed in
various industrial domains such as automotive and the factory
of the future, along with required mechanisms for ensuring
end-to-end real-time guarantees.

Heterogeneous
Applications

Execution
Requirements

Memory Bandwidth Requirements
(Option 1) (Option 2)

3l Publish-Subscribe
Middleware

Execution Management
Extensions, e.g. Executors

¥

SW-based Regulation of
Memory Bandwidth,

e.g. MemGuard

Operating System

Advanced Scheduling,
Hypervisor g. RBS

e,

lono UolsSIpy pu3-01pua

QoS Extensions, e.g. MPAM

End-to-end Predictable Real-time

Heterogeneous
System-on-Chip v

Execution Memory Access Memory Access

Fig. 3. Required technology stack for real-time guarantees on pP-based
embedded compute platforms. For satisfying memory bandwidth requirements
two different options are discussed: 1) regulation-based techniques, and 2)
centralized end-to-end admission control.

From the application’s point-of-view two different concerns
need to be taken care of by the underlying platform. First of
all, it must be guaranteed that there is enough computational
capacity available (and possibly reserved) on the required
execution engines (e.g. processors and special purpose accel-
erators). Secondly, it must be guaranteed that the computations
are fed timely with the required data by the memory hierarchy
to prevent computations to get stalled. In the following we will
discuss both concerns separately.

A. Execution Requirements

Classically, real-time systems are built with precise knowl-
edge about the activation patterns of concurrently executed
applications. A large part of real-time theory is, for instance,
based on the assumption that applications are activated strictly
periodically. This periodic model can easily be extended with
the notion of activation jitter, indicating that the individual
points of execution may vary to a certain extent. For many
applications (e.g. control) assumptions like periodic execution
make perfectly sense, and most real-time operating systems
come along with built-in support for realizing such behavior
(e.g. through periodic tasks).

However, when looking at middleware systems such as
ROS2 [1] or MQTT [2] which heavily use the publish-
subscribe messaging pattern, controlling and understanding
the activation patterns of applications is far more involved.

Publish-subscribe is a messaging pattern implemented by
most popular middleware systems. Messages are sent asyn-
chronously by so-called publishers without the knowledge how
many (if any) so-called subscribers receive the messages. This
decoupling of senders and receivers provides great flexibility
since dependencies are not explicitly programmed, and can
even be added dynamically during runtime. Messages are
usually “delivered” by the execution of callback-functions
giving the subscriber(s) the possibility to react and process
the received data. In addition to this data-driven activation,
most middleware system also support time-driven activation
of callback-function through timers.

When it comes to building real-time systems, the publish-
subscribe abstraction can cause problems. For instance, since
activated callback-functions can publish messages themselves,
complex behavior can emerge making it potentially very hard
to understand the dynamic behavior of an application. More-
over, in most implementations, the user has only little control
over how messages are queued and in which order callback-
functions of an application are executed by the underlying

operating system. For instance, in ROS2 callback-functions
triggered by timers are executed first, afterwards callback-
functions triggered by messages are executed in the order
they have been registered in the source code [3]. Obviously,
with this semantics, messages triggering real-time critical
functionalities might get heavily delayed, or, depending on
the message queue size, even dropped.

In order to make middleware systems real-time capable”,
a layer providing fine-grained control over the mapping of
callback-functions to the scheduling primitives and mecha-
nisms of the underlying operating system based on high-
level real-time requirements is needed. The European research
project OFERA [4], for instance, is working on a so-called
Real-time Executor [5] for ROS2 providing such control.

On the operating system level mostly fixed priority pre-
emptive and TDMA scheduling are currently used in practical
systems. Like it has been pointed out in [6], both scheduling
strategies are inadequate for efficiently integrating heteroge-
neous applications with different real-time requirements and
models of computation.

A well studied alternative scheduling approach for efficient
integration of heterogeneous applications, which surprisingly
has found only little attention in commercial products, is
Reservation Based Scheduling (RBS). In RBS a fractional part
of a CPU is assigned to a server (usually through a periodically
replenished budget) that is responsible for executing associated
applications. An associated mechanism guarantees that the
promised capacity is indeed delivered to the server (e.g. [7],
[8]). These guarantees coupled with budget enforcements pro-
vide temporal isolation for applications assigned to different
servers. In RBS budget accounting is performed at server
level allowing for composability. Support for heterogeneous
applications can be obtained by combining different reserva-
tion types on the same platform. Moreover, with well known
and safe techniques (e.g. [9]), any unconsumed server budget
can be redistributed guaranteeing work conservation and, thus,
resource efficiency.

In summary, RBS provides a comprehensible and com-
posable abstraction for handling computing resources and
controlling real-time properties. RBS mechanisms are backed-
up with a large body of work proving its real-time properties
and making it an analytically well understood and predictable
technology.

B. Memory Bandwidth Requirements

Modern SoCs are optimized for average-case performance
and extensively make use of shared resources (e.g. the memory
hierarchy), hence introducing:

« a strong correlation between the execution of a program

and the access to data it manipulates, as well as

o high degree of interference imposing a strong timing

correlation between concurrently running applications on
the same chip.

In [10] it was shown that these effects can be drastic. For
instance, on the Nvidia Tegra X1 SoC the average read latency
per word in a sequential read scenario from a single core (in
isolation) is below 10 ns, whereas it increases to more than 50
ns when simultaneous memory accesses from 3 other cores are
interfering. As a result, the execution time of an application

can vary easily by several hundreds percent depending on its
memory access patterns and execution context.

One important building block to ensure predictable perfor-
mance is, therefore, to ensure that applications are fed with
the required data in a timely fashion. In the following, we
will describe two possible approaches: memory bandwidth
regulation and admission control. While the first approach
focuses on the coarse grain shaping of memory traffic to re-
duce the worst-case impact of contention scenarios, the second
approach is more constructive in a way that it dynamically
reserves all shared resources on the data access path for
required transactions, thus enabling stronger guarantees at the
cost of higher overall complexity.

Additionally, we briefly discuss system partitioning tech-
niques that can be used to complement both approaches by
providing dedicated access to parts of the shared system
resources.

1) Memory Bandwidth Regulation: SoCs currently used
in system development have very little on-chip support for
regulating and guaranteeing memory bandwidth for time-
critical applications. However, for future SoCs this might
change, since new QoS architecture extensions are currently
proposed and developed by major IP vendors, ARM’s MPAM!
Extension Architecture Specification [11] being one prominent
example.

Nevertheless, the goal of achieving application level mem-
ory bandwidth regulation on the core clusters can be achieved
by adding software techniques such as MemGuard [12] to
the overall picture. Or in other words, the lack of hardware
support on current SoCs can be compensated by software tech-
niques resulting in a dual-layer memory bandwidth regulation
scheme:

o Mechanisms using basic QoS features of the interconnect
to perform traffic shaping of the memory bandwidth
between all masters (e.g. configuring average/maximum
number of outstanding requests on the interconnect). This
can in particular be used to "protect” core clusters from
other master components (such as accelerators) and, thus,
to guarantee a minimum memory bandwidth that can be
safely distributed among executed applications.

e SW-based mechanisms (implemented for instance at hy-
pervisor level) for distributing memory bandwidth among
applications executed within core clusters.

The required memory bandwidth per application can be
determined with profiling tools. One idea, for instance, is to
initially execute an application in isolation without memory
bandwidth restrictions, and then gradually restrict the band-
width until the execution time starts increasing significantly.
By this means, sweet spots for memory bandwidth budgets
yielding “near optimal performance” per application can be
determined. Obviously, this simple scheme can be extended to
account for varying bandwidth requirements based on different
phases or modes of an application.

When executing multiple applications in parallel, the sum
of all memory bandwidth budgets (corresponding to ~optimal
performance”) might be superior to the memory bandwidth
that can be sustained by the shared platform. For such cases,

"Memory System Resource Partitioning and Monitoring

support for dynamic adjustment of memory bandwidth budgets
considering a notion of system-wide “application criticality” is
required. For instance, in an “overload scenario” applications
with high criticality are guaranteed their budgets at the expense
of applications with lower criticalities, whose budgets are
dynamically (transiently) reduced.

2) Centralized E2E Admission Control: In order to conduct
memory accesses, an application in MPSoCs must generally
acquire several shared (interconnect and memory) resources
with independent arbiters and often provided by different
vendors. Each shared resource may be further divided into sub-
resources (i.e., sub-arbiters). For instance, many modern MP-
SoCs are equipped with Networks-on-Chips (NoCs) featuring
wormbhole-switching and multi-stage arbitration (e.g. iSLIP).
NoCs resources are not reserved in advance, i.e. packets are
switched as soon as they arrive and ongoing transmissions
compete for link bandwidth (output ports) and buffer space
(virtual channels).

DRAMs feature as well complex internal hierarchical struc-
ture as they are composed of multiple modules which are
further structured in a number of banks used to store data. Each
bank contains a matrix-like structure where data is located
along with a row buffer. The matrix-like structure is not visible
to the memory controller and all data exchanges are performed
through the corresponding row buffer. Commercial off-the-
shelf memory controllers are optimized for the average-case
performance and for this they rely on the open-row policy.
First-ready first-come-first-serve (FR-FCFES) scheduling policy
is often used to prioritize memory requests accessing the same
neighboring memory region (i.e. same row) over other requests
to maximize row-hit rate, and thereby performance.

Conventional network and memory resources do
not take into account interference between different
threads/applications when making scheduling decisions. Each
router is conducting its arbitration locally and independently
from other routers and memory accesses are translated by
the memory controller into internal DRAM commands used
to access data and read/write from row buffers. Applications
requests granularity is often different from shared resources
granularity of arbitration. While applications issue data
transmissions (cache lines or DMA), routers arbitrate among
data flits and packets, and memory controllers schedule
internal DRAM commands?.

Centralized E2E admission control can be used as an alter-
native method to provide applications with a global (physical)
resources arbitration. Admission control allows to decouple
the data transmission layer, where data flows, from the control
layer. Transmissions are therefore established and scheduled
at a higher logical level before applications acquire access to
physical resources. Arbitration between multiple applications
is then shifted from individual (sub) resources to a centralized
control unit which has a global view of the system (i.e. both
applications and resources). The idea of admission control is
not new, it is often used in the IT domain in combination with
Software-Defined Networking (SDN) to implement routing
processes that are more dynamic and efficient than physical
ones implemented in network switches [13].

2 An application data transmission is decomposed into a number of smaller
flits or packets and internal DRAM commands.

In [14], admission control concepts were borrowed from
the IT domain to be applied in MPSoCs and provide real-time
guarantees for (mixed) critical communication and memory
traffic. The proposed approach provides an overlay network
built on top of existing NoC architectures. Whenever an ap-
plications is granted admission, temporal isolation is achieved
by an E2E exclusive access allocation of a sequence of shared
network and memory resources during the entire duration
of the transmission (i.e. one access or bundle of accesses).
This control layer has a global view of current traffic in
the network and can dynamically adapt admission control to
perform optimization, e.g., assign dynamic TDM slot sizes
and change priorities dynamically to handle mixed-criticality
traffic. Interestingly enough, when used in combination with
DRAMs [15] to provide E2E admission control for memory
traffic traversing the network, the proposed admission control
proves to provide performance on general-purpose MPSoCs
platforms, comparable with custom designed predictable mem-
ory controllers like the PRET DRAM controller [16]. One
of the advantages of the provided E2E resources allocation
is the preservation of the locality of accesses from the same
application without, for instance, the need for static resources
partitioning schemes like bank privatization.

E2E admission control allows additionally to simplify an-
alytical timing analysis models used to bound interference
effects and compute timing guarantees on the the E2E latency
of individual transmissions. Bounding the timing effects of
shared resources requires a careful analysis of requests arrival
(that determine interference) at every resource and its cor-
responding scheduling/arbitration policy. With admission con-
trol, interference analysis can account for applications requests
arrival at the centralized control unit instead of individual
flits/packets/commands arrival at every (sub) resource. Thus,
reducing the complexity of coupling different resources timing
analysis which usually leads to pessimistic formal guarantees
or decreased performance and utilization.

3) System Partitioning Approaches: Both aforementioned
approaches to regulate and control memory bandwidths can be
complemented with approaches to partition shared resources
along the memory hierarchy. The goal of such approaches is
to guarantee freedom-from-interference for concurrently exe-
cuted applications on the respective shared resources, leading
to the decoupling of performance effects and the simplification
of the overall memory bandwidth regulation problem. Exam-
ples for such partitioning approaches are cache partitioning
through page coloring [17] or DRAM bank privatization [16].

Whether or not it make sense to add partitioning approaches
to the overall solution, heavily depends on the hardware
platform and the executed application mix. Cache partition-
ing, for instance, privatizes parts of the cache to a set of
applications, reducing interference effects from other parts of
the system. However, at the same time the usable cache size
for those applications is reduced. In case the possible cache
interference on system level is anyhow only very low, the
overall performance and efficiency could be severely reduced
by cache partitioning. For this reason, the use of partitioning
approaches must be assessed precisely on a case-by-case basis.

Slice
A

:

2.
&

P
=
~
(2}

Slice2 Ul

Challenge:
Dynamic matching
of ,mixed-critical®

service requirements
on actual 5G resource
allocations while
avoiding unused
resources

Slice3 URLLC

E:

Space

Slice 4

eMBB
\
X
Ok

5G Service Dimensions:

URLLC - Ultra-Reliable Low Latency Communications
eMTC - evolved Machine-Type Communication
eMBB - enhanced Mobile Broadband

Example of 5G Network Slices

s -2 Example of resource
allocations not used
by network slice

Fig. 4. Mixed-critical 5G network slices dynamically matched on spatio-
temporal resource grid

III. WIRED AND WIRELESS COMMUNICATION

A. QoS-support in 5G

The development of 5G has very much emphasized the goal
to support guaranteed quality of service through the Ultra-
Reliable Low Latency Communication (URLLC) design track.
The ultra low latency” part of the URLLC goal was achieved
by breaking up the established 4G resource grid, making it
more flexible and capable of supporting short round-trip-times,
for example by introducing so called mini-slot scheduling.
Also a grant-free transmission enables fast access to radio
resources without prior dedicated scheduling. Apart from the
optimization of the radio link, leveraging edge computing in
the radio access network is essential to realize low latency
communication. While those measures (and some more not
discussed here for lack of space) lead to a reduction of
round-trip times “on average”, the control of the associated
distribution function of latencies is still an open question.
Traditionally, radio communications faces packet losses due
to mobility and dynamically changing channels. Such inter-
ference is mitigated with measures, which often contradict the
low latency goal, such as repeated or duplicated transmissions
and many forms of redundancy, which comes along with
increased processing effort and delay. So while lower latencies
and high reliability can be achieved individually by different
measures, the combination of both is most challenging and
demands eventually large network resources.

One important step in achieving URLLC services in an
efficient way is to separate other types of 5G services in net-
work slices, which provide independent, virtualized network
resources with specialized services characteristics [18]. One
network slice may for example serve high data rate streaming
for consumers, while another network slide supports URLLC-
type of service with ultra-high QoS demands (see figure 4) .
While the basic service characteristics of a network slices can
be easily described, the network operator faces the challenge to
allocate the appropriate amount of network resources. A very
simple approach of allocating static resources in terms of spec-
trum and time to each network slice which may accommodate
any possible worst case may prove to be highly inefficient and
not feasible, given the limited and highly expensive spectrum
resources. Therefore the network operator needs to carefully
explore the opportunities for allocating network resources
to network slices in a flexible way, in order to balance

(TSN Centralized Network Configuration)

Network Configuration Protocol A
\J

\
o \

|5G Network Functions|

; \’_:mfu\\ Slice Config iration \
’ L5 cMBB Slice ©) \
_"’I L URLLC Slice ﬂ I" -
Endpoint Bridge Virtual TSN Bridge Bridge Endpoint

End-to-end stream with guaranteed QoS

Fig. 5. TSN Centralized configuration model with integrated 5G virtual TSN
bridge.

out the demands: while the “emergency lane” (i.e. URLLC
slice) can be used by “normal users” (streaming consumer
slice) in “normal” operation mode, it needs to be cleared
instantaneously in case it is needed. To manage such extremely
time-critical reallocation of resources, some resources may
need to be reserved even if they are not used. On the other
hand, will the immediate need for URLLC resources often
be limited in terms of time and space. Therefore, highly
flexible, spatio-temporal resource allocations are required to
implement a network slice resource-efficiently [19]. Within the
German collaborative research project SGAIN?, it is currently
explored, how such resource allocations can be supported by
leveraging external data sources and machine-learning. For
example: in case the weather forecast predicts very strong
winds, a network slice dedicated to the control of wind farms
may be dimensioned more generously in order to be well
prepared for transmission of time-critical control messages.

B. Network Convergence

A common trend observed likewise in the wired and
wireless communication domain is the shift towards highly
flexible network architectures suitable for a broad variety
of applications with highly diverse requirements. Until now,
network deployments have followed a rather hierarchical
structure with dedicated networks for different classes of
applications. Especially in the wired case, a considerable
number of networking technologies exist for various pur-
poses, ranging from real-time communication system with
tight synchronization to throughput-optimized networks for
high-bandwidth applications. The goal is to enable network
convergence by sharing a single networking resource for all
the various types of applications. This flexibility however
comes at the price of increased configuration and management
complexity. Furthermore, guaranteeing service requirements
for different applications, especially those with tight latency
bounds, is a demanding task. A prominent example technology
enabling network convergence is Time-sensitive Networking
(TSN). TSN is a set of standards mostly defined in the
IEEE 802.1Q [20] designed to support various configurations
models, traffic shapers, network synchronization and filtering
mechanisms, which can be configured depending on the sys-
tem requirements. The most challenging part is the isolation

3https://url.tu-dortmund.de/5Gain

of critical and non-critical traffic, as all applications have to
share the same transmission resources. Unlike in 5G, where
sophisticated spatio-temporal sharing over multiple domains
can be exploited, the Ethernet-based TSN system is restricted
to TDMA techniques. Guarantees are achieved by employing
reservation-based methods where users are bounded by e.g.
specific time windows (time-aware shaper) or coarser band-
width limits (credit-based shaper).

This network convergence trend can be also observed in
the wireless domain for the 5G technology, as shown in the
previous section. 5G relies on the novel concept of network
slicing to enable the concurrent support of latency-sensitive
and elastic traffic over the same network. A logical next step
is to extent the network convergence concept also across the
wired and wireless domain. Recently, there have been strong
efforts to combine TSN and 5G in a joint framework that has
been partially standardized in the 3GPP [21]. This step can
be motivated from mainly two perspectives. On the one hand,
both technologies are inherently different and very challenging
to configure and manage on their own to support all applica-
tions with their respective service level agreements. To feasibly
operate such a complex network, the integration into a single
framework eases operation and configuration. On the other
hand, a transparent integration architecture is required in order
achieve end-to-end services guarantees over the entire network
infrastructure. In such an integrated framework, the centralized
TSN configuration model (Figure 5) can be leveraged to jointly
manage the wired and wireless network in a true end-to-
end fashion, which is a prerequisite to enable end-to-end IoT
applications.

IV. CONCLUSION

In this paper, we provided an overview of some of the
approaches used for guaranteeing QoS in the embedded and
wired/wireless communication domains. Several similarities
are observed in the different domains, mainly on the need of
providing efficient and predictable mechanisms for providing
guaranteed latencies for critical applications, as well as the
ability to handle different classes of (mixed criticality) traffic.
We also deem further cross-pollination of concepts between
the domains extremely helpful in order to advance the state of
the art.

However, there is a need for an overarching framework
combining different approaches and providing a cross-domain
unified solution. One major challenge is the integration of
the different technology stacks covering different resources,
protocols, etc. On the other hand, even more needed is a
common abstraction which allows designers to declaratively
specify their application requirements and support the end-to-
end configuration of the different QoS mechanisms without
requiring the designer to have expert knowledge across all
technologies. We see that considerable research effort will
have to be spent in order to enable industry to build distributed
IoT applications with end-to-end QoS guarantees.

ACKNOWLEDGEMENT

This work has been supported by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 871669.

This work was also partially supported by the Ministry of
Economic Affairs, Innovation, Digitalisation and Energy of the
state of North Rhine—Westphalia in the course of the Compe-
tence Center 5G.NRW under grant number 005-01903-0047,
as well as by the "5SGAIN” project, funded by the Federal
Ministry for Economic Affairs and Energy (BMWi) under
grant agreement no. 03EI6018C.

REFERENCES

[1] ROS2 - Robotic Operating System 2, last access April 2020. Available
at https://index.ros.org/doc/ros2/.

[2] MQTT - Message Queuing Telemetry Transport, last access April 2020.
Available at http://mqtt.org/.

[3] D. Casini, T. BlaB, I. Liitkebohle, and B.B. Brandenburg. Response-
Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling. In 3Ist Euromicro Conference on Real-Time Systems
(ECRTS 2019), 2019.

[4] OFERA Project: Open Framework for Embedded Robot Applications,
last access April 2020. Available at http://ofera.eu/.

[S] OFERA Deliverable D4.4 - Real-time Executor Software
Release Y1, last access April 2020. Available at
http://ofera.eu/storage/deliverables/M12/OFERA_40_D4.4_Real-
time_executor_software_release_Y 1.pdf.

[6] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf.
Special session: Future automotive systems design: Research challenges
and opportunities. In International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 1-7, 2018.

[7]1 J. K. Strosnider, J. P. Lehoczky, and Lui Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments. [EEE Transactions on Computers, 44(1):73-91, 1995.

[8] L. Abeni, G. Lipari, and J. Lelli. Constant bandwidth server revisited.
SIGBED Rev., 11(4):19-24, January 2015.

[91 M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun

control. In Proceedings 21st IEEE Real-Time Systems Symposium, pages

295-304, 2000.

R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory interference

characterization between CPU cores and integrated GPUs in mixed-

criticality platforms. In 22nd IEEE International Conference on Emerg-

ing Technologies and Factory Automation (ETFA), pages 1-10, 2017.

[10]

[11] ARM Architecture Reference ~ Manual Supplement: ~ Memory
System Resource Partitioning and Monitoring ~ (MPAM)
for Armv8-A, last access April 2020. Available at

https://static.docs.arm.com/ddi0598/a/DDI0598_MPAM_supp_armv8a.pdf.
H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 55-64, 2013.

J. Leguay, L. Maggi, M. Draief, S. Paris, and S. Chouvardas. Admission
control with online algorithms in sdn. In IEEE/IFIP Network Operations
and Management Symposium (NOMS), pages 718-721, 2016.

A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst. Dynamic admission
control for real-time networks-on-chips. In 27st Asia and South Pacific
Design Automation Conference, ASP-DAC 2016, pages 719-724. IEEE,
2016.

Adam Kostrzewa, Selma Saidi, Leonardo Ecco, and Rolf Ernst. Ensuring
safety and efficiency in networks-on-chip. Integr., 58:571-582, 2017.
J. Reineke, 1. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM
controller: Bank privatization for predictability and temporal isolation.
In Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 99-108, 2011.

Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: A dynamic cache
partitioning system using page coloring. In 23rd International Con-
ference on Parallel Architecture and Compilation Techniques (PACT),
pages 381-392, 2014.

L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong. Network
slicing: Recent advances, taxonomy, requirements, and open research
challenges. IEEE Access, 8:36009-36028, 2020.

C. Bektas, S. Bocker, F. Kurtz, and C. Wietfeld. Reliable software-
defined ran network slicing for mission-critical 5g communication
networks. In 2019 IEEE Globecom Workshops (GC Wkshps), 2019.
IEEE Standard for Local and Metropolitan Area Network—Bridges and
Bridged Networks. [EEE Std 802.1Q-2018 (Revision of IEEE Std
802.10-2014), pages 1-1993, July 2018.

3GPP TS 23.501. System Architecture for the 5G System (Release 16).
December 2019.

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

