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INTRODUCTION 

Traditional mineral prospectivity mapping processes require 
different experts for each geophysics, geochemistry, and 
geology, and their collaboration. With the recent development 
of machine learning techniques, data-driven prospectivity 

mapping has been actively studied. For example, there was an 
“Explore South Australia Challenge”, a competition for 
mineral prospectivity mapping in the Gawler craton 
(Bridgwater et al., 2019). The advantage of data-driven 
prospectivity mapping is that it enables considering different 
types of data at the same time, which is difficult for humans to 
do (McMillan et al., 2019). Data mainly used in the machine 
learning field of computer science are perceptual data such as 
vision and natural language. However, most data used in 
prospectivity mapping are measured values from various 
sensors or categorical data reflecting experts’ interpretation. 
Therefore, due to the heterogeneity of these data, there is a 
challenge that geoscientific data is difficult to use for machine 
learning compared to perceptual data. For example, in 
geophysical data, gravity data and magnetic data differ in unit 
and value range. Also, it is hard to use solid or surface 
geology data directly for machine learning models since the 
data are categorical rather than numerical. 
In this work, we introduce how to preprocess the geoscientific 
data and design a machine learning model based on 
knowledge to make the best use of both geoscientific 
information and the advantages of machine learning. Then, we 
conduct the Prospectivity mapping for komatiite-hosted nickel 
deposits in the Yilgarn craton. 

DATA PREPROCESSING 

In this section, we introduce how we convert the raw 
geoscientific data into machine learning - friendly data. 

Geology Data 

Nickel deposits found in Western Australia are mostly 
komatiite-hosted nickel deposits, found with mafic or 
ultramafic rocks. Because of these characteristics, a solid 
geology map is a critical factor in nickel exploration. Unlike 
geophysical data, geology data is not numerical, so a data 
conversion step is necessary to employ the geologic insights 
for machine learning. First, we select geologic units related to 
mafic or ultramafic rocks from the solid geology data of the 
Yilgarn craton and then compute the log distance to the 
nearest mafic or ultramafic unit for each location. As a 
consequence, the categorical geology data is converted into 
numerical data based on background knowledge. Those 
converted data could be used for machine learning models 
easily. 

Faults Data 

The faults data must be considered in mineral prospectivity 
mapping since they represent subsurface structures which play 
a significant role in mineralization. However, in the two-
dimensional space where we conduct prospectivity mapping, 
the proportion of the area through which faults pass is 
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extremely small. Therefore, we use the ratio of the cells 
through which the fault passes among the 400m-sized grid 
cells within a 10km radius at each location. We call this map a 
fault density map. Also, we compute the vertical distance to 
the nearest fault for each location. Additionally, to utilize the 
orientation of faults, we divide faults into four groups 
according to their directions (north-south, west-east, north-
west, north-east) and generate a density map for each group. 
The original fault map and four types of density maps are 
illustrated in Figure 1. 

Figure 1.  Faults and orientation density maps for 4 
directions of faults. 

Geophysical Worms 

Geophysical worms (edges) are used for prospectivity 
mapping to account for physical tectonic boundaries. After 
generating upward continuation 1000m, 5000m, 25000m, and 
50000m data for Gravity and TMI RTP, geophysical worms 
were extracted through the Canny edge detector. As in the 
case of fault, distance to the nearest worm is calculated for 
each location. 

PROSPECTIVITY MAPPING MODEL 

We carefully design a deep learning model to reflect 
background knowledge rather than simply merge massive 
data. First, the model adjusts the scale by multiplying each 
input data by scalar variables. This variable is learned in the 
direction of increasing prospectivity mapping performance by 
enabling learning. The following model extracts feature using 
pre-processed geological data and geophysical worm data 
representing macroscopic features. Next, the features obtained 
from geophysical data reflecting more microscopic features 
are combined with features that reflect these macroscopic 
features. In the last layer, each grid cell in the patch estimates 
the log distance to the nearest nickel deposit. Therefore, in the 
output patch of the model, a grid cell with a low value shows 
high prospectivity. Also, by extracting the output through the 

intermediate microscopic feature in addition to the final 
feature, the model can generate the intermediate feature map 
more efficiently. Figure 2 illustrates the whole process of our 
workflow. As shown in Figure 3, the model is trained with the 
sliding square patches of size 28 where the size 1 equals 
400m. 

Figure 2.  Workflow of the proposed deep learning model. 

Figure 3.  Prospectivity mapping process. 
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Figure 4.  Training and test region. 

Figure 5.  Percentile plot for the grid cells in the test 
region. 

EXPERIMENTS 

For performance evaluation, we divide the Yilgarn craton area 
into a region for model training region (left: 116°, right: 
123.4°, bottom: -33.8°, top: -26°) and test region (left: 120.6°, 
right: 122.3°,  bottom: -31.7°, top: -30.1°) as described in 
Figure 4. We evaluate the model with two metrics: area under 

curve (AUC)  and average percentile of deposits (APD). First, 
AUC, which is widely used in the machine learning 
community, represents the area under the curve of a false 
positive-true positive plot, and the higher it is, the better the 
performance. APD represents the average percentiles of the 
predicted distance to the nearest deposit for the grid cells 
where actual nickel deposits are located at. Since low 
predicted distances indicate high prospectivity, the lower APD 
indicates higher performance. For the test region, our method 
accurately predicted prospectivity scores  with APD 13% 
(Figure 5) and AUC score 0.80 (Figure 6). 

Figure 6.  ROC curve for the grid cells in the test region. 

CONCLUSIONS 

In this paper, we proposed a data-driven method of 
prospectivity mapping for the komatiite-hosted nickel deposit 
in the Yilgarn craton. To utilize geological insights, we 
converted geological data into numerical machine learning-
friendly data. We proposed a deep learning model that 
integrates geophysical data, geological data and geophysical 
worms. For the test region, our method accurately predicted 
prospectivity scores  with AUC score 0.80 and APD 13%. 
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