Automated facies classification in borehole log data
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ABSTRACT

Seismic facies inversion relies on accurate facies—specific
elastic parameter models determined from borehole log data.
Typically, velocity depth trends and corresponding standard
errors are manually determined for each of the facies by
using cross-plots and a number of rock physics templates.
The resulting facies classifications and models are often con-
tentious due to loading effects and the subjective nature of
the workflow. In complex scenarios, where multiple re-
lated rock types occur, it is even more challenging to identify
all the rock types, select, and tune appropriate rock physics
models (RPMs) objectively. It is highly desirable to perform
this task automatically, using robust tools that require human
intervention only at the quality control stage.

To this end, we introduce a modified Expectation Maximi-
sation algorithm for simultaneous facies classification and
fitting of RPMs. It operates in a semi-supervised fashion on
multivariate well log data and is robust to outliers. The prac-
tical advantages of this approach are illustrated using data
from the Opel-2 well, located in the Laverda Field of Carnar-
von Basin, 58 km north-northwest from Exmouth, Western
Australia. We compare the classification results to geolog-
ical interpretation and furnish estimated parameters of the
fitted RPMs.

THEORY

EM algorithm. The Expectation Maximisation algorithm
(Dempster et all, 1977) is typically used for inference in Gaus-
sian mixture models to identify the parameters of the mixture
components. In this study we discuss its application to facies
classification and simultaneous fitting of rock physics models
for different rock types.

To begin with, we model observed well log properties P, for a
discrete class ¢ (e.g. sandstone, shale) by the following Normal
form:
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where pp,q, afg,q are facies and property-specific means and
variances. Most properties of sedimentary rocks depend on
depth (d) due to lithogenesis and stress. For example, the elastic
parameter pair {velocity, density} is ideally modelled by forms

Va(d) ~ N (pv,q(t1p,q(d)), ‘7\2/,11)7 2

pa(d) ~ N(pp.q(d), Ui,q)7 3)
where the seismic velocity is linked to a density-depth trend
through an RPM defining the functional trends pv,q, jtp,q. Dif-
ferent rock types are parametrised by different RPMs, which
allows predicting the seismic response of an altered (e.g., sat-
urated, stressed) rock at different depths away from the well.
Given the data tuples { P, }, EM algorithm classifies them into
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one of the pre-declared number of rock types N, by objectively
selecting and fitting the most likely model from a number of
instances of models from the supplied rock physics model li-
brary for different lithologies. We entertain a number of plausi-
ble RPMs; each has typically a small handful of free parameters,
but all are somewhat detailed to explain. The following simplest
example is representative.

Example RPM. The silty-shale RPM relates seismic velocities
W», V5 and porosity ¢ of a shale to its bulk density py and depth d
from the well log, assuming that the porosity reduction is purely
due to the water expulsion in the process of mechanical com-
paction. The model depends on a number of fixed parameters:
the density of dry clay pe, silt pq, and water p,,, and the bulk
K4 and shear ;1q moduli of silt. The remaining free parameters
include the silt-to-clay ratio o and elastic moduli of clay min-
erals K. and p.. First, the density trend is defined by fitting an
exponential function of depth to a bulk density log:

py = m1 —moe” ™7, 4)

where m; > 0 are free parameters. The associated total porosity
prediction is

pe — po + a(pg — po)

¢:
pe — pw + pg — pw)

®)

The porosity of a shale matrix without silt inclusions ¢y, is re-
lated to the total porosity through a coefficient C' via

1-¢
14+a’

pa=2, C=0+ ©)

The saturated clay matrix bulk K, and shear pg, moduli are es-
timated by

Kg = KC(O-5 - ¢sh)v Hsh = NC(O'S - ¢sh)v @)

and the effective moduli K and perr of a saturated silty-shale
are approximaed by a Hashin-Shtrikman lower bound:

C 1-c | 4
Ker = + = Hsh 8
¢ Ko + %Nsh Kq+ %,U/sh 3/ ®)
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Finally, the velocities are calculated by:
K. 4 -
Vp — off + Sﬂcff7 Ve = ,uel[. (11
Pb Pb
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Initialisation. The EM algorithm requires fixing the number of
classes in the data and supplying initial guesses for class prob-
abilities for each data point, referred to as memberships. These
can be assigned randomly or via any other clustering technique.
Then the EM algonithm cycles through its Maximisation (M)
and Expectation (E) steps until convergence. For the example
in the following section we use random initialisation.

M-step. In the M-step, model parameters for each class are es-
timated assuming the memberships fixed at the current iterate
of the algorithm. These model parameters inclade class propor-
tions, location and scale for trend-less models, and coefficients
of the trend function for depth dependent properties and the scale
of the scatter around this trend.

E-step. In the E-step, memberships for each point are reeval-
uated using the model parameters detemmined in the preceding
M-step.

Mitigating the effects of outliers in the data

Clustering and regression operations on multivariate petrophys-
ical data is challenging due to the presence of oufliers in the
data Sources of these outliers include poor tool coupling, the
presence of rare lithologies with extreme properties, or ultra-thin
beds in the measured formation.

Estimating the location and scale parameters of the property dis-
tribution using compact Gaussian models is not appropnate for
data contaminated by strong outliers. Qutlying values cormupt
the statistics of different properties by skewing the mean val-
ues and trends of depth-dependent properties, and inflating the
estimated vaniance of the residuals. Similarly, using Gaussian
models to esimate the point memberships results in assigning
the outliers to classes with a small number of observations. By
modifying the M-step (parameter regression), and E-step (clas-
sification) parts of the algonthm separately, we have reduced
the algorithm sensitivity to outliers as follows.

Robust M-step — Parameter estimation. At the M-step, the
location parameter of the trend-less property is estimated by
the weighted median. The scale parameters are estimated using
the weighted median absolute deviation (MAD) calculated as a
weighted median of the absolute deviations of the elements of a
sequence from their weighted median. Both these estimators for
the location and scale parameters are non-parametric, and have a
high breakdown value of 50 % for symmetric distnbutions, and
are formally consistent.

Robust M-step — Regression. For the depth dependent prop-
erties, instead of estimating the location parameter we use the

value of the RPM at the comresponding depth. RPMs are fit-
ted using a bound-—constrained optimisation algonithm for non-
linear regression. At each M-step, a number of predefined
RPMs are fitted to membership-reweighted data. The fitted
parameters of these models are then used in the E-step for the
(re)estimation of memberships. To reduce the effect of outliers
on regression, we mimimise the Cauchy loss function and also
use MAD to estimate the scale of a data scatter around the trend.

Robust E-step — Classification. Membership update is 1o~
bustified by using a Student-t distribution PDF defined by the
property distnibution parameters estimated in the M-step. The
Student distribution has heavier tails compared to the Nommal
distribution when its degree of freedom parameter is assigned
a small value that reduces the classification emror by modelling
outliers as an inherent feature of the data being classified.

The simple example in Figure I illustrates the performance of
standard and robust EM algonthm implementations applied to
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clustering of points generated from two uni-variate nommal dis-
tributions with 20 % outliers. Here, the standard EM algorithm
using Gaussian models fails, whereas its robust implementation
recovers the onginal distributions securely.

FIELD EXAMPLE — OPEL 2 WELL

The algornithm was tested on data from the Opel-2 well in North
West Shelf of Australia. The well intersects a number of litholo-
gies of different geological age. Going from the top to bot-
tom of the well, we encounter the Tertairy Cardabia calcila-
tite followed by Cretaceous Korojon and Toolonga calcilutites.
The Cretaceous proceeds into the thin layer of Windalia calci-
lutite, followed by Muderong shale, and is concluded by poorly
sorted fine-to-medium prained sandstone of the Lower Barmow
formation interbedded with claystone. Jurassic section below
is represented by shales of Lower Barmrow formation that tran-
sitions into reservoir hosting Macedon mudstone. Macedon
formation sandstones constituting hydrocarbon reservoir with a
clear pas-to-oil contact fransition from poorly-sorted medium-
to-large grained sand on top to fine well sorted clean sand at the
bottom.

Figure P illustrates the classified logs from the well. All the for-
mations are well matched by the identified facies. Forthis exam-
ple, three custom theoretical models were considered in this well
each representing different lithology: calcilufite, silty shale, and
soft sand Seven instances of the aforementioned models com-
pletely describe the litho-flud types given the borehole data,
which is illustrated by colour-coding on the figure and trends
through the classes. Some rock physics model parameters of in-
terest for different formations are summarised in Tables [[] and
and compared to geological field description and well inter-
pretation respectively. Here, shale models shightly underpredict
the clay volume fraction in the three reported intervals, but are
consistent with the decrease of clay fraction with depth. Sand-
stone models show very close porosity levels to that of petro-
physical interpretation in a ballpark of 30 %. Water saturation
levels, however, show somewhat pessimistic prediction by over-
stating the water saturation levels by 20 to 30 percent in gas and
oil sands, respectively. Nevertheless, this is an excellent result
for completely automated rock physics and petrophysical work-
flow which is subject to further interpretation and adjustment
by an expert petrophysicist For example, significant improve-
ments can be achieved by explicitly specifying some fitting pa-
rameters in the model such as gas and oil densities, bulk moduli
of clay and silt and etc. given laboratory and field test results.

CONCLUSION

‘We have developed a semi-supervised algonthm for facies clas-
sification using multivariate 1og data coupled with rock—physics
models for loading. The algorithm identifies a predefined num-
ber of facies and fits appropriate rock physics models for each
of them in a robust fashion. The suggested method allows fast
and unbiased facies classification that resulfs in radical time re-
duction between exploration and production. The performance
of the algorithm is illustrated on real data. Outputs of the al-
gorithm include facies labels and free parameters in the corre-
sponding RPMs, including but not limited to porosity, sorting
and cement volume fraction. These parameters can be easily
interpreted and directly used in downstream workflows such as
facies-based seismic inversion.
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Figure 1: Classification example illustrating the performance of standard and robust EM algorithm implementations. Data points at the
bottom of each panel are sampled from two uni-variate normal distributions (green PDFs) and contaminated with random noise (red
arrows). Histograms represent the determined class distributions weighted by the estimated point memberships.
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Figure 2: Opel-2 well classification example using rock physics models. In the Gamma ray panel, solid blue lines indicate formation
tops from geological interpretation and horizontal red line shows gas-oil contact determined in the well. Sub-vertical red lines in all the
panels illustrate RPM trends identified by the algorithm.
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Table 1: Parameters of the fitted RPMs for shales

Facies Clay fraction, %
model  field description
Shale 1 96 98
Shale 2 3 80
Shale 3 52 70

Table 2: Parameters of the fitted RPMs for reservoir sandstones

Facies Porosity, % Water saturation, %
Model Petrophysical Model Petrophysical
interpretation interpretation
Soft sand (gas) 28 30 35 14
Soft sand (o1l) 30 31 52 23
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