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INTRODUCTION 

The aim of this abstract is to summarise some of the causative 
relationships between hyperspectral, geochemical and 
petrophysical data and using drill core data sets available 
through AuScope’s NVCL infrastructure program. Reflectance 
spectra in this abstract are categorised in the following 
wavelength regions: Visible-near infrared (VNIR; 380 nm to 
1200 nm), shortwave infrared (SWIR; 1200 nm to 2500 nm), 
mid infrared (MIR; 2500 nm to 5500 nm), and thermal infrared 
(TIR; 5500 nm to 15,000 nm).  

Causative relation between geochemical and 
hyperspectral data 

Hyperspectral reflectance spectra contain information about 
molecules and elements present in the measured sample. 
Ultraviolet, visible and infrared light is absorbed at frequencies 
specific to the respective functional group or chemical element, 
generating characteristic patterns of absorption bands that are 
the fingerprints of minerals (Burns, 1993; Clark et al., 1990; 
Laukamp et al., 2021c).  

A direct link between hyperspectral and geochemical data, for 
example, using a HyLogger3 (Schodlok et al., 2016) and X-ray 
fluorescence (XRF) respectively, can be drawn in many cases. 

For example, potassium in felsic igneous rocks is 
predominantly contained within micas and K-feldspars. 
Hyperspectral data collected in wavelength regions where these 
mineral groups are active (i.e. white mica: 2190 to 2450 nm and 
8000 to 10,000 nm, or K-feldspar: 8000 to 10,000 nm) often 
show a strong correlation with potassium derived from whole-
rock geochemistry. An example is shown in Figure 1, which 
features whole rock geochemistry and hyperspectral reflectance 
spectra collected from tray 46 of drill core C3DD024 
(Greenbushes, Western Australia). The potassium content 
normalised by silica content (i.e. K2O/SiO2) shows significant 
variation in the four intervals of drill core tray 46. Changes in 
K2O/SiO2 correspond with the most prominent TIR-active 
mineral species as identified by means of the mineral unmixing 
algorithm jCLST built into The Spectral Geologist Software 
package TSGTM 
(https://research.csiro.au/thespectralgeologist/), with increased 
abundance of K-feldspar in intervals with elevated K2O/SiO2. 
(i.e. 168.3 to 169.2 m and 170.1 to 171.2 m depth). However, a 
detailed comparison of TIR reflectance spectra collected at 1 
cm steps with whole rock geochemistry, reveals that the amount 
of K-feldspar relative to other minerals varies significantly 
within the 1 m interval analysed for whole rock geochemistry.  

The hyperspectral resolution of drill core and field 
spectrometers allows the extraction of geochemical exchange 
vectors at a quality comparable to electron microprobe 
measurements. Exchange vectors commonly inferred from 
hyperspectral data include the Tschermaks exchange in white 
micas (Vedder and McDonald, 1963) and the Mg/(Mg+Fe) 
ratio in chlorites (McLeod et al., 1987). Beyond these, there are 
numerous more exchange vectors that can potentially be 
extracted from hyperspectral reflectance spectra, such as from 
the fundamental OH vibrations in the MIR. A summary of 
exchange vectors commonly tracked in mineral exploration is 
provided in (Laukamp et al., 2021a). 

The estimation of the abundance of certain minerals from 
wavelength ranges where these mineral groups are not active is 
problematic, relying on co-occurrence in mineral assemblages. 
An example is the estimation of garnet and pyroxene abundance 
from VNIR reflectance spectra. Both mineral groups may show 
features in the VNIR wavelength range resulting from their 
respective transition element composition. However, while 
these features may be indicative of, for example, iron-rich 
garnet and pyroxene (e.g. aegirine, almandine, hedenbergite), 
they neither reliably identify their presence nor correspond with 
their abundance. Instead, garnet and pyroxene abundance can 
be estimated from the TIR wavelength range where both 
mineral groups produce diagnostic features (Laukamp et al., 
2021b). 

SUMMARY 

Drill core analytical tools are used for objectively 
measuring geoscience parameters that aid mineral 
exploration or groundwater research. Multiple types of 
geoscience parameters are frequently compared alongside 
each other, but underlying physicochemical relationships 
are seldom explored. If the relationships between different 
parameters are understood, 1) expensive measurements 
can be inferred from more cost-effective measurements 
and 2) workflows can be developed that enable fast and 
objective selection of samples for further, more time-
consuming sample analysis. Ultimately, linking 
geophysical, geochemical and mineralogical parameters 
could give rise to a new generation of higher-level 
geoscience products reconciling different sources of 
information. This paper describes some of the causative 
relationships between hyperspectral, geochemical and 
petrophysical data using drill core data sets made available 
by AuScope’s National Virtual Core Library (NVCL) 
infrastructure program. 
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Causative relation between petrophysical and 
hyperspectral data 

In a mineral exploration context, petrophysical borehole 
information is commonly used to verify the results of 
geophysical inversion. Enhancing geophysical inversions 
through borehole information relies on the development of tools 
that are at the intersection between borehole focused datasets 
(e.g. hyperspectral, electrical resistivity logs) and geophysical 
datasets (e.g. airborne electromagnetic surveys). For this, the 
causal relationships between mineralogical and petrophysical 
data must be understood and inversion algorithms need to be 
formulated that allow to account for this type of complex prior 
information.  

Table 1 lists some of the mineral groups or mineral species with 
different petrophysical properties, as well as the wavelength 
ranges they show absorption features in and other rock 
properties that impact on both, the respective petrophysical 
measurements and the reflectance spectra. Previous published 
comparisons of hyperspectral drill core and petrophysical data 
are sparse. A comparison of total gamma ray intensity and bulk 
density measurements of drill cores from the southern Georgina 
Basin with hyperspectral VNIR-SWIR-TIR drill core 
measurements showed a positive correlation between the total 
gamma ray intensity and the white mica and quartz abundance 
derived from hyperspectral data, as well as dolomite-dominated 
limestone corresponding to higher densities when compared to 
limestones with a mixed calcite-dolomite carbonate assemblage 
and elevated quartz abundance (Ayling et al., 2016). 

Other petrophysical data, such as magnetic susceptibility and 
density, can be used when exploring for iron oxide copper-gold 
(IOCG) mineralisation by estimating proportions of magnetite, 
sulfide and hematite alteration (Hanneson, 2003). Magnetic 
susceptibility is mainly controlled by the abundance of 
magnetite or pyrrhotite, which also have a significant influence 
on the density of a rock sample (Ross et al., 2013). The impact 
of iron oxides and sulfides varies across the visible and infrared 
wavelength ranges. In single-mineral samples, each of them 
shows distinct absorption features in the VNIR. Hematite can 
be easily identified in VNIR reflectance spectra, even in a 
mixed mineral assemblage (Cudahy and Ramanaidou, 1997). 
Dependent on, for example, its relative abundance and grain 
size, magnetite can have a significant impact on SWIR 
reflectance spectral signatures of other minerals, obscuring the 
otherwise very strong hydroxyl-related absorptions of 
sheetsilicates. Furthermore, magnetite and pyrrhotite contribute 
to the “thermal background” in the TIR, which results in an 
increasing slope towards the 15,000 nm wavelength range 
(Feng et al., 2006).  

Partial least squares (PLS)-based modelling of magnetic 
susceptibility and density was trialled using HyLogger3 data of 
drill core TTNQ0364 from the Osborne Cu-Au deposit (Qld, 
Australia) to investigate whether the combined use of 
hyperspectral reflectance spectra and petrophysical data could 
help with predicting and distinguishing between samples 
dominated by magnetite, hematite and or pyrrhotite from 
spectral data. Using TSGTM software, PLS was employed to 
derive predictive models using 23 unique magnetic 
susceptibility and density measurements. Each of the 23 unique 
petrophysical measurements were set as a constant response 
variable for all spectral measurements over a +/- ~10cm 
sampling range. The values of the input magnetic sustainability 
and density values ranged from 0 to 2.3 K (Si) and 2.7 to 4.9 
g/cm3, respectively. Similar to the geochemical data of the 

Greenbushes case study described above, the measured 
petrophysical values likely represent an average over that range 
and the true petrophysical values might be very different for 
each of the 1 cm separated spectra. The correlation between the 
23 measured and corresponding modelled magnetic 
susceptibility (n = 157) for the same 23 depth intervals was high 
for the VNIR-SWIR (r2 = 0.95) and the TIR (r2 = 0.97; Figure 
2), but the standard error of prediction (SEP) was, compared to 
the actual value range, high (SEP for VNIR-SWIR: 0.35 Si; 
SEP for TIR: 0.32 Si). PLS-modelled magnetic susceptibility 
values showed a large variance (± 0.8 and ± 0.5 Si, 
respectively). Similarly, the correlation between the measured 
and modelled density was high for the VNIR-SWIR (r2 = 0.958) 
and the TIR (r2 = 0.99; Figure 2), with a high predictive error 
(SEP for VNIR-SWIR: 0.28 g/cm3; SEP for TIR: 0.22 g/cm3). 
The PLS-modelled density values showed a large variance (± 
0.4 g/cm3 for both wavelength ranges). However, HyLogger3 
high-resolution RGB imagery showed that the predicted value 
ranges were sufficiently different to discriminate drill core 
intervals dominated by magnetite-rich rocks, from magnetite-
rich breccia and least-altered (non-mineralised) rocks. 

Figure 2.  Measured (x-axis) versus PLS-modelling based 
petrophysical parameters (y-axis) of drill core TTNQ0364: (a) TIR-
based PLS model of magnetic susceptibility K (Si); (b) TIR-based 
PLS model of density ρ in g/cm3. Both plots are coloured by 
automated mineral matching results using the TSA-algorithm built 
into TSGTM. 

PLS models based on the VNIR-SWIR wavelength ranges were 
mainly driven by depth changes of electronic transition 
absorption features related to iron and copper in the VNIR, 
which are most intense in the highly altered, magnetite- and/or 
sulfide rich rocks. PLS models based on the TIR wavelength 
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ranges were highly influenced by the thermal background 
typically associated with iron oxides and sulphides, but also 
presence/absence of carbonates versus quartz, feldspar and/or 
sheetsilicates. The modelling was limited by potential non-
linear relationships between magnetic susceptibility, density 
and the reflectance spectra and the small number of paired 
observations (23). This means that the developed PLS models 
are only just overdetermined and are unlikely to predict well. 
The model also assigned all nearby reflectance spectra to the 
unique magnetic susceptibility and density measurements and 
this may not be an appropriate way to relate these observations 
when using PLS models. This is because linear least-squares 
models like PLS can suffer from biases when there is a 
substantial error in the response variables, and this is the 
effective impact of using the same magnetic susceptibility and 
density measurements with multiple hyperspectral 
observations.  

While the small amount of data used to infer the models 
discussed here means that their predictive power needs to be 
assessed comprehensively, our results nevertheless indicate a 
high potential for successfully inferring petrophysical from 
hyperspectral data and cost-effective mapping of IOCG-related 
alteration. The large range of predicted values for a given 
measurement can potentially be attributed to the significant 
variation of the respective petrophysical parameters within the 
original sampling range. It should also be noted that PLS-
modelling uses a linear relationship between the input and the 
modelled data and it is unclear, at this stage, whether a linear 
relationship between the hyperspectral data on one side and the 
magnetic susceptibility or density on the other side can be 
assumed for the whole range of values present or even parts 
thereof.   

CONCLUSIONS 

A wide range of drill core analytical tools are available for 
objectively measuring geoscience parameters that aid mineral 
exploration or groundwater research (Laukamp et al., 2021a). 
The comparison and integration of hyperspectral with 
geochemical or petrophysical drill core data requires an 
understanding of mineral physicochemistry and rock properties 
that contribute to reflectance spectral signatures (e.g. grain size 
and porosity) so that correlations between hyperspectral, 
geochemical and petrophysical parameters can be explained in 
a causative sense.  

Case studies from a wide range of geological environments that 
are based on NVCL drill core data sets available via AuScope’s 
Discovery Portal highlight multiple challenges and 
opportunities with regards to extracting geoscience parameters 
from drill core data, such as 1) the requirement for 
understanding the limitations and potential of the respective 
drill core analytical technologies, 2) the underutilised potential 
for extracting geochemical exchange vectors from 
hyperspectral data, 3) lack of spatial co-registration of different 
drill core analytical measurements, 4) significant issues related 
to different sampling volumes and intervals of the respective 
drill core analytical techniques, and 5) the potential and 
limitations of PLS-modelling based prediction of geochemical 
and petrophysical data from hyperspectral data. Many of the 
issues described in the case studies are faced by geologists 
daily. AuScope’s NVCL infrastructure program and database 
provides opportunities to explore the feasibility of extracting 
geoscience parameters from multiple types of drill core data and 
understanding their interrelations as well as the uncertainties in 
the observed relations. 
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Figure 1.  Comparison of major silicate mineral phases and K-content in tray 46 of drill core C3DD024 (Greenbushes, WA): a) Tray image of 
tray 46 with colour ribbons showing K2O/SiO2 (top ribbon, P1) and the number of pixels occupied by the most prominent mineral group 
according to jCLST (lower ribbon, P2). The table below the tray image lists the K2O/SiO2 values per 1 m whole rock geochemistry analysis and 
the number of pixels where silica, K-feldspar or plagioclase are classified by jCLST Grp1; b) TIR HyLogger reflectance spectra of tray 46, 
coloured by K2O/SiO2. Samples 165, 235 and 285 are highlighted in a) and b); c), d), e) TIR reflectance spectra of samples 165, 235 and 285, 
respectively (black lines) and jCLST modelling results (coloured line). Mineral modelling results based on jCLST are summarised for 
clarification in each of the diagrams. 

Petrophysical 
method 

Petrophysical measurement Correlated with mineral (wavelength region, in which respective 
minerals are active) 

Gamma logs - K-channel
- Th-channel
- U-channel

- Mica (SWIR, MIR, TIR), K-feldspar (MIR, TIR)
- Iron oxides (VNIR)
- Selected sheet silicates, feldspars and phosphates

Density mass of a substance per unit 
measure 

“high” (i.e. > 5 g/cm3): hematite, magnetite, pyrite (all VNIR) 
“medium” (i.e. 3 to 5 g/cm3): dark mica (SWIR, MIR, TIR); garnet, olivine 
(TIR); sphalerite (VNIR) 
“low” (i.e. < 3 g/cm3): calcite, kaolinite (SWIR, MIR, TIR); feldspar, quartz 
(MIR, TIR); halite (TIR) 

Magnetic 
susceptibility 

Dimensionless proportionality 
constant (expressed as volume, 
mass or molar susceptibility) 

strong: magnetite (VNIR), pyrrhotite (VNIR) 
low: epidote (VNIR, SWIR, MIR, TIR) 

Table 1.  Petrophysical measurements commonly collected from drill cores and examples of mineral groups that contribute to respective 
petrophysical measurement and their IR-activity 


