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Abstract 

 

We report on genosensors to detect an ssDNA sequence from the SARS-CoV-2 genome, which 

mimics the GU280 gp10 gene (coding the viral nucleocapsid phosphoprotein), using four distinct 

principles of detection and treating the data with information visualization and machine learning 

techniques. Genosensors were fabricated on either gold (Au) interdigitated electrodes for electrical 

and electrochemical measurements or on Au nanoparticles on a glass slide for optical measurements. 

They contained a matrix of 11-mercaptoundecanoic acid (11-MUA) self-assembled monolayer 

(SAM) onto which a layer of capture probe (cpDNA) sequence was immobilized. Detection was 

performed using electrical and electrochemical impedance spectroscopies and localized surface 

plasmon resonance (LSPR). The highest sensitivity was reached with impedance spectroscopy, 

including using a low-cost (US$ 100) homemade impedance analyzer. Complementary ssDNA 

sequences were detected with a detection limit of 0.5 aM (0.3 copy/μL). This performance may be 

attributed to the high sensitivity of the electrical impedance technique combined with an appropriate 

arrangement of the sequences on the electrodes and hybridization between the complementary 

sequences, as inferred from polarization-modulated infrared reflection absorption spectroscopy 

(PM-IRRAS). The selectivity of the genosensor was confirmed by plotting the impedance 

spectroscopy data with a multidimensional projection technique (Interactive Document Mapping, 

IDMAP), where a clear separation was observed among the samples of the complementary DNA 

sequence at various concentrations and from buffer samples containing a non-complementary 

sequence and other DNA biomarkers. The diagnosis of SARS-CoV-2 mimicking sequences was 

also achieved with machine learning techniques applied to scanning electron microscope images 

taken from genosensors exposed to distinct concentrations of the complementary ssDNA sequences. 

In summary, the genosensors proposed here are promising for detecting SARS-CoV-2 genetic 

material (RNA) in biological fluids in point-of-care settings. 
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1. Introduction 

 

The challenges brought to humanity by the COVID-19 (Coronavirus disease 2019) 

pandemic have made it clear that low-cost and easily deployable methods are essential for clinical 

diagnosis (see, for instance, Mattioli et al. 2020)1. Early diagnosis of the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2)2,3 has been essential for pandemic management4 and this is 

mostly performed by real-time polymerase chain reaction (RT-PCR)5,6. Unfortunately, RT-PCR tests 

require several hours of sophisticated laboratory equipment and specialized professionals. The RT-

PCR method is, therefore, inadequate for low-income countries or remote places with limited 

resources7–9. Other molecular technologies to detect genetic material such as LAMP (Loop-

mediated isothermal AMPlification)10 and CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats)11,12 suffer from similar limitations. Alternatively, serological tests using 

enzyme-linked immunosorbent assays (ELISA)13,14 and immunosensors15–19 detect antibodies 

produced by the infected person. It is worth mentioning that SARS-CoV-2 diagnosis by IgG/IgM 

screening is not sensitive in the first 1-2 weeks after initial infection, therefore incompatible with 

early diagnosis of just infected or asymptomatic patients. Hence, public policies to isolate the 

spreaders cannot rely on this type of test. 

It seems that genosensors may be a long-term solution for mass testing of diseases requiring 

sensitive detection of genetic material. Genosensors are biosensors based on nucleic acid which 

detect ssDNA, RNA20,21, hairpin DNA, nucleic acid aptamers, and locked nucleic acids (LNA), 

depending on the target molecule22. In fact, genosensors have long been used in research 

laboratories and other settings to diagnose various diseases, including SARS, as described in review 

papers23–25. However, these sensors have failed to reach the market with mass production, which 

could considerably enhance the capability of managing this COVID-19 pandemic efficiently. For 

the SARS-CoV-2 virus, in particular, Mattioli et al.1 discussed the many possibilities for 



 

 

genosensors, including point-of-care diagnosis. In our survey of the literature, we identified some 

sensors developed for SARS-CoV-2, but none of them relies on an electrical transducing principle. 

Optical detection of ssDNA SARS-CoV-2 sequences was reported with a detection limit of 0.22 pM 

by using localized surface plasmon resonance (LSPR) spectra26. In another work, optical detection 

of SARS-CoV-2 pseudovirus particles was demonstrated using a gold plasmonic nanocup array 

functionalized with antibodies, and sensitivity of 370 virus particles per mL27. Surface plasmon 

resonance (SPR) sensors were employed to detect nucleocapsid antibodies against SARS-CoV-2 

with a detection limit of 1 μg/mL28. An effective diagnosis may be reached by detecting the spike 

protein of SARS-CoV-2, as it has been done using a field-effect transistor (FET)-based biosensor 

with a detection limit of 1.6×101 pfu/mL and 2.42 × 102 copies/mL for culture medium and clinical 

samples, respectively29.  

In this paper, we report on a genosensor produced with an active layer of immobilized 

single-strand DNA sequences (ssDNA) on a matrix of a self-assembled monolayer (SAM). 

Detection was performed with a complementary ssDNA sequence from the SARS-CoV-2 genome, 

which mimics the GU280 gp10 gene of the SARS-CoV-2 virus (coding the viral nucleocapsid 

phosphoprotein). An analysis of possible false positives was made using a non-complementary 

sequence and other non-related DNA sequences. Our primary purpose is to generate low-cost 

technology for point-of-care SARS-CoV-2 early diagnosis. We have therefore tested four different 

principles of detection, namely electrical, electrochemical impedance spectroscopy, LSPR, and 

image processing methods in conjunction with machine learning techniques. The choice of 

reporting a multimodal strategy to verify the functioning of the genosensor is motivated by our 

demonstration that the genosensor proposed is amenable to be employed with various methods. In 

particular, detection with image analysis and machine learning combined is unprecedented.  

 

2. Methodology 

 

2.1. Materials 

 

The reagents were of analytical grade and used without further purification. Potassium 



 

 

chloride (KCl), sodium chloride (NaCl), magnesium chloride (MgCl2), anhydrous sodium 

phosphate dibasic (Na2HPO4), anhydrous potassium phosphate monobasic (KH2PO4), anhydrous 

potassium ferricyanide (K3Fe(CN6)), and trihydrate potassium ferrocyanide (K3Fe(CN6))  were 

obtained from Synth (Brazil). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC), N-hydroxysuccinimide (NHS), ethanolamine and 11-mercaptoundecanoic acid (11-MUA) 

were purchased from Sigma-Aldrich (USA). High-purity deionized water (resistivity of 18.2 

MΩcm) was obtained from a Milli-Q system (Millipore, USA). Experiments were performed at 

room temperature (~25°C). The SARS-CoV-2 cpDNA sequences used as a probe were synthesized 

by Sigma-Aldrich (Brazil), while the target complementary and non-complementary sequences 

were synthesized by Exxtend, Brazil. Phosphate buffered saline (PBS) solutions were prepared with 

137×10−3 mol L−1 NaCl, 10×10−3 mol L−1 Na2HPO4, 1.7×10−3 mol L−1 KH2PO4, and 2.7×10−3 mol 

L−1 KCl (pH 7.4), with addition of 1.0×10−3 mol L−1 MgCl2 (PBS/MgCl2 solution). 

 

2.2. Fabrication of Electrodes 

The Au interdigitated electrodes were produced using conventional photolithography at the 

Brazilian National Nanotechnology Laboratory (LMF/LNNano/CNPEM). The interdigits in these 

electrodes form a pattern similar to an electrical circuit in parallel, as in parallel plate capacitors30–32. 

They consisted of 50 pairs of 10 µm wide electrodes, 10 µm apart from each other33, and were 

designed to exhibit a capacitive profile, thus resembling parallel plate capacitors. For fabrication, 

BK7 glass slides were washed with a neutral detergent to remove impurities and rinsed in ultrapure 

water, ethanol, and dried under nitrogen (N2) gas flow. They were then treated with 

hexamethyldisiloxane (HMDSO) and positive photoresist AZ4210 deposited by spin coating during 

10 and 30s, respectively. The electrodes were fabricated using a lithographic mask and exposed to 

UV light for 10s for photoresist polymerization followed by treatment with tetrabutylammonium. 

The slides were coated with 20nm of chromium as an adhesive layer, and then 150nm Au-layer with 

the sputtering system BA 510 (Balzers). 



 

 

 

 

 

2.3. Preparation of genosensors 

The Au interdigitated electrodes were coated with a self-assembled monolayer (SAM) of 11-

mercaptoundecanoic acid (11-MUA) (5.0×10−3 mol L−1) during 24h in ethanol at room temperature. 

A solution of 100×10−3 mol L−1 EDC and 100×10−3 mol L−1 NHS was used for 30 min. at room 

temperature in water to increase the attachment of cpDNA probes to carboxylic groups of thiol sites. 

Then, these devices were immersed in a 1.0×10−3 mol L−1 PBS/MgCl2 solution (1.0×10−6 mol L−1) 

containing the NH2-DNA capture probe (cpDNA) for 12h at room temperature. The probe had the 

sequence 5’/5AmMC6/ATTTCGCTGATTTTGGGGTC (Sigma-Aldrich). These genosensors were 

used for the electrical and electrochemical impedance spectroscopy measurements. 

 

2.4. Fabrication of optical genosensor device 

 

The substrates used in the optical detection measurements (see Figure S1-a and Figure S1-b) 

were fabricated by ultrathin film deposition followed by thermal annealing. They consist of gold 

nanoparticles onto the surface of glass substrate (AuNp/glass) with an average size distribution of 

40 nm in height and 130 nm in diameter (Figure S1-c), according to atomic force microscopy 

(AFM) (Dimension Icon, Bruker) in the tapping mode. The LSPR spectrum has a peak absorption at 

ca. 570 nm (Figure S1-b) characterized using a Hitachi U-2900 spectrometer. The fabrication steps 

were as follows. Microscopy glass slides (Perfecta Lab, Brazil) with dimensions 25× 9 mm, 1.0 mm 

thick, were cleaned using an ultrasonic bath at 65°C with neutral detergent solution 1:10 v/v ratio 

for 20 min. (Extran MA02 from Merck Supelco) in ultrapure water during 10 min and in 

isopropanol 99.5% (Synth, Brazil) for 10 min. The substrates were treated using UV/ozone washing 

cleaning procedure for 15 min. The substrates were then rinsed with isopropanol, ultrapure water 

and dried under a flow of nitrogen. A 15-nm thick film of gold was deposited by physical vapor 

deposition with growth rate 0.7 Å/s and chamber pressure 1×10–6 mBar, using MB-Evap inside a 

LabMaster 130 Glovebox (MBraun). The film thickness was controlled with a quartz crystal 



 

 

microbalance inside the evaporation chamber and confirmed with the Dektak 150 surface profiler 

(Veeco). The films were submitted to thermal annealing at 600 °C for 6 h in an oven (Mufla 

EDGCON 5P, EDG, Brazil). The substrates with gold nanoparticles were then cleaned in an 

ultrasonic bath with isopropanol and in ultrapure water for 10 min. The photography of the 

fabricated substrates and the characterization results are given in the supplementary information 

(Figure S1). 

The plasmonic substrates were functionalized following the same protocol described to 

produce the Au interdigitated electrode genosensor. The first step was forming a SAM of 11-MUA 

by immersing the substrate in 10 mM 11-MUA/ethanol solution for 12h at room temperature (25°C). 

The activation of the carboxyl end groups of 11-MUA was performed using 100×10−3 mol L−1 EDC 

and 100×10−3 mol L−1 NHS, resulting in a succinimide ester (−COOSuc) terminated layer on the 

surface of gold nanoparticles. The cpDNA SARS-CoV-2 probe was immobilized on the 

nanoparticles by immersion in a solution containing the probe molecules at the 1.0×10−6 mol L−1 

concentration diluted in 1.0×10−3 mol L−1 PBS/MgCl2 buffer solution, with 24 h incubation at 4°C. 

 

2.5. Protocol of detection  

 

A genosensor is based on nucleic acid hybridization whose biological basis is the formation 

of a double helix that is thermodynamically stabilized by hydrogen bonds.34 The double helix can 

be formed by two molecules of single stranded-DNA, RNA/RNA duplexes, or even DNA/RNA 

hybrids. In this conformation, the two antiparallel and complementary single stranded molecules 

(either DNA or RNA) acquire a stable form. This specific molecular recognition is explored in this 

work for the molecular detection of SARS-CoV-2, considering different signal transduction 

approaches. Detection experiments were performed with complementary and non-complementary 

sequences in a concentration range between 1.0×10−18 and 1.0×10−6 mol L−1 diluted in PBS/MgCl2 

solutions for the electrical and electrochemical measurements. 

The positive control for SARS-CoV-2 and negative control samples (Exxtend, Brazil) are 



 

 

given in Table 1. The amine terminated ssDNA was chosen based on previous results from our 

research group25,35,36. The negative control sequence was designed from the Homo sapiens TP53 

gene, which shows a low identity with the SARS-CoV-2 ssDNA probe designed (40.2% identity 

between the sequences). We performed a hybridization efficiency analysis for the ssDNA probes, 

and obtained 0.9998 x 10-10 and 8.4969 x 10-10 for the positive (ΔGo1=-20.3 kcal/mol) and negative 

((ΔGo1=-1.6 kcal/mol) controls, respectively. This analysis was carried out using the mismatch 

analysis tool37,38.  

 

 

Table 1. Sequences of cpDNA SARS-CoV-2 (probe), ssDNA SARS-CoV-2 positive control, and 

negative control used in this work. 

 

Type Sequence 

cpDNA SARS-

CoV-2 (probe) 

5’-5AmMC6/-ATTTCGCTGATTTTGGGGTC-3’ 

ssDNA SARS-

CoV-2 positive 

control 

5’-

TGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCAT

TACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCA

GA-3’ 

Negative Control 5’ - CCCATCCTCACCATCATCACA 

CTGGAAGACTCCAGTGGTAATCTACTGGGACGGAACAGC

TTTGAGGTGCGGTTTGTG - 3’ 

 

 

The optimized hybridization process was performed at 85°C for 30 min., followed by 

placing the solution on ice for 5 min. For the impedance spectroscopy measurements, the 

genosensor was immersed in a solution with 300 µL of each one of the concentrations 1.0×10−18, 

1.0×10−16, 1.0×10−14, 1.0×10−12, 1.0×10−10, 1.0×10−8, and 1.0×10−6 mol L−1. Control experiments 

were performed to verify the selectivity of the genosensor, with measurements in DNA samples 



 

 

from Staphylococcus aureus (IDT, USA) (1.0×10−6 mol L−1), human papillomavirus (HPV16) 

(4.1×10−9 mol/L) (Sigma-Aldrich, USA), Agalactiae (IDT, USA) (1.0×10−6 mol L−1), and fetal 

bovine serum (Sigma-Aldrich, USA) (25mg/dL). Electrical impedance measurements were carried 

out with an impedance analyzer 1260A (Solartron Analytical), controlled by Smart software, in the 

frequency range from 1 Hz to 1 MHz, with d.c. potential 0 mV and a.c. potential 50 mV. Owing to 

the potential commercial application of SARS-CoV-2 detection in point-of-care settings, we also 

performed the electrical impedance analysis using a homemade impedance spectrometer (Figure 

S2), which is a wide-spectrum, portable, and low-cost (~US$ 100) impedance spectrometer 

developed in-house. It employs the integrated circuit AD5933 (Analog Devices), which includes an 

alternate- and direct-current generator, a frequency synthesizer, an analog-to-digital converter 

(ADC), and a single-frequency discrete Fourier transform (DFT) multiply-accumulate core. To 

control the output signal amplitude and frequency and the sampling rate throughout the frequency 

range between 1 Hz and 100 kHz, the spectrometer contains an external clock source, a 

potentiometer, and a digital-to-analog converter coupled with operational amplifiers (op-amps). For 

noise filtering and to avoid flattening and saturation issues in the ADC, the response signal 

amplitude is automatically regulated by an analog multiplexer (AMux), op-amps, ceramic 

capacitors, and thin-film resistors. Additional AMux shifts through calibration resistances to provide 

a reference DFT result. A micro-controller executes a C++ impedance spectroscopy algorithm, 

bridging between the computer (USB communication) and the analog circuitry (I2C 

communication). 

Electrochemical experiments were carried out in 5.0×10−3 mol L−1 potassium-ferrocyanide 

and -ferricyanide (K3[Fe(CN)6]/K4[Fe(CN)6]) (Sigma-Aldrich) dissolved in 1.0×10−3 mol 

L−1PBS/MgCl2 solution. The instrument employed was an electrochemical system PGSTAT302 

(MetrohmAutolab) controlled by GPES 4.9.7 software. All measurements were carried out in a 25 

mL glass cell at 25° C, with a three-electrode configuration: Au interdigitated electrodes coated with 

a SAM of 11-MUA with a layer of the cpDNA SARS-CoV-2 (probe) as the working electrode, an 



 

 

Ag/AgCl (3 mol L–1 KCl) was used as a reference and a platinum foil (1.0 cm2) as auxiliary 

electrode. The solution within the cell was neither stirred nor aerated during the measurements. 

Electrochemical impedance spectroscopy (EIS) data were acquired with PGSTAT302 with a FRA2 

algorithm in the frequency range between 0.1 Hz and 100 kHz with amplitude of 10 mV and under 

open circuit potential (OCP) conditions. 

The optical detection experiments were performed by transmission/absorption spectral 

measurements (Figure S3) before and after incubation of the genosensor with dilutions (in 

PBS/MgCl2) containing complementary and non-complementary ssDNA SARS-CoV-2 positive 

sequences at the molar concentrations 1.0×10−10, 1.0×10−8, 1.0×10−6 mol L−1 during 30 min at 85 °C 

followed by cooling in ice, rinsing with ultrapure water, and drying under a flow of N2. The LSPR 

spectrum was acquired from 400 nm to 900 nm using a fiber optic spectrometer USB4000 (Ocean 

Optics) and a tungsten halogen lamp LS-1 (Ocean Optics). All spectral measurements were 

averaged from 10 scans with 100 ms accumulation time. The acquired data were analyzed using 

programs developed in Python3.8. The shift in the LSPR peak was determined with an algorithm 

implemented using the library NumPy39 and the package PeakUtils40. 

 

2.6. Data analysis with information visualization and machine learning 

 

Dimensionality reduction of biosensing data is used to evaluate selectivity and the presence 

of false positives. Herein, electrical and electrochemical impedance spectra were processed with the 

multidimensional projection strategy referred to as Interactive Document Mapping (IDMAP)41. The 

mapping strategy strives to reproduce, in a low-dimensional space, the relative pairwise proximities 

amongst the data samples observed in the original n-dimensional feature space (n is the number of 

measurements in a spectrum) by minimizing the error as in Eq. 2. The Euclidean distance 

( )
ji xx , between any two samples xi = (xi1, xi2, …,xin) and xj= (xj1, xj2, …,xjn) is computed as a 

proxy of their dissimilarity, and the IDMAP strategy is applied to project the samples into a two-

dimensional feature space, for visualization purposes. It produces a novel representation of samples 

xi and xjas yi= (yi1, yi2) and yj= (yj1, yj2). Eq. 1 expresses the error to be minimized for a pair of 



 

 

samples xi and xj, where ),( ji yyd denotes the Euclidean distance computed in the reduced space, 

and δmax and δmin denote the maximum and minimum distance values between the data instances in 

the original representation space42. 
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In the predictive analysis using machine learning techniques, a set of 350 images was 

employed, corresponding to sensing units subjected to either distinct concentrations of SARS–CoV-

2, negative sequences, or interferents (HPV16 and PCA3). These images were obtained according 

to the experimental procedure in the Supporting Information. The latter samples are considered as 

control measurements, as indicated in Table 2. The images have 8-bit pixels (grayscale) and a 

resolution of 1024 × 714. The samples were taken with two magnifications (1,000× and 10,000×), 

allowing us to observe the effects of different scales. We considered two classification schemes, 

binary (positive or negative for SARS–CoV-2) and multiclass (separating different concentrations 

and control samples). 

 

Table 2. Description of the SEM images, magnification, and the number of samples for each 

condition.  

Analyte Class Name (label) 1,000× 10,000× 

Probe negative (n) 30 10 

HPV16 negative (interferent) 10 0 

PCA3  negative (interferent) 10 0 

[SARS–CoV-2] 

10
−6 

mol L
−1

 
positive (6)  30 20 

[SARS–CoV-2] 

10
−8 

mol L
−1

 
positive (8)  20 20 



 

 

[SARS–CoV-2] 

10
−10 

mol L
−1

 
positive (10)  20 20 

[SARS–CoV-2] 

10
−12 

mol L
−1

 
positive (12)  20 20 

[SARS–CoV-2] 

10
−14 

mol L
−1

 
positive (14)  20 20 

[SARS–CoV-2] 

10
−16 

mol L
−1

 
positive (16)  20 20 

[SARS–CoV-2] 

10
−18 

mol L
−1

 
positive (18)  20 20 

 

 

As the datasets are initially imbalanced concerning the number of examples in each class, in 

the classification step we apply a resampling process using 100 random configurations (i.e., 100 

trials). This strategy ensures a uniform class distribution so that at each iteration each class has the 

same number of samples, as shown in Table S1 in the Supporting Information. Two machine 

learning techniques were employed in a 2-step pipeline: (1) feature extraction and (2) classification. 

In the first step, image features were extracted using standard computer vision methods. The 

patterns within the images of the genosensing units are complex combinations of pixel intensity 

variations and spatial distribution. These patterns can be categorized as visual 

texture, a property studied in computer vision and image analysis since 

the 1970s. The texture analysis methods can be organized according to their underlying 

mathematical approach, such as statistical, model-based, spectral, agent-based, and neural network-

based methods43. Since the performance of each technique and category may depend on the 

problem under analysis, herein we considered a set of distinct methods to recognize the genosensing 

images, covering both standard and recent approaches. The following texture analysis methods were 

used: Gray Level Difference Matrix (GLDM)44, Fourier descriptors45, Complex Network Texture 

Descriptors (CNTD)46, Fractal descriptors47, Adaptive Hybrid Pattern (AHP)48, Completed Local 



 

 

Binary Patterns (CLBP)49 and Local Complex Features and Neural Network (LCFNN)50. These are 

hand-crafted image descriptors, manually designed for computing specific visual properties of a 

given image. GLDM, AHP, and CLBP follow a traditional approach for computing texture 

information first from inside a small neighboring window around each pixel, measuring patterns 

such as pixel co-occurrence and variation, and then characterizing the global frequency of such 

patterns in the whole image. On the other hand, the Fourier descriptor is a spectral approach based 

on the Fourier transform of the image matrix. CNTD and Fractal descriptors focus on the image 

complexity, where the former considers the pixel matrix as graphs (complex networks), while the 

latter approach employs the fractal dimension of pixels. Another approach for image analysis, 

which contrasts to hand-crafted methods, makes use of learning methods such as neural networks. 

Instead of a carefully designed technique, a neural architecture automatically learns features from 

the data. LCFNN combines a hand-crafted image modeling technique using a complex network 

framework with a neural network that learns the most relevant properties for visual discrimination. 

We utilized the following Deep Convolutional Neural Networks (DCNN, deep learning-based 

methods), state-of-the-art image discriminators51: InceptionResNetV252, DenseNet53, and 

MobileNet54. They are first pre-trained using the ImageNet dataset from the Large-Scale Visual 

Recognition Challenge55, composed of around 1.2 million images belonging to 1,000 different 

visual categories. The models are then ported to our application as feature extractors through a 

transfer-learning process. We remove the final fully-connected layers and then apply a global 

average pooling (GAP)56 to obtain image features from the last convolutional layer's output. The 

DCNN can thus process images of any size greater than its predefined standard (usually 224 or 299), 

i.e., we do not need to rescale the SEM images. The original 8-bit pixel values are divided by 255, 

thus normalizing all values within the range [0,1]. In the experiments, we adopted the same 

parameter values described in the original paper of each method.  

The image feature vectors obtained using the extractor methods were used in induced model 

classifiers employing the Support Vector Machine (SVM) (linear kernel)57 and Linear Discriminant 



 

 

Analysis (LDA)58 techniques (step 2). These classifiers are widely employed for classifying image 

features, justifying their choice, and led to the best results among those tested, which included 

Naive Bayes and KNN. In this step, we considered: (i) a binary classification between the samples 

exposed to SARS–CoV-2 (as the positive class) and those either not exposed or exposed to HPV16 

and PCA3 (as the negative class); and (ii) a multiclass classification that attempts to distinguish 

between the distinct SARS–CoV-2 concentrations, negative samples (zero) and with interferents 

(HPV16 and PCA3). In all experiments, the average accuracy and standard deviation of the 100 

random trials were reported and used to evaluate the induced classifier predictive performance. The 

10-fold cross-validation scheme was used in each trial to define the test and training subsets59.  The 

image features were also used in an unsupervised analysis through the visual projection with t-

distributed Stochastic Neighbor Embedding (t-SNE)60 and the k-means clustering algorithm. In the 

Supporting Information we provide further details of the machine learning techniques and 

procedures adopted throughout the work. 

3. Results and discussion 

3.1. Electrical detection 

The genosensor made with a matrix based on 11-MUA was able to detect complementary 

(positive) sequences in the concentration range between 1.0×10–18 and 1.0×10–6 mol L–1 using 

impedance (Z) spectroscopy, as seen in the capacitance (C, Eq. 2) spectra in Figure 1.  The specific 

interactions between the cpDNA SARS-CoV-2 and the positive sequence are sufficient to yield 

measurable differences in the relative capacitance, defined as the difference in capacitance with and 

without ssDNA SARS-CoV-2 (Positive Control). The measurements are performed with these 

electrodes immersed into a liquid sample. Therefore, an electric double-layer will be formed at the 

interface between the genosensor film and the liquid. According to Lvovich and MacDonald61,62, the 

frequency-dependent electrical response in sensors is governed by three types of mechanism. At 

high frequencies, the electrical signal depends mostly on the electrode geometric capacitance while 

at intermediate frequencies, between 1 kHz and 100 kHz, this response is related to changes at the 



 

 

sensor surface63,64. At low frequencies (1 to 1000 Hz), the electrical double layer formed at the 

sensor/electrolyte (sample) interface governs the response, as indicated in the literature61,62,65 and in 

previous work from our group33,66. Adsorption of the target sequences through hybridization occurs 

along the film surface, being therefore symmetric with regard to the electrode digits. Since the 

interdigit distance (10 µm) is considerably larger than the Debye length of the double-layer (of the 

order of nm), the change in impedance induced by hybridization may be attributed essentially to a 

change in the double-layer capacitance, in addition to possible molecular reorientation. This 

assumption is confirmed with the results shown in Figure 1 where distinction is clear at low 

frequencies, therefore indicating the relevance of double-layer effects in the detection. 

))Re(( 1−= ZjC          (2)

 

 

 

 

 

Figure 1. Capacitance spectra obtained from electrical impedance spectroscopic measurements for 

detection of ssDNA SARS-CoV-2 in synthetic samples using a genosensor built with a matrix of 11-

MUA SAM under an active layer containing the cpDNA SARS-CoV-2 (Probe). 

 

For practical reasons, one may wish to display the results not in the form of spectra as in 

Figure 1, but with a single capacitance value at a given frequency. Measuring the signal at a single 



 

 

frequency would also facilitate displaying the detection results. We have therefore analyzed the 

capacitance spectra in Figure 1 with the Parallel Coordinates visualization technique67 which is 

useful to reveal the frequencies responsible for the highest distinction of the different SARS-CoV-2 

concentrations. Figure 2a shows a parallel coordinates plot of the capacitance data. The distinction 

ability is estimated with the Silhouette Coefficient metric (S) expressed in Eq. 3, where m refers to 

the total number of samples, ai denotes the average distance between the ith data point and the other 

data points in the same category as itself, and bi is the smallest of the average distances computed 

between the ith data point to the data points in each category distinct from i. S varies in the range 

[−1,+1] and is useful as an estimate of the cohesion and separability of the different categories of 

samples. Here we computed its value at each frequency of the measured spectrum. Thus, S~1 

indicates the signal at a given frequency is useful for distinction among the samples, while S~0 and 

S~−1 mean, respectively, that the signal is neutral or deleterious for such a distinction33,67. In Figure 

2a, the values of S are encoded as small bars at the top of the axis relative to each measured 

frequency, color coded as follows: blue for positive values, white for S ~0, and red for negative 

values; the length of the filling is proportional to the value. Most frequencies are useful for 

detection, which leads to an overall S of 0.936 (for all ssDNA SARS-CoV-2 positive samples and 

frequencies), thus confirming the excellent distinguishing capability of the genosensor. By overall S 

we mean that it was calculated with all frequencies (not with a single value). Assessing the parallel 

coordinates plot in conjunction with the silhouette coefficient (Eq. 3) is also useful to determine the 

best frequency at which a calibration curve can be taken. From the values estimated for S, we chose 

1 Hz and the capacitance versus SARS-CoV-2 concentration in the logarithm scale is shown in 

Figure 2b. Taking the initial linear part of the curve, we obtained a detection limit of 0.5 aM using 

the IUPAC recommendations (Eq.4)68 where SD is the standard deviation of 10 blank curves. This 

detection limit corresponds to 0.3 copies per µL, which is lower than values typically obtained 

using RT-PCR kits (1.25 copies per µL)69. Hence, the genosensor may be applied to biological 

samples, though further studies are required to confirm whether the performance will remain in 
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Figure 2. a) Parallel Coordinates (PC) plot for the electrical impedance spectroscopy data obtained 

with 11-MUA genosensor functionalized with an ssDNA SARS-CoV-2 probe. The angular 

frequencies are depicted in the horizontal axis, while the values mapped to the parallel axes 

correspond to the normalized capacitance values. b) Calibration curve with the capacitance at 1 Hz 

plotted versus the concentration of SARS-CoV-2 on a logarithmic scale. 

The high sensitivity of the genosensor was our first goal, and this could be feasible with 

impedance data at a single frequency as previously shown. But selectivity is also crucial, which 

requires a series of control experiments that generate tens of spectra. In order to analyze these 

spectra, we plotted the capacitance data with the multidimensional projection IDMAP in Figure 3. It 

is relevant that the spectra for the complementary sequence (positive for SARS-CoV-2) can be 

distinguished from those of negative sequences, from PBS, fetal bovine serum (FBS), and other 

DNA biomarkers such as DNA samples from Staphylococcus aureus, HPV16, and Agalactiae. 

Notice the data points for the control experiments are not in a single cluster, which suggests non-

specific adsorption might have occurred for the distinct non-target samples. Distinction of data from 

control experiments is common for impedance spectroscopy, which is highly sensitive to any 

change in the interfacial properties25,35,36,70. Nevertheless, detection is not compromised if one uses 

a projection method to establish the differences between clusters. We also verified whether 



 

 

detection was possible in the absence of the probe sequence and if incorporation of ethanolamine 

would hinder non-specific adsorption and thus enhance the sensitivity and selectivity. The map in 

Figure S5 in the Supporting Information suggests that ethanolamine has a deleterious effect, as the 

distinguishing ability of the corresponding genosensor is considerably lower. The distinction was 

also poor in the absence of the cpDNA SARS-CoV-2, as one could expect. In subsidiary 

experiments, we verified that positive sequences of SARS-CoV-2 could be detected in impedance 

spectroscopy measurements performed with the homemade spectrometer, as demonstrated in the 

IDMAP plot in Figure S2. This approach is promising for making the genosensors available in 

point-of-care diagnosis systems.  

 

 

 

Figure 3. IDMAP projection of the capacitance spectra obtained from electrical impedance 

spectroscopy for samples with ssDNA SARS-CoV-2 at various concentrations, measured using 

genosensors constructed with 11-MUA SAM coated with an ssDNA SARS-CoV-2 probe. We notice 

that the data points from the control experiments with DNA S. agalactiae, cpDNA, DNA S. aureus 

and HPV16) are well separated from those of the genosensor exposed to the SARS-CoV-2 DNA. 

This indicates high specificity of the genosensors, i.e., the mechanism governing SARS-CoV-2 

detection occurs through specific interactions between the probe and the complementary sequence. 
 

 

 

 



 

 

Detection using the same genosensor architecture was performed with electrochemical 

impedance spectroscopy, but its distinction ability was lower as indicated in the results in Figure S6 

in the Supporting Information. In particular, the overall silhouette coefficient (S) value is 

considerably lower (S= -0.18) than for the measurements obtained with electrical impedance 

spectroscopy. We note that S represents a measure of how successful a multidimensional projection 

technique is in clustering distinct samples. 

 

3.2. Optical Detection 

 

Optical detection was carried out using the AuNp/glass plasmonic genosensor (Figure S3). A 

redshift in the transmitted LSPR spectrum was observed due to the hybridization between the 

cpDNA SARS-CoV-2 (probe) and the ssDNA SARS-CoV-2 complementary sequence, as indicated 

in Figure 4a for dilutions with PBS/MgCl2 at concentrations between 1×10–10 and 1×10–6 mol L–1. 

Figure 4b shows the change in the LSPR spectrum shift with increasing concentration of the 

complementary sequence. The dispersion in the data represents the standard error for different 

substrates for each concentration of the ssDNA sequence. The blank measurements represented the 

response of the genosensor to the pure PBS/MgCl2 buffer solution and were repeated for ten devices 

resulting in the average peak shift Δλ = 0.1 nm, with an error of 0.15 nm. These statistics were 

obtained with 10 measurements for the buffer solution, 9 measurements with the negative sequence 

and 14 measurements with the ssDNA sequence. The selectivity of the genosensor was confirmed 

by performing detection tests with the non-complementary sequence. No shift in the LSPR 

spectrum was observed in the negative control detection tests, as plotted in the gray point in Figure 

4a. The positive sequences could also be distinguished from the blank and the negative control 

sequence, as shown in the IDMAP plot in Figure S7. With LSPR one may in principle obtain a 

higher selectivity than with the electrical impedance spectroscopy. However, dispersion among 

different samples may be large, as indicated by the error bars in Figure 4a, because the LSPR signal 

depends not only on the concentration of the target analyte but also on the availability of hotspots 

for signal enhancement. 



 

 

 

 

 

 

 
 

 

Figure 4. a) The LSPR peak shift for the detection tests performed with the optical genosensor. The 

blue points represent the sensitivity tests with the complementary sequence and the increase of the 

peak shift with the positive control ssDNA concentration. The green and the gray points represent 

the selectivity tests with pure PBS/MgCl2 (Blank) and with the non-complementary sequence, 

respectively. b) Measured LSPR spectrum before and after the interaction of the optical genosensor 

substrate with the solution containing the complementary sequence. 

 



 

 

 

 

3.3. Confirming hybridization as the mechanism responsible for SARS-CoV-2 detection 

 

The genosensors reported in this paper detected changes in electrical, electrochemical, and 

optical signals from interactions between the active layer immobilized on 11-MUA films and 

synthetic ssDNA SARS-CoV-2. These changes can be investigated using PM-IRRAS (see section 

1.2 in the Supporting Information for the experimental procedures), whose spectra are displayed in 

Figure S8. There is a considerable increase in the PM-IRRAS signal after hybridization for the 

antisymmetric PO2
− dipole band at 1241 cm−1 71 and the COOH band at 1735 cm−1 72,73. The PM-

IRRAS spectra in Figures S9a and S9b in the Supporting Information confirm that exposure to any 

concentration of positive and negative DNA sequences for SARS-CoV-2 leads to changes. This 

should be expected owing to the nature of the PM-IRRAS technique that is sensitive not only to 

non-specific adsorption but also to changes in the orientation of molecules in the genosensor. 

Nevertheless, the signature generated by hybridization could be established.   

 

2.4. Diagnosis based on machine learning applied to image analysis of genosensors  

 

Machine learning for image analysis for purposes of diagnosis is well established, but this 

applies typically to the imaging of biological samples. Image analysis of the sensing (or biosensing) 

units after exposure to biological samples is an embryonic topic, with a single previous contribution 

reported in the literature, to our best knowledge35. In the latter work, the SEM images of 

genosensors employed for a cancer biomarker had sufficient resolution to reveal nanoscopic 

structures. Using such high resolution was justified by a higher likelihood to distinguish the 

different samples since the detection mechanisms occur at the molecular level. The long-term goal, 

however, is to employ optical images from a standard microscope and ideally from a smartphone 

camera. This goal motivates our choice of employing low-resolution SEM images, with the smaller 

magnification (1,000×) being equivalent to that of optical microscopes.  

The typical images of the genosensing units shown in Figure S4 were treated with non-

supervised and supervised ML algorithms. In the supervised learning test, the classification task was 



 

 

performed in two datasets, which differ in the magnification of micrographs. The highest accuracy 

for both binary and multiclass cases was achieved using 1,000× images, as shown in Table 3 (the 

results for the magnification 10,000× are given in Table S2). It may appear surprising that better 

distinction was achieved with lower-resolution images. However, a visual inspection indicated that 

in several cases the images presented defects and artifacts – probably from residual salt crystals - of 

dimensions comparable to those of the objects observed with 10,000× magnification (some 

representative images are shown in Figure S10 in the Supporting information). This may have 

affected the analysis negatively. On the other hand, for the images with 1,000×, these defects were 

sufficiently large for the machine learning algorithms to “learn” they were artifacts. The visual 

analysis also revealed that the molecular-level interactions owing to hybridization are translated into 

evident changes in the morphology of the genosensors. We believe the differences observed and 

captured by the ML methods arise from changes induced by hybridization of the DNA strands, 

resulting in varied degree of electron scattering in the resulting image. An analysis of the image 

spectra revealed no identifiable structured pattern or pattern alignment. The amplitude of the spectra 

did not reveal any pattern or element capable of qualitatively differentiating the controls and the 

positive sequences for SARS-CoV-2. The differences are observed only in the descriptors (energy in 

radial rings of the spectra). The descriptors do not present characteristic peaks and the differences 

are spread between the medium and high frequency bands. This suggests there is no structural 

pattern in differentiation. The most accentuated results at high frequency, but without a specific 

band, suggest fine-grained patterns, scattered across the sensors at random. We found no clues that 

characterize structural alignment or ordering.  

In the binary classification where the task is to separate the images of sensing units exposed 

to ssDNA SARS–CoV-2 concentrations (with all concentrations put together) from those which 

were not (negative and interferents), the highest accuracy was 99.66% (0.48) for the Fourier 

descriptors and the SVM classifier. Accuracy is defined here as the percentage of instances that 

were correctly classified by the machine learning algorithm. Moreover, most image analysis 



 

 

methods yielded accuracy higher than 95% with LDA or SVM classifiers. In the multiclass 

classification, a distinction was made of the different concentrations of SARS–CoV-2, negative and 

interferent samples, totaling nine classes. The best results in Table 3 were obtained with CLBP 

(95.78% (0.97)) and LCFNN (91.36% (1.35)) features using the LDA classifier. Among the DCNN 

methods, DenseNet201 with LDA achieved the highest accuracy (94.48% (1.05)). These results 

suggest a substantial distinction between the different concentrations of SARS–CoV-2, negative, 

and interferent samples. 

 

Table 3. Accuracy in binary and multiclass classifications of SEM images with 1,000× 

magnification. 

Methods 
 

Binary 
 

Multiclass 
 

LDA SVM LDA SVM 

AHP 92.30 (3.57) 98.28 (1.53) 90.12 (1.92) 87.73 (1.34) 

CLBP 98.24 (1.28) 98.50 (1.10) 95.78 (0.97) 93.01 (0.93) 

CNTD 93.78 (3.40) 96.50 (1.66) 89.77 (1.79) 83.91 (1.51) 

GLDM 96.62 (2.15) 98.41 (0.94) 90.56 (1.17) 79.38 (1.49) 

LCFNN 98.80 (0.49) 98.75 (0.46) 91.36 (1.35) 88.58 (1.03) 

Fourier 95.77 (1.94) 99.66 (0.48) 77.55 (2.58) 72.57 (1.94) 

Fractal 92.83 (3.28) 83.96 (3.12) 74.06 (2.43) 33.40 (2.29) 

DenseNet201 99.14 (0.85) 99.21 (0.74) 94.48 (1.05) 90.23 (1.24) 

InceptionResNetV2 98.50 (1.27) 98.46 (0.74) 86.87 (1.60) 79.41 (1.39) 

MobileNet 98.54 (1.10) 98.67 (0.94) 89.12 (1.58) 87.20 (1.10) 

 

We also performed experiments using an unsupervised learning technique. For qualitative 

analysis, we employed the t-distributed Stochastic Neighbor Embedding (t-SNE)60, a 

multidimensional projection technique for visualizing high-dimensional data. Analogous to IDMAP 



 

 

(albeit using a different optimization strategy), it performs a dimensionality reduction to obtain a 

two-dimensional representation of the high-dimensional data points while attempting to preserve 

the distribution of the pairwise distances observed in the original space. Three of the best-

handcrafted methods (Fourier, CLBP, and LCFNN) and three DCNN were considered. The results 

in Figure 5 indicate that all methods form clusters of similar samples, with a higher distinction 

between those with positive samples for SARS–CoV-2 or the remainder (negative and interferents). 

The DCNN MobileNet also shows promising performance, hence being a strong candidate for a 

mobile deep learning application of the proposed approach. 

 

 

 

Figure 5. t-SNE 2D projections of SEM image features obtained with different methods.

For a quantitative analysis in a non-supervised scenario, we consider the well-known k-

means clustering technique51,52. The experiment was performed using the Euclidean distance and 20 

repetitions, as k-means has a random component in the initialization of its clusters. The Rand-Index 

was utilized as a measure of cluster quality. It measures the average similarities between clusters in 

a range between 0 and 1 (low to high similarity, respectively). Table 4 shows the Rand Index for the 

image analysis methods using all nine sample groups (k=9). The values achieved with several 

methods indicate a good clustering of the data. Combined with the t-SNE projections, it further 



 

 

corroborates the results from the supervised learning experiment. 

In summary, we note similar average performance using the hand-crafted image descriptors 

Fourier, CLBP, and LCFNN or DCNNs, with some variations depending on the given task. Also 

relevant to bear in mind is that DCNNs from MobileNet are large neural networks with a higher 

computational cost, limiting their applicability. Moreover, each of the 3 cited hand-crafted methods 

achieves the highest performance on each task (binary, multiclass and unsupervised, respectively). 

Therefore, we believe they are more suitable for a fast, reliable diagnosis application in the scenario 

we analyzed.  

 

 

Table 4. Rand index for clusters computed with k-means using nine groups on the dataset with 

1,000 magnification datasets. 

Methods Rand 

Index 

AHP 0.83 

CLBP 0.86 

LCFNN 0.87 

Fractal 0.81 

Fourier 0.83 

GLDM 0.81 

DenseNet201 0.82 

MobileNet 0.80 

InceptionResNetV2 0.86 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

 



 

 

A genosensor has been developed which can detect an ssDNA sequence of SARS-CoV-2 

using different detection principles. The most sensitive method was impedance spectroscopy with a 

detection limit of 0.5 aM. This sensitivity corresponds to 0.3 copy/μL and should suffice to detect 

the RNA sequence in saliva or other body fluids. That detection could be performed with 

electrochemical and optical methods techniques is a particularly relevant finding, for besides 

confirming the suitability of the genosensing architecture, it implies in versatility in the mode of 

operation. In particular, the hybridization between the complementary sequences confirmed with 

PM-IRRAS measurements led to morphological changes on the genosensors, which could be 

captured in low-resolution SEM images. Upon applying supervised and non-supervised machine 

learning algorithms to image processing, we could obtain a high distinction accuracy between the 

different concentrations of SARS-CoV-2 ssDNA sequences. This capability opens multiple avenues 

for instrument-free detection of SARS-CoV-2 if an optical microscope can be coupled to 

smartphones. Judging by the analysis of the images, one may speculate that photos from 

smartphones can be used in the future, a supposition that requires further verification. In all the 

detection experiments, the selectivity of the genosensors was verified with control samples, 

including a negative sequence for SARS-CoV-2 and other DNA biomarkers not related to COVID-

19.  

  The main limitation in this work is associated with the samples analyzed, as the suitability 

of the genosensor for diagnosis of SARS-CoV-2 in COVID-19 patients has not been tested. Based 

on the literature and our own experience with genosensors, we are hopeful that a sensitive, selective 

diagnosis will be possible. This confirmation will now be pursued by our team, and we also hope 

other authors will employ the strategies and genosensor architecture for developing efficient 

diagnostic methods. It should also be mentioned that image analysis using machine learning is 

promising for classification of samples with any type of sensor or biosensor, but it is only effective 

if the dataset is sufficiently large to cover the possible responses of the samples under analysis. 
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