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Abstract

The development of simple detection methods aimed at widespread screening and
testing is crucial for many infections and diseases, including prostate cancer where early
diagnosis increases the chances of cure considerably. In this paper, we report on

genosensors with different detection principles for a prostate cancer specific DNA
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sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz
coated with layer-by-layer (LbL) films containing gold nanoparticles and chondroitin
sulfate and a layer of a complementary DNA sequence (PCA3 probe). The highest
sensitivity was reached with electrochemical impedance spectroscopy with the detection
limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and
900 pM for cyclic voltammetry and UV-vis spectroscopy, respectively. That detection
could be performed with an optical method is encouraging, as one may envisage
extending it to colorimetric tests. Since the morphology of sensing units is known to be
affected in detection experiments, we applied machine learning algorithms to classify
scanning electron microscopy images of the genosensors and managed to distinguish
those exposed to PCA3-containing solutions from control measurements with an
accuracy of 99.9%. The performance in distinguishing each individual PCA3
concentration in a multiclass task was lower, with an accuracy of 88.3%, which means

that further developments in image analysis are required for this innovative approach.

Keywords: prostate cancer, PCA3 biomarker, electrochemical impedance, image

analysis, machine learning
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Introduction

The search for new diagnostic methodologies has gained tremendous impetus
with the Covid-19 pandemic outbreak in 2020, for it has become clear that low-cost,
easily deployable tests are crucial for humanity. Three main challenges have to be faced
to fulfill such stringent requirements: the sensing units must be cheap and easy to
manufacture even in developing countries; the principle of detection should be simple
without requiring highly trained personnel to operate the measuring equipment; data
analysis should be robust and fast. Much has been done in all of these challenges, as can
be easily confirmed in the recent literature for various types of biosensors (see e.g. some
review papers)[1-5]. However, this considerable body of knowledge has not been
transformed into products for various reasons, the most important of which is perhaps
the high cost of device engineering to develop tests and certify them through
government agencies. This is particularly the case of neglected diseases or of diseases in

which the number of tests to be commercialized would not justify the large investments.

We advocate, nevertheless, that efforts should be made to develop sensing
technology that is sufficiently generic to leverage progresses in different areas, across
different diseases and for monitoring health conditions. Moreover, there are diseases for
which such new methodologies are urgent. This applies to prostate cancer[6], which is
rarely symptomatic as the tumor grows quietly and the failure to detect early makes this
disease the second cause of death in men in industrialized countries[7]. Today, prostate
cancer 1s diagnosed with a combination of a blood test to detect the prostate specific
antigen (PSA) and rectal examination[8]. Unfortunately, in spite of its high sensitivity,
the PSA test has low specificity, thus resulting in many negative biopsies, i.c.
unnecessary and invasive procedures[9-10]. An increased PSA concentration may arise

from non-cancerous conditions such as prostate infections, prostate enlargement and
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even recent sexual activity[11]. This state of affairs may change significantly if more
specific biomarkers are found. An important candidate is the prostate cancer gene 3
(PCA3) located on the chromosome 9q21-22[12]713], which is prostate-specific and
associated with prostate cancer[14-17]. PCA3 was identified in 1995,[18] being initially
called DD3 (Differential Display Clone 3) since differential display analysis was used
to compare mRNA expression patterns of normal versus prostate cancer tissues[19].
Overexpression of PCA3 gene was observed in 95% of prostate cancer samples, while
gene 3 expression was not detected in any other normal or multi-organ tumor tissues. In

benign altered prostate cells, very low levels of gene expression were detected[20-21].

There are a few reports of sensors to detect PCA3[15,20,22,23] including our
own recent work[22], which is the only one using a simple principle of detection to the
best of our knowledge. In this study, we build upon this previous work to address the
last two challenges of the three mentioned in the beginning of this introduction. More
specifically, we show that genosensors can be built with simple manufacturing
processes and applied with varied principles of detection. We show that PCA3 can be
detected using electrochemical methods, optical absorption spectroscopy and through
image analysis of the sensing devices. Furthermore, the matrix onto which the DNA
sequence (PCA3 Probe) is immobilized differs from our previous work, as we
incorporated gold nanoparticles along with chitosan and chondroitin sulphate to
enhance the electrical signal. As for data analysis we employ information visualization
techniques for the electrochemical impedance data, with which the highest sensitivity
was obtained, and machine learning methods to classify the images taken from the
genosensing units. The overall aim was to obtain a generic platform in terms of
materials, devices and data analysis, which can be replicated to other biomarkers and

other diseases.
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Materials and methods
Fabrication and characterization of the genosensors

The genosensors were made with layer-by-layer (LbL) films[24] containing
alternating layers of gold nanoparticles stabilized with chondroitin sulfate (AuNP-CS)
and of the PCA3 probe designed for detection. The LbL films were deposited onto the
working electrode of a commercial, 4 mm diameter printed carbon electrode (Dropsens,
Spain). Chondroitin sulfate, HAuCl4 gold salt, sodium borohydride, biotinylated (PCA3
probe) with the following sequence [Btn]TTTTTTTCCCAGGGATCTCTGTGCTTCC,
positive control (PCA 3) with the sequence GGAAGCACAGAGATCCCTGGG and the
negative control sequence (non-complementary) CTAATGTCCTTCCCTCACAAGCG
were obtained from Sigma-Aldrich. The chitosan used from Golden-Shell Biochemical
had molecular weight 87000g/mol and deacetylation degree 85%. The gold
nanoparticles (AuNPs) were synthesized by putting 100 mL of 0.02 mmolL"! solution of
sodium borohydride reducing agent in a beaker under constant stirring, and 5 min later
14 mL of HAuCly salt were added to obtain a pink solution. The formation of NPs was
monitored by taking the UV-vis spectra with the solution every 5 min until 325 min,
using a HR2000 Ocean Optics UV—vis spectrophotometer in situ. In order to avoid
aggregation, the NPs were protected via steric stabilization[25] by adding 0.2 mmolL!
of the polymer chondroitin sulfate into the NPs solution. The results in Figure S1 in the
Supporting Information indicate that 75 min of synthesis were sufficient to form gold
nanoparticles with an average diameter between 5 nm and 10 nm, according to the
scanning electron microscopy (SEM) image in Figure S2a. These images were acquired
with a Digital Scanning Microscopy Scanning Electron Microscope (DSM 960 from
Zeiss West Germany), in which the nanoparticle solution was deposited on a silicon

wafer. This nanoparticles size is compatible with data in the literature where the
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reducing agent was also borohydride[26]. Nanoparticle composition was confirmed

with elemental analysis in Figure S2b, whose elements are listed in Table S1.

The LbL assembly on the carbon electrode was carried out as follows. The
carbon electrode was immersed into a solution with AuNP-CS (0.02mmol/L) for 30
min, after which the electrode was washed with Milli-Q water and dried under nitrogen.
A bilayer was completed with deposition of PCA3 Probe during 45 min of adsorption,
followed by rinsing with Milli-Q water and drying under nitrogen. Film growth was
monitored by depositing LbL films on quartz substrates. The adsorption of AuNP-CS on
the quartz substrate was facilitated by a cushion chitosan layer formed with 1 mg/mL
chitosan acetate buffer solution adsorbed on quartz for 10 min. The quartz substrate was
rinsed and dried and an aliquot of AuNP-CS was adsorbed for 30 min, before rinsing
and drying. LbL films of up to 6 layers were deposited to characterize film growth

(Figure S3).

Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS)
was used to determine the chemical groups involved in LbL film formation, using a
KSV PMI 550 equipment with 8 cm™ spectral resolution and 80° incidence angle.
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were employed
to characterize the LbL films and to detect the biomarker with a PGSTAT 204, Autolab
electrochemical system (Eco Chimie, Netherlands), controlled by NOVA software. For
CV the potential range was from -0.6 to 0.6V. Detection was also performed with UV-
vis spectroscopy using a Hitachi U-2001 spectrophotometer, where the band responsible

for hybridization at 260 nm was analyzed.

Data analysis and Machine Learning
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The data acquired in impedance spectroscopy measurements were visualized
with the multidimensional projection technique referred to as interactive document
mapping (IDMAP)[27], in which each spectrum is plotted as a data instance on a 2D
plot. This technique for reducing the dimensionality of data has been proven excellent
for biosensors[28] and is based on preserving the similarity from the objects (spectra in
this case) in the high dimension space in the projected space. It employs the

optimization function in Equation (1)

olx,,x.)=0.,,
S]DMAP:(éj—_)&_d(yiﬂyj) )

Slx.x,)  drv.y) . _ . .
where and are Euclidean distances between two data instances in the

. . : . Omax o1 4 Omin are the maximum
original and lower dimension space, respectively, and an

and minimum FEuclidean distances.

SEM images were acquired with a Digital Scanning Microscopy Scanning
Electron Microscope (DSM 960 from Zeiss, Germany). The electrodeposited films on
carbon electrodes were affixed to an Al bracket and covered with a thin platinum (Pt)
layer for electrical contact and image generation. The Pt layer was thin enough so that
Pt was not incorporated into the sample, but sufficient to maintain electrical contact[29].
After coating, the samples were placed in a vacuum chamber to eliminate moisture. In
the analysis with machine learning a set of 32 SEM images was employed,
corresponding to sensing units that were subjected to distinct concentrations of PCA3 in
addition to the negative sequence (non-complementary) and a blank measurement for
control as indicated in Table 1, thus leading to a 8-class problem. All images have 8-bit
resolution (gray scale) and they were taken with different sizes in terms of number of

pixelsand scales (200 nm and 300 nm), which allowed a semi-systematic study of the
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effects from the size of the images. The entire data for this set of images are available in

the Supporting Information.

Table 1. Description of the SEM images taken with genosensing units exposed to a
negative (non-complementary) sequence, a blank (PBS solution with no
biomarker) and PBS solutions containing various PCA3 concentrations. Also

informed are the size of the images (in pixels) and number of samples for each

condition.
Analyte Class Name (label) I(z)‘i‘x’::lg 8 zoz‘lfi;ellss)% Total

Negative sequence (non-

complementary) negative (n) 2 0 2
Blank (for control) zero (0) 3 0 3
[PCA3] =107 pmol.L"! positive 105 (p_0p00001) 2 2 4
[PCA3] = 10"* pmol.L"! positive 10 (p_0p0001) 1 3 4
[PCA3] =10 umol.L"! positive 10 (p_0p001) 0 4 4
[PCA3] =107 pmol.L"! positive 102 (p_0p01) 3 3 6
[PCA3] = 10" pmol.L"! positive 10°! (p_0p1) 5 0 5
[PCA3] =1 pmol.L" positive 1 (p_1p0) 4 0 4

The images were scaled in 1024 x 768 pixels and then segmented with three
square window sizes to increase the number of examples (in a data augmentation
procedure) and facilitate generalization of the modeling results. The datasets were
initially imbalanced with regard to the number of examples, but for the analysis we used
a random sub-sample strategy to obtain a uniform distribution of the classes. Thus, in

the classification step a resampling process was adopted, using 100 random
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configurations (ie., 100 trials). In each configuration the same number of examples was
taken in each class. The characteristics of the imbalanced dataset and the balanced
analysis are given in Tables S2 and S3 in the Supporting Information. Classification
using various machine learning algorithms was performed employing a pipeline

comprising 2 steps: (1) texture feature extraction and (2) classification.

Image features were extracted in step 1 using texture analysis techniques.
Texture is a key element of human visual perception, used in many computer vision
systems and for a variety of applications.[30] In this step, we employed for feature
extraction the following texture analysis techniques: Gray Level Difference Matrix
(GLDM)[31], Fourier descriptors[32], Complex Network Texture Descriptor
(CNTD)[33], Fractal descriptors[34], Adaptative Hybrid Pattern (AHP)[35], Local
Binary Patters (LBP)[36], Complex Network and Randomized Neural Network
(CNRNN)[37] and Local Complex Features and Neural Network (LCFNN)[37]. These
techniques analyze texture information in different ways (using models, statistics,
spectra, and learning) and are suitable for a small number of samples in the dataset, also
providing fast results. The image features (feature vectors) obtained from the images
using texture analysis were classified (step 2) using 3 machine learning algorithms. Two
types of classification were executed, viz. a binary classification between the samples
exposed to PCA3 (positive) and those that were not (negative and blank), and a
multiclass classification where the distinct PCA3 concentrations were considered. In all
types, the texture analysis techniques and classifiers were evaluated in performance and
generalization capacity using the average accuracy and standard deviation of the 100
random trials. In each trial we adopted a 10-fold cross-validation scheme to separate the
test and training sets. In this scheme, 1-fold is used for testing and the 9-folds remaining

are employed to train the classifier; this procedure is repeated using all folds for testing.
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The parameters of the texture analysis techniques and classifiers were kept with the

standard values according to the original paper for each technique.

Results and Discussion
Detection with electrochemical and optical methods

The immobilization of the PCA3 probe on carbon electrodes led to a slight shift
in the oxidation peak to more positive potentials in Figure S4(a), though the area within
the voltammograms did not change. A small increase in resistance from 3.4 kQ to 3.6
kQ was inferred from the Nyquist plot in Figure S4(b), consistent with the cyclic
voltammetry measurements. This adsorption could be visualized in the SEM images of
Figure S5 (Supporting Information), where the typical morphology of small spherical
particles for the AuNP-CS film was altered after immobilization of PCA3 probe with an
increased number of particles. DNA hybridization on the film also changed the

morphology, as seen in Figure S5(c).

The PM-IRRAS spectra in Figure 1 confirmed PCA3 Probe immobilization and
DNA hybridization. The band at 1080 cm™ in Figure 1A assigned to the phosphate
group in the DNA sequence had its intensity increased after hybridization. Figure 1B
features the amide I band owing to carbonyl groups (C=0)[38][39] at 1700-1730 cm™,
which shifted considerably and became broader by hybridization, as expected from the

literature.[22]

10
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Figure 1. PM-IRRAS spectra of a AuNP-CS layer (black), coated with a layer of Probe
(AuNP-CS/Probe, red) and after adsorption of PCA3 sample (AuNP-CS/Probe-DNA,
blue). The spectrum of the gold support was used as reference, which was subtracted
from the spectra of the films. The term PM-IRRAS signal is used as it refers to the

difference in reflectivity between s and p polarizations.

Electrochemical impedance spectroscopy and cyclic voltammetry measurements
were used to detect PCA3. Figure 2 shows that the current of the oxidation peak at 0.3
V in the voltammograms increases with PCA3 concentration (color lines), while
negligible changes were noted for the negative control (black lines). The latter behavior
occurs because the non-complementary strand has no affinity with the adsorbed PCA3

Probe in the film.

11
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Figure 2. Cyclic voltammograms with genosensors made with carbon electrodes coated
with one-bilayer AuNP-CS/Probe films in the potential range between —0.6 and 0.6 V
vs SCE in K3[Fe(CN)s] and Ks[Fe(CN)g], with PCA3 concentrations ranging between

10"2M and 10uM. Data are also shown for the negative control.

Figure 3 shows the calibration curve obtained from the cyclic voltammetry data,
with the current at 0.3V versus concentration. The current increases up to 1pmol/L™,
above which it tends to level off, indicating saturation. We attempted to fit the
calibration curve with Langmuir and Langmuir—Freundlich models, and found that
optimized fitting was obtained with a composition of two Langmuir-Freundlich
isotherms. The reason why simple Langmuir—Freundlich models apply to adsorption
processes of large molecules, or to hybridization, is probably the predominance of the
specific interactions in complementary DNA strands, which dominate over all the other
interactions.[40] The detection limit was calculated according to IUPAC

recommendation from the standard deviation of 10 reference curves and with o being

12
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the sensitivity obtained from the angular coefficient of the linear part of the calibration

curve[29]. The limit of detection was 2000 pM.

8.0x10°
[+
6.0x10° | ‘(",
@ experimental points
q —— double Langmuir Freundlich fitting
—~~
Lsox0°f 9
<
Equation q=(Q1*((K1*c)*n1)/(1+((K1*c)*n1))) + (Q2*((K2*
c)*n2)/(1+((K2*c)*n2)))
d
-6
2.0x10™ | Ad). R-Square 0.99909
Value Standard Error
E Q1 2.48334E-6 4.31538E-7
E Q2 4.50598E-6 3.75576E-7
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E K2 1179.2863 277.92785
00 | J' E n1 0.799 0.20374
E n2 0.80755 0.08957
1 M 1 M 1 M 1 M 1 M 1
0 20 40 60 80 100

[PCA3] umolL™"!

Figure 3. Peak current in cyclic voltammograms for AuNP-CS/Probe of Figure 2 versus

PCA3 concentration.

Hybridization between the PCA3 probe and PCA3 also affects the electrochemical
impedance spectroscopy data, as seen in Figure 4, especially at low frequencies where

the electrical response is dominated by the electrical double layer.[22]

13
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Figure 4. Impedance vs. frequency for genosensors made with carbon electrodes coated
with one-bilayer AuNP-CS/Probe films immersed in a solution of K3[Fe(CN)s] and
K4[Fe(CN)s], with different concentrations of PCA3.

A calibration curve was built from the data in Figure 4 for the impedance at 30
Hz where one notes in Figure 5 a sharp increase at low PCA3 concentrations before
stabilizing when the active sites available for hybridization tend to zero. This curve can
be taken as an adsorption isotherm, and has been fitted with the composition of two
Freundlich isotherms. The limit of detection was 83 pM, being therefore more sensitive
than using cyclic voltammetry (above) and in a recent work where chitosan and carbon
nanotubes were utilized as immobilization matrix, for which the detection limit was 128
pM[22]. The control experiments with electrochemical impedance measurements in
Figure S6 in the Supporting Information (see also the visualization below) indicate no
significant changes in impedance when the genosensors were exposed to different

concentrations of the non-complementary sequence.
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Figure 5. Impedance at 30 Hz versus PCA3 concentration from the data in Figure 4. The
curve was fitted using a combination of Freundlich functions. The inset shows the curve

fitted in the logarithmic scale. Detection was performed at room temperature of 23°C.

The high sensitivity and selectivity of the genosensor is further confirmed by
plotting the impedance data using the multidimensional projection technique IDMAP,
as shown in Figure 6. A clear distinction can be made of the samples containing the
various PCA3 concentrations with the data points referring to the highest concentrations
clustering together as saturations is reached. Also these positive controls (in blue) are
located on an entirely different space to that of the negative controls corresponding to
measurements with different concentrations of the non-complementary sequence (in

pink).

15



O Jo) 0w N

OO U UGG UIOTE BRSNS DLDDRERNEODWWWWWWWWWNNNNONNONNNMNONNMNONNERE R PR PR R
O WNRFRPOWOVWOIJATREWNR,OW®O-JAUDWNRFROWOWO-JHNTRWNROWOW-TJANUBRWNREOWW--JNU N WN R O WO

Positive PCA3

Negative PCA3

4 10-2 ; t
St el e
- 0
Q — 13 1
104 % i I 10t
e | {?' L
t 104
g

Figure 6. IDMAP plot for the impedance spectra for different concentrations

of:——=PCA3 complementary sequence. non-complementary sequence. Each
point corresponds to an impedance spectrum obtained with the genosensor. Note that

the axes are not labelled because in IDMAP plots what matters is the relative distance

between projected data points.

The genosensors could also detect PCA3 using UV-vis. spectroscopy. Film
growth on a quartz plate was monitored by measuring the spectrum after depositing
each AuNP-CS/Probe bilayer. The spectra in Figure S3 in the Supporting Information
feature a band at 550 nm for gold nanoparticles, which increases with deposition of
additional layers up to the 5th layer, as seen in the inset of the figure. Based on these
results, the genosensors were made with 5 AuNP-CS/Probe bilayers deposited on
quartz. Figure 7 shows the absorption spectra for the genosensors exposed to different
PCA3 concentrations. The band at 260 nm is assigned to absorption of DNA bases of
the PCA3 probe and its intensity decreases with increasing PCA3 concentration.[41]

This decrease is due to the so-called hypochromic effect,[42] explained as follows. The

16



O Jo) 0w N

OO U UGG UIOTE BRSNS DLDDRERNEODWWWWWWWWWNNNNONNONNNMNONNMNONNERE R PR PR R
O WNRFRPOWOVWOIJATREWNR,OW®O-JAUDWNRFROWOWO-JHNTRWNROWOW-TJANUBRWNREOWW--JNU N WN R O WO

close interaction between stacked bases in nucleic acids causes a decrease in UV light
absorption compared to that the absorption of a solution with the same concentration of
free nucleotides. It is worth mentioning that this hypochromic effect does not occur
when the genosensor is exposed to the non-complementary sequence, as seen in Figure

S7 in the Supporting Information.
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Figure 7. Absorbance spectra for genosensors made 5-bilayer AuNP-CS/Probe films

deposited onto quartz exposed to various concentrations of PCA3 in PBS solutions

Note in Figure 8 that the absorbance decreased up to 10 uM showing a small
increase for higher concentrations. This is consistent with the electrochemical
impedance measurements which presented saturation from the same concentration,
indicating there were no more free probes at higher concentrations. For this technique
the detection limit calculated according to [UPAC recommendation was 900 pM. For

better visualization the x axis in Figure 7 was multiplied by (-1). For UV-vis detection
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no isotherm fitted the calibration curve owing to the decrease in absorbance at high

concentrations.
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Figure 8. Change in the relative area below the 260 nm band versus PCA3

concentration.

All the techniques employed here for PCA3 gene detection were successful, with
electrochemical impedance being the most sensitive with the lowest detection limit. The
sensitivity even with the most efficient method is not as high as the one obtained by Fu
and colleagues[20] who employed surface-enhanced Raman scattering (SERS) with a
device using a PCA3 mimic. The genosensor developed here is nevertheless attractive
because it has the advantage of ease of production with low cost; in addition, no

sophisticated equipment is required unlike the more sensitive SERS sensor[20].
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Diagnosis with image analysis employing machine learning

One of the easiest ways to obtain a fast diagnostic with present technology is to
take a picture of a sensing unit exposed to the sample and process the image. This is
different from the standard approaches involving image analysis for diagnostics because
the image is taken not from the biological sample itself but of the sensing unit. Hence,
this strategy will only work if the detection procedure leads to a change in texture or
morphology or any other image feature of the sensing units. Since it is well established
that the surfaces of biosensors are altered during the measurements, it seems natural to
assume that such changes could be utilized for diagnosis. Yet, this strategy has not been
explored in the literature. To the best of our knowledge the only work based on image
analysis of sensing units is our own[29]in which we proved that the standard deviation
of the circularity of objects on SEM images correlated with the concentration of a
cancer biomarker. We have therefore decided to extend this research and apply machine
learning to the images of genosensors subjected to the same procedures as in the

electrochemical and optical detection in the previous subsection.

A typical set of representative images are illustrated in Figure 9. We used SEM
imagesfor proof-of-concepts experiments, though we know ideally one should use
optical images. For if the strategy does not work with SEM images that are expected to
capture the nanoscopic changes owing to hybridization in the genosensors, it is unlikely
that it would work with optical images. The classification was performed in 3 datasets,
which differs in number of examples (Table S2) according to the window sizes of the
segmentation. The best results for both binary and multiclass classification shown in
Table 2 were obtained using the dataset with the windows size of 300x300 pixels (the
results for the two other datasets are given in Tables S4 and SS5). In the table, the

accuracy and standard deviation (in parenthesis) for each combination of texture
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analysis technique and classifier are reported. We used the classifiers Support Vector
Machine (SVM) (linear kernel), Linear Discriminant Analysis (LDA)[43] and 1-Nearest
Neighborhood (1-NN). The maximum accuracy was 99.9 (0.3) using the LCFNN
descriptor with SVM and LDA classifiers in the binary classification. In this procedure,
the classification system had the task to distinguish the images of sensing units exposed
to PCA3 (with all concentrations put together) from those which were not (negative and

blank). Thus, the accuracy indicates a strong ability to separate the two classes.

(e) ® (® (h)

Figure 9. Examples of SEM imagens of the sensor unity with (a) negative sequence, (b)
blank and PCA3 biomarker with concentrations (umol.L') in increasing order (left-

right): (c) 105, (d) 10%, () 103, (f) 102, (g) 10, (h) 1.
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Table 2. Accuracy in binary and multiclass classifications for the dataset with

window size of 300x300 pixels.

Texture Techniques Binary Multiclass
Classifier LDA SVM 1-NN LDA SVM 1-NN
GLDM 92.8(6.7) 98.7(1.3) 98.5(1.3) |75.7(44) 79.3(3.3) 62.8(3.8)
Fourier 92.4(5.5) 97.1(1.9) 98.6(1.2) |56.3(5.7) 759(@(3.9) 67.2(5.2)
CNTD 98.1(1.8) 96.9(1.9) 97.3(2.0) |68.6(5.3) 755(3.4) 62.6(4.1)
Fractal 92.9(5.8) 97.9(1.5) 96.3(2.9) |59.5(5.2) 642(4.0) 52.7(4.8)
AHP 98.9(1.3) 98.8(1.3) 98.4(1.3) |66.7(6.2) 782(3.7) 68.4(4.9)
LBP 99.0(1.3) 98.6(1.4) 94.6(3.3) |76.5(4.7) 74.7(3.5) 725(4.7)
CNRNN 98.1(1.7) 98.9(1.0) 98.9(1.0) |72.7(4.3) 82.4(3.5) 70.4(3.7)
LCFNN 99.9 (0.3) 99.9(0.3) 99.5(0.9) |88.3(3.4) 86.9(3.1) 80.3(3.8)

When a multiclass classification was attempted, the accuracies decreased

because a visual inspection of the images indicates that the changes are small for low

PCA3 concentrations. The most efficient combination of texture technique and classifier

was based on the LCFNN descriptor and LDA algorithm with an accuracy of 88.3%

(3.4). The table also shows that overallthe SVM and LDA classifiers combined with

LCFNN, CNRNN, and GLDM texture techniques are the most appropriate to separate

the groups. The details of all the image processing and the results for all the algorithms

and classification conditions are given in the Supporting Information.

The results from the analysis of SEM images of the genosensing units amount to

a demonstration that image processing may be a powerful option to complement
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electrical, electrochemical and optical principles of detection. Nevertheless, the
accuracy in discriminating all of the PCA3 concentrations used in the experiments was
88.3%, while with the electrochemical and optical methods full distinction could be
reached.Hence, in further studies we shall explore different image analysis techniques to
improve the accuracy in the multiclass scenario, including Convolutional Neural

Networks (CNN)[44].

Conclusions

We designed a genosensor made with LbL films coated with a layer of a PCA3
probe which proved effective in detecting PCA3 with different principles of detection.
The most effective was electrochemical impedance spectroscopy, with which a limit of
detection of 83 pM was reached, being more sensitive than the genosensor from our
previous work*’probably owing to the incorporation of gold nanoparticles in the LbL
film. Using the multidimensional projection technique IDMAP we demonstrate that full
distinction of all PCA3 concentrations can be achieved. The high sensitivity and
selectivity is related to hybridization, which is very specific, confirmed with PM-
IRRAS. The second most efficient method was UV-Vis. spectroscopy, and this is
particularly significant because one may now envisage the development of colorimetric

tests.

The PCA3 concentration dependence of the electrochemical measurements
could be explained with Freundlich and Langmuir-Freundlich models as if hybridization
could be simulated as an adsorption process. This specific interaction did affect the
morphology of the genosensors when exposed to different PCA3 concentrations or in

control experiments, and this allowed us for the firsttime attempt to detect a cancer
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biomarker via machine learning of SEM images of the genosensors. The results are
encouraging since almost full distinction could be reached for a binary classification for
samples with and without PCA3. On the other hand, the distinguishing ability in the
multiclass case can still be improved if compared to the other methods (with
electrochemical and optical measurements). We should also mention the limitations of
our use of machine learning, stemming from the small number of images per condition
and the need to employ data augmentation. These issues should be addressed in the
future to confirm that no overtraining of data occurs. One may be optimistic
nevertheless for further studies including different image analysis techniques since it
has already been proven that image contents are correlated with biomarker

concentration®’.

Taken together, we believe that the results and concepts reported here may pave
the way for a new era of diagnostics — not only for prostate cancer — where simple
detection methods may be employed which can be leveraged with machine learning of

images of the sensing units themselves.
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Cover Letter

Prof. Justin Gooding

Editor-in-Chief of Talanta

Dear Jean-Michel Kauffmann,

I hope you and family are doing well and healthy in this difficult time with the COVID-19
pandemic.

Please find attached the manuscript entitled “Electrochemical and optical detection and machine
learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker
PCA3”, which we submit for publication in Talanta. There are two main reasons why we chose
Talanta for this manuscript:

1)

2)

To the best of our knowledge, this is the first example of machine learning being applied
in diagnosis using image analysis of the sensing units (not of biological samples). This
new approach appears extremely promising as it may allow one to reach the diagnostics
by simply taking pictures of the sensing units before and after use. In the manuscript we
demonstrated that image analysis can be used for such purposes from scanning electron
microscopy (SEM) images. We started with this type of image because we thought it to
be more likely to lead to interesting results since the changes in film morphology occur at
the nanoscopic level. We shall try other types of images in the near future, including from
smartphone cameras and optical microscopes that can be coupled to smartphones. This
will be much more challenging, and will require a new fully-fledged study. We wanted to
publish the first results with SEM images, nevertheless, because we wish to be the first to
report it (it is such a simple idea that sooner or later other researchers will think of it) and
stir the attention of the sensing and biosensing community.

We used different methods to detect the biomarker PCA3, including an optical method,
and this may open new avenues for prostate cancer diagnosis. PCA3 is very specific for
prostate cancer and its detection may be a game changer. There only a few papers in the
literature related to its detection. Apart from the molecular techniques (i.e. polymerase
chain reaction), we could only find two papers: one using surface-enhanced Raman
scattering and the other is our previous paper published last year in ACS AMI. We
believe this latter paper should not preclude the publication of this manuscript because
here we employed three distinct detection principles, including optical absorption. This is
in addition to the use of machine learning as mentioned above.

Because we believe the new approach with machine learning may represent a paradigm
shift in diagnosis (I hope you and the reviewers will appreciate that we are doing image



processing on the sensing units themselves, and not on biological samples which is rather
standard by now), Talanta would be the best vehicle to disseminate these ideas.

As we finished the manuscript, we noted that it is longer than recommended for Talanta.
We did not want to shorten it though to facilitate the understanding by the readers as
there are different topics addressed.

With my best regards

Osvaldo (chu@ifsc.usp.br)
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To the best of our knowledge, this is the first example of machine learning being
applied in diagnosis using image analysis of the sensing units (not of biological
samples). This new approach appears extremely promising as it may allow one to reach
the diagnostics by simply taking pictures of the sensing units before and after use. In the
manuscript we demonstrated that image analysis can be used for such purposes from

scanning electron microscopy (SEM) images.
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Genosensors made with carbon printed electrodes coated with layer-by-layer (LbL)
films containing gold nanoparticles and chondroitin sulfate and a layer of a
complementary DNA sequence (PCA3 probe).
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* Low-cost biosensors fabricated with gold nanoparticles and chondroitin sulfate used
for detecting PCA3 biomarker.

*PCA3 detection from machine learning algorithms to classify scanning electron
microscopy images of the genosensors measurements with an accuracy of 99.9%

*Genosensors with different detection principles for a prostate cancer specific DNA
sequence (PCA3). The highest sensitivity was reached with electrochemical impedance
spectroscopy with the detection limit of 83 pM



Table

Table 1. Description of the SEM images taken with genosensing units exposed to a
negative (non-complementary) sequence, a blank (PBS solution with no
biomarker) and PBS solutions containing various PCA3 concentrations. Also

informed are the size of the images (in pixels) and number of samples for each

condition.
1024 x 768 2048 x 1536
Analyte Class Name (label) . X . X Total
(pixels) (pixels)

Negative sequence (non-

negative (n) 2 0 2
complementary)
Blank (for control) zero (0) 3 0 3
[PCA3] =107 pmol.L"! positive 10-° (p_0p00001) 2 2 4
[PCA3] = 10"* pmol.L" positive 10 (p_0p0001) 1 3 4
[PCA3] =10~ pmol.L"! positive 107 (p_0p001) 0 4 4
[PCA3] =10~ pmol.L" positive 102 (p_0p01) 3 3 6
[PCA3] = 10" pmol.L"! positive 10" (p_0p1) 5 0 5

[PCA3] =1 pmol.L"! positive 1 (p_1p0) 4 0 4




Table

Table 2. Accuracy in binary and multiclass classifications for the dataset with

window size of 300x300 pixels.

Texture Techniques Binary Multiclass
Classifier LDA SVM 1-NN LDA SVM 1-NN
GLDM 92.8(6.7) 98.7(1.3) 98.5(1.3) |75.7(44) 79.3(3.3) 62.8(3.8)
Fourier 92.4(5.5) 97.1(1.9) 98.6(1.2) |56.3(5.7) 759(3.9) 67.2(5.2)
CNTD 98.1(1.8) 96.9(1.9) 97.3(2.0) |68.6(5.3) 755(3.4) 62.6(4.1)
Fractal 92.9(5.8) 97.9(1.5) 96.3(2.9) |59.5(5.2) 642(4.0) 52.7(4.8)
AHP 98.9(1.3) 98.8(1.3) 98.4(1.3) |66.7(6.2) 782(3.7) 68.4(4.9)
LBP 99.0(1.3) 98.6(1.4) 94.6(3.3) |76.5(4.7) 747(3.5) 72.5(4.7)
CNRNN 98.1(1.7) 98.9(1.0) 98.9(1.0) |72.7(4.3) 82.4(3.5) 70.4(3.7)
LCFNN 99.9 (0.3) 99.9(0.3) 99.5(0.9) |88.3(3.4) 86.9(3.1) 80.3(3.8)
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