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ABSTRACT 

Plug-in Hybrid Electric Vehicles (PHEVs) offer a promising solution for the increasing 

CO2 emission problem. However, the improved economy of PHEVs strongly depends on 

the control strategy that decides on the power distribution between the Internal Combus-

tion Engine (ICE) and the electric battery. Traditional rule-based control strategies are no 

more practical considering the increasing and more complex control objectives intro-

duced by the emerging technologies such as automated driving and connected vehicles. 

In this study, an advanced Energy Management Strategy (EMS) based on Deterministic 

Dynamic Programming (DDP) and Reinforcement Learning (RL) is developed. 

DDP solves a finite-horizon optimization problem given the driving cycle a priori to ob-

tain a global optimal vehicle power distribution that contributes mostly to the fuel econ-

omy improvements. DDP results are used to benchmark the subsequent RL-developed 

algorithms’ performance. In the newly proposed control strategy, an adaptive online 

learning RL agent is introduced into the existing Hybrid Control Unit (HCU) architecture 

solving the EMS for near-optimal solutions. 

The objective is to minimize the vehicle's expected total fuel consumption with a proper 

battery depletion rate besides penalizing the frequent engine on/off switching. Several 

RL-based algorithms have been experimented with using a vehicle model simulation. As 

a result, an Extended Deep Q-Network (E-DQN) agent is proposed by the thesis, trained 

on one cycle, and deployed on two other cycles to evaluate the performance. The thesis 

findings showed that E-DQN outperformed the rule-based strategy achieving up to 

10.46% improvement in fuel economy closer to the DP performance alongside providing 

adequate compliance with the vehicle drivability and driver comfort objectives. 

Keywords: Plug-in Hybrid Electric Vehicles, Energy Management Strategy, Determin-

istic Dynamic Programming, Reinforcement Learning, Machine learning, Deep Neural 

Networks, Model-based RL. 
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KURZFASSUNG 

Plug-in-Hybrid-Elektrofahrzeuge (PHEV) bieten eine vielversprechende Lösung für das 

Problem der zunehmenden CO2-Emissionen. Die verbesserte Wirtschaftlichkeit von 

PHEVs hängt jedoch stark von der Regelungsstrategie ab, die über die Leistungsvertei-

lung zwischen dem Verbrennungsmotor und der elektrischen Batterie entscheidet. Her-

kömmliche regelbasierte Steuerungsstrategien sind angesichts der zunehmenden und 

komplexeren Steuerungsziele, die durch neue Technologien wie automatisiertes Fahren 

und vernetzte Fahrzeuge eingeführt werden, nicht mehr praktikabel. In dieser Studie wird 

eine fortschrittliche Energiemanagement-Strategie (EMS) entwickelt, die auf Determinis-

tischer Dynamischer Programmierung (DDP) und Reinforcement Learning (RL) basiert. 

DDP löst ein Optimierungsproblem mit endlichem Horizont, bei dem der Fahrzyklus a 

priori gegeben ist, um eine globale optimale Leistungsverteilung des Fahrzeugs zu erhal-

ten, die hauptsächlich zur Verbesserung des Kraftstoffverbrauchs beiträgt. Die DDP-Er-

gebnisse werden als Benchmark für die Bewertung der Leistung der anschließend entwi-

ckelten RL-Algorithmen verwendet. In der neu vorgeschlagenen Kontrollstrategie wird 

ein adaptiv online lernender RL-Agent in die bestehende Hybrid-Steuergerät-Architektur 

integriert. Die mittels DDP ermittelte (optimale) Leistungsverteilung, kann mit dem RL-

Agenten nahezu erreicht werden.  

Ziel ist es, den erwarteten Gesamtkraftstoffverbrauch des Fahrzeugs mit einer angemes-

senen Entladungsrate der Batterie zu minimieren und gleichzeitig das häufige Ein- und 

Ausschalten des Motors zu bestrafen. Mehrere RL-basierte Algorithmen wurden anhand 

einer Fahrzeugmodellsimulation erprobt. Als Ergebnis wird in dieser Arbeit ein Erwei-

terter Deep Q-Network (E-DQN) Agent vorgeschlagen, in einem Zyklus trainiert und in 

zwei weiteren Zyklen eingesetzt, um die Leistung zu bewerten. Die Ergebnisse der Arbeit 

zeigen, dass E-DQN die regelbasierte Strategie übertrifft und eine Verbesserung des 

Kraftstoffverbrauchs bis zu 10,46 % gegenüber der DP-Leistung erzielt und gleichzeitig 

eine angemessene Einhaltung der Fahrbarkeits- und Fahrerkomfortziele des Fahrzeugs 

gewährleistete. 

Schlüsselwörter: Plug-in-Hybrid-Elektrofahrzeuge, Energiemanagement-Strategie, Rein-

forcement Learning, Maschinelles Lernen, Deep Neural Networks, Modellbasierte RL. 
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1 INTRODUCTION 

1.1 PROBLEM DEFINITION 

By the end of the 19th century, a major technological invention emerged which dramati-

cally changed societies in many countries later in the 20th century. This invention was 

the vehicle that therefore established the automotive industry. Originally, the automobile 

was electrically powered, but with the discovery of fossil fuel resources around the world, 

the internal combustion engine vehicle quickly dominated the vehicles’ powertrain archi-

tectures. 

The automotive industry has been one of the most important and influential sectors since 

the end of the Second World War, and its worldwide emerging has been spectacular. The 

global annual car production exceeded 92.78 million units by the end of 2019 [1], and the 

fleet is estimated to have exceeded 1.32 billion by 2016 in comparison with 0.67 billion 

in 1996 [2]. The automobile revolutionized transportation, development of the economy, 

cultural exchanges and has led to massive development of new infrastructures such as 

roads, highways, and car parking, etc. 

Despite the amelioration to the user’s mobility and comfort, the automobile has been the 

subject of significant criticism, especially for its environmental impacts such as the use 

of non-renewable energies, atmosphere, and noise pollution. The combustion engine op-

eration releases harmful air pollutants such as Carbon Dioxide (CO2), Carbon Monoxide 

(CO) and Nitrogen Oxides (NOx) released into the atmosphere regularly. An EU passen-

ger car releases on average 140 g/km of CO2 in comparison to 190 g/km of CO2 in higher 

polluting fleets such as in the USA as reported in 2010 and shown in Figure 1 [3]. The 

resultant gases, known as greenhouse gases, heat the climate considerably over years 

causing global warming. Scientists warn of possible consequences such as rising sea lev-

els, melting glaciers, extreme rain, and heatwaves [4].  

For the sake of alleviating global warming and emission problems, governmental legis-

lation is defined to set emission levels for automotive manufacturers. Figure 1 shows a 

comparison of the global CO2 regulation standard for passenger cars normalized to the 



1 Introduction  

2 

New European Driving Cycle (NEDC) in gCO2/km. EU passenger cars are restricted to 

95 g/km for 2020 in comparison to 93 g/km for 2025 in the US standard, 117 g/km and 

105 g/km by 2020 for China and Japan respectively [5].  

The automotive industry exerts tremendous efforts to keep up with the emissions standard 

side by side with balancing customer acceptance and profits simultaneously. Several 

OEMs invested in improving the ICE technology to minimize fuel consumption and emis-

sions while others develop new vehicles depending on alternative sources of energy such 

as organic fuels, solar energy, electric battery, and hybrid electric vehicles. 

1.2 MOTIVATION 

New vehicle concepts were developed such as Electric Vehicle (EV) that is defined as a 

vehicle propelled by a motor operating exclusively on electric power. On the contrary, 

Hybrid Electric Vehicle (HEV) combines two or more energy sources, typically fuel and 

electric energy as considered in this thesis. EVs are promoted by the automotive manu-

facturers as one of the cleanest and most ecological transport solutions where it could 

 

Figure 1 - Passenger car CO2 emission standard and fuel consumption, normalized to 

New European Driving Cycle (NEDC) [3] 
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indeed be an alternative to such urgent pollution problems. EVs have numerous ad-

vantages such as unprecedented motor performance and driving experience in addition to 

minimal operating emissions, noise pollution, and maintenance cost.  

Nevertheless, the EV market is not growing as fast as expected due to several drawbacks 

such as the relatively high cost of the vehicle, and the non-zero carbon footprint associ-

ated with battery production and end-of-life vehicle waste management. Customers’ ac-

ceptance level is highly affected by the EVs limited range and the painfully long charging 

time, which ranges from 30-40 minutes with DC Fast Chargers (Level 3 charging) for 

80% state of charge, up to 60 hours for a full charge of Nissan Leaf from 120 V home 

socket (Level 1 charging) [6-7]. 

In the context of the transition towards a sustainable and more ecological energy system, 

vehicles hybridization is widely considered a promising technique to overcome the draw-

backs of EVs with nowadays technology level. Accordingly, HEVs are the subject of 

significant scientific research and industrial development. 

The hybrid vehicles concept goes back to the end of the 19th century when the first hybrid 

vehicle "Lohner-Porsche Mixte Hybrid " was developed by Ferdinand Porsche in 1898 

[8]. Several automotive companies invested in the development of hybrid vehicles till the 

F3DM PHEV-60 hatchback was released in 2008 by the Chinese manufacturer BYD 

Auto as the first Plug-In Hybrid Electric Vehicle (PHEV) to be sold in the market [9]. 

PHEVs, which are the focus of the thesis, are full hybrids equipped with a large capacity 

battery that can be recharged from the network. They can thus ensure 100% electric pro-

pulsion over at least 45 km in All-Electric Range (AER). Compared to full-hybrids, their 

lithium-ion battery stores 6 to 14 kWh in addition to a charger on board.  

Plug-in hybrids offer a significant improvement in CO2 emissions showing less than 50 

g/km (less than 2.2 l/100 km) in the Worldwide Harmonized Light Vehicles Test Proce-

dure (WLTP). This market is mainly occupied currently by high-end brands such as 

BMW, Audi, or Porsche. The German market alone has 64% of the registered new electric 

passenger vehicles as PHEVs [10]. The growth of annual registrations of plug-in electric 

passenger vehicles in Europe between 2011 and 2020 is shown in Figure 2. It 
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demonstrates that PHEVs contribute to 45% of Europe’s electrified passenger vehicles in 

2020 in comparison to just 3.3% in 2011. 

In the case of hybrid vehicles, the power distribution is more complex than conventional 

engine vehicles, in which the power required is supplied only by the engine, because of 

the necessity of managing two distinct energy sources, fuel, and electrical energy. The 

battery performs an energy buffer function to increase the overall efficiency of the system 

through two mechanisms. The first mechanism depends on the controllability of the ICE 

operating point because the output power of the engine is no longer imposed by the power 

supplied to the wheels. At any time, it is possible to make the engine operate at an efficient 

load point where the difference between the power supplied, and the power consumed by 

the traction is to be supplied by the battery. Since the operation of the electric machine is 

reversible, it is also possible to recover the kinetic energy of the vehicle during the brak-

ing phases and to store it in the battery for later use. 

Correct coordination of engine power and electrical power usage reduces energy conver-

sion and transmission losses from the energy source to the wheels, and therefore fuel 

 

Figure 2 - Growth of annual registrations of plug-in hybrid electric passenger cars in 

Europe between 2011 and 2020 [11] 
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consumption and associated emissions are reduced. The key to success is the quality of 

the on-board energy management strategy which controls the contribution of each source 

in response to the driver's request through the accelerator pedal. The objective of this 

strategy shall be to control energy flows in such a way that fuel consumption and emis-

sions are minimized. 

Under the assumption of complete prior knowledge of the driver's demand along the trip 

(driving cycle), the best energy flow distribution between both sources can be determined 

by applying mathematical theories, typically the Pontryagin Minimum Principle (PMP) 

and DP [12-13]. These methods are called "offline" while they cannot be used on the 

onboard system in practice because the reality does not allow such full knowledge of the 

driving cycle a priori. 

Therefore, a real-time energy management strategy is needed that extends the system ca-

pabilities to deal with stochastic scenarios and immediately makes the power distribution 

decision. This type of strategy is called “online”. Online strategies get sub-optimal results 

compared to optimal results from offline strategies.  

Designing an optimal online strategy for real-world driving applications remains a chal-

lenge and an open question in research for years. Several real-time strategies have been 

developed since the 90s emphasizing the complexity of classical control techniques to 

optimally solve this problem because of the uncertainty and the system dynamics com-

plexity. 

1.3 THESIS OBJECTIVE AND CONTRIBUTION  

The thesis research is based on P2-PHEV configuration with the existing hybrid control 

units implemented by the industrial partner, AVL List GmbH. The objective is to inves-

tigate and apply advanced online onboard energy management strategy using modern 

techniques such as machine learning and artificial intelligence. The developed strategy 

shall overcome the limitations of the offline strategies and provide improvement to the 

vehicle fuel consumption and emissions level. 
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The contribution of this thesis is the development of such advanced EMS based on rein-

forcement learning that enables HEV’s real-time control to meet the desired optimization 

objectives. First, a vehicle model is built, and a global optimization technique is used to 

derive the optimal EMS for the available driving cycles as input. Then, reinforcement 

learning-based EMS is introduced to enable real-time control applying the Q-learning 

algorithm. Several techniques such as Deep Neural Networks (DNNs) and model-based 

reinforcement learning are presented and experimented with. The proposed methodology 

combined some of these techniques into an Extended-Deep Q-Network (E-DQN) agent. 

E-DQN is tested and verified in a model-in-the-loop environment and recommendations 

for subsequent steps till the vehicle-in-the-loop validation are provided. 

1.4 THESIS OUTLINE 

The thesis is composed of six chapters: Chapter 1 describes the thesis background and 

motivation including an introduction to the EVs, HEVs, and challenges associated with 

each technology. Finally, the thesis ultimate objectives and contribution are clearly de-

fined. Chapter 2 discusses the hybrid vehicle technicalities, classification, and different 

powertrain concepts. Additionally, control-oriented vehicle model implementation and 

validation are demonstrated as part of the environment model used throughout the energy 

management strategy development. Chapter 3 outlines the state-of-the-art energy man-

agement strategies in hybrid electric and plug-in hybrid electric vehicles.  

Chapter 4 clarifies Global OPtimization techniques (GOP) that are used as a benchmark 

and criterion for the developed strategies’ performance. Moreover, the implementation of 

the two algorithms, tabular Q-Learning and Deep Q-Network (DQN), while adopting the 

latter for the rest of the thesis, is discussed. Several improvement techniques for DQN are 

illustrated and subsequently, several experiments on both algorithms with the correspond-

ing modifications are conducted throughout Chapter 5 to further increase learning effi-

ciency and improve strategy performance. Simulation analysis and results are outlined 

using diverse driving cycles for the evaluation of the proposed strategy as well. Chapter 

6 includes a summary and concluding remarks as well as recommendations for further 

improvements based on the thesis findings for future research. 
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2 TECHNICAL FRAMEWORK 

This chapter explains hybrid vehicles’ technicalities, terminologies, and different power-

train concepts in order to introduce the architecture used later in the EMS development 

process. HCU’s software architecture and hybrid modes utilized by the industrial partner 

AVL List GmbH are discussed to give a deep understanding of the plant to be controlled 

in the subsequent chapters. Afterward, a control-oriented vehicle model, used later for 

developing the EMS, is implemented and validated with a high-fidelity model provided 

by the AVL DSP team.                                                                                                                                                                                                                                           

2.1 HYBRID VEHICLES CLASSIFICATION 

2.1.1 HYBRIDIZATION LEVELS 

Automotive manufacturers and suppliers often use classification for the hybrid electric 

vehicles according to the Hybridization Factor (HF), defined as the ratio between the 

power of the electric machine and the power of the ICE. This type of classification dis-

tinguishes between four technological levels/concepts: micro hybrid, mild hybrid, full 

hybrid, and plug-in hybrid level. The reader is referred to reference [14] for more details. 

The plug-in hybrid level has a traditional EMS that favors the use of electric propulsion 

up to the minimum state of charge of the battery, then switching to ICE propulsion mode. 

In comparison to the other non-rechargeable hybrid levels (micro, mild and full hybrid), 

the battery of the plug-in hybrid has much higher energy storage capacity which provides 

an extended AER. When the battery is nearly empty, it can re-operate as a non-recharge-

able hybrid electric vehicle. 

2.1.2 POWERTRAIN ARCHITECTURES 

The architecture of a hybrid vehicle's powertrain is more complex in comparison to the 

traditional vehicles. It can be classified into three different powertrain architectures: se-

ries, parallel, and power-split (series/parallel). The latter architecture falls within the 
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thesis scope and the reader is referred to reference [15] for more details regarding the 

other architectures.  

The power-split architecture, shown in Figure 3, makes it possible to achieve a synergy 

based on the advantages of the series and parallel architectures. The ICE operates at op-

timum efficiency and can provide propulsion solely, avoiding the accumulation of energy 

conversion losses. The power-split architecture is more complex with three energy sys-

tems with several electrical and mechanical couplings in between, which underlines the 

need for an adequate energy management strategy to control such complex transmissions 

efficiently. 

 

 
 

Figure 3 -  Hybrid vehicle power-split (parallel/series) configuration [15]. 

2.1.3  POWERTRAIN CONFIGURATIONS 

Classifying HEV topologies based on the location of the EM in the powertrain system is 

another common classification used by OEMs. As illustrated in Figure 4, HEV configu-

rations range from P0 to P4 topologies.  

P0 HEVs feature a Belt Driven Starter/Generator (BSG) that is directly coupled to the 

ICE while P1 locates the EM on the crankshaft, known as Integrated Starter/Generator 

(ISG). P2, the configuration used throughout the thesis, locates the EM on the gearbox 

input, after the clutch. A separation clutch (K0) is an essential clutch in all P0-P4 power-

trains. However, a start-up clutch (K1) is an additional clutch only used for P2 HEVs. 

The P2 configuration offers higher efficiency without ICE drag torque losses by 
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disconnecting it from the EM which makes pure electric drive possible. P3 has an EM at 

the gearbox output and P4 at the driving axle, connected to wheels all the time [16- 18].  

2.2 HYBRID CONTROL UNITS 

Fuel improvement in HEVs ranges from 10% in mild hybrids up to more than 30% for 

highly hybridized vehicles [19]. Providing the HCU with sophisticated strategies is 

needed to realize such potential. As a vital component in the powertrain, HCU works 

coherently with several vehicle subsystems such as Human-Machine Interface (HMI) 

with the driver’s demands, Transmission Control Unit (TCU), Engine Control Unit 

(ECU), Battery Management System (BMS), etc. The aforesaid systems send status sig-

nals, several limitations, and requests to the HCU as shown in Figure 5. All inputs com-

bined with the driving situation are processed within the HCU and the target “optimum” 

settings of drive train components (“optimum” hybrid operation mode) are selected. 

PHEVs are characterized by having batteries with relatively large capacities. They share 

the major characteristics with the HCUs of the traditional HEVs but with an additional 

control layer to provide all-electric driving within the AER. HCU with Energy Storage 

System (ESS) provides two State of Charge (SoC) change-modes in the long-distance 

range: Charge-Depletion (CD) and Change-Sustaining (CS). CD mode can be classified 

as Electric Drive (EltlDrv) mode or blended mode. SoC depletes faster in the EltlDrv 

mode in comparison to the blended mode because the latter starts ICE frequently in be-

tween. Battery operation modes in PHEVs are explained as follows: 

 

Figure 4 – The configurations of HEVs based on the EM location [17]. 



2 Technical framework  

10 

 

 

− EltlDRV mode within the AER: Thanks to the PHEVs’ large size batteries and 

EM, the vehicle can be propelled electrically for a specified distance, the AER. 

This mode is trip distance-dependent and is allowed to be used within the AER 

where SoC decreases the fastest. The ICE is allowed to start in this mode range if 

the driver power demand is more than the maximum battery and EM-provided 

power. 

− CDCS mode: This mode is the most common strategy in PHEVs when the trip 

distance is larger than the AER. The vehicle drives in the CD mode (EltlDRV 

mode) and then shifts to the CS mode when the SoC reaches a certain pre-defined 

value. During CS mode, vehicle traction power is provided by the ICE or both the 

ICE and the EM. Consequently, SoC variations in the CS mode are always limited 

and sustained within a certain narrow range in the long term. The CS mode is used 

until an external charging process is initiated.  

− Controlled blended mode: This mode is based on depleting SoC throughout the 

whole trip by starting the ICE frequently in between to reduce the SoC depletion 

rate in a controlled fashion. 

 

Figure 5 - Various input signals from vehicle components and output signals utilized by 

HCU, source: HCU software architecture documents, AVL List GmbH. 
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It is preferred for PHEVs to run out of charge after a driving trip, where there is supposed 

to be an external charging source to offer a battery charge. In this case, more electricity 

is utilized, which means more fuel is saved [20]. 

P2-HCU has a model to generate the quasi-stationary requests for ICE, EM, and drivetrain 

configuration which are calculated in parallel for each hybrid mode as shown in Figure 6 

and as follows:  

− Conventional Drive (ConvDrv): ICE is the only propulsion source and supply-

ing the low voltage auxiliaries. 

− Additive Boost (AddBoost): the driver demanded traction torque exceeds the 

maximum ICE torque under the current engine speed where the EM works as a 

torque reserve without downshifting the ICE. This mode can be enabled within 

the AER, where the PEHV initially drives electrically.  

− Substitute Boost (SubBoost): the demanded torque is relatively high, so part of 

the torque is going to be offered by the EM. The ICE can work on an optimal 

efficient operation point without upshifting the load point. This mode does not 

exist in the actual P2-HCU anymore. Therefore, it is not considered in this work. 

−  Optimum Generation (OptmGentn): The ICE load point is increased to a better 

fuel-economy location under the same speed. The EM works as a generator for 

charging the High Voltage (HV) battery with the leftover power from the ICE.  

− Minimum Generation (MinGentn): a mode designed for battery health by keep-

ing the SoC above a lower threshold. The ICE offers more power than the driver’s 

demand, thus EM works as a generator to charge the HV battery and prevents too 

deep depletion.  

− Idle Generation (ldleGentn): the vehicle is standing still and SoC drops below 

the lower SoC threshold. The ICE runs at the idle speed and charges the battery 

with the EM in the generation mode and no power is transferred to the wheels.  

− Electric Drive (EltlDrv): The EM is the only source of propulsion. This mode is 

the most commonly used in PHEV. The battery offers propulsion energy and 
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powers the low voltage auxiliaries while the ICE is shut down. Electric creep for 

low velocities range is included in this mode as well.  

− Recuperation (Recup): a regenerative breaking mode that uses the generator 

negative torque to slow down the vehicle. Most of the recuperation energy can be 

utilized to charge the battery due to the large battery capacity and efficient EM 

generation mode in P2-PHEV.  

− Stop/Standstill (St/Sndtl): A vehicle’s stationary mode where the vehicle is not 

moving, and the ICE is turned off. The main functionality is to stop the ICE and 

enable the EM speed control to activate the transmission oil pump that is used to 

control the clutches of the Dual Clutch Transmission (DCT). 

The P2-HCU hybrid modes are summarized in Table 1 with the different drivetrain com-

ponent statuses in each mode. The generation modes, OptmGentn, MinGentn, and 

ldleGentn, use the EM as a generator to charge the HV battery. However, MinGent and 

IdleGent are only selected when the SoC is below a certain threshold. Therefore, the ICE 

is not guaranteed to run on the optimal load point and accordingly, they are considered 

emergent generation modes. On the contrary, OptmGentn is selected based on the energy 

management strategy, and ICE is operated in the optimal zone. 

The boost modes, AddBoost and SubBoost, offer cooperation between the ICE and the 

EM to meet the torque demand. The difference is that under AddBoost, the ICE works on 

maximum torque setpoints, while it works in optimal torque setpoints under SubBoost 

decided by the dynamic control as shown in Figure 6. The P2-PHEV’s most frequently 

selected modes are ConvDrv, EltlDrv, and OptmGentn. Accordingly, the proper and op-

timal sequence selection between such modes can guarantee optimal fuel economy be-

havior and minimizes emission levels. 
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Figure 6 - Hybrid mode requests function in P2-HCU, source: AVL DSP team. 

 

Table 1 - P2-HCU Hybrid modes summary. 

  

Mode Torque status ICE EM HV Battery Clutch 

Name Acr   On Off Motor Gen Charge Discharge Closed Open 

        RPMopt RPMNorm               

0 Conventional Drive  ConvDrv Treq < TICE_max - ✔ - - - - - ✔ - 

1 Additive Boost   AddBoost Treq >> - ✔ - ✔ - - ✔ ✔ - 

2 Substitute Boost  SubBoost Treq > TICE/TEM ✔ - - ✔ - - ✔ ✔ - 

3 Optimum Generation  OptmGentn Treq < TICE - ✔ - - ✔ ✔ - ✔ - 

4 Minimum Generation  MinGentn Treq < TICE - ✔ - - ✔ - - ✔ - 

5 Idle Generation  ldleGentn Treq = 0 ✔ - - - ✔ ✔ - - ✔ 

6 Electrical Drive  EltlDrv Treq < TEM - - ✔ ✔ - - ✔ - ✔ 

7 Recuperation  Recup Treq < 0 - ✔ - ✔ ✔ - ✔ 

8 Stop/Standstill St/Sndtl Treq = 0 - - ✔ - - - ✔ - ✔ 
 

2.3 VEHICLE MODEL 

Developing the hybrid energy management strategy requires having a reliable vehicle 

dynamics model that represents the plant to be controlled. The AVL DSP department 

provided a high-fidelity plant model that considers vehicle dynamic characteristics in-

cluding modeling the vehicle behavior during transient driving such as gear shifting. Such 

a model is not suitable for agent development and offline training because it brings a huge 

computational burden and needs complicated numerical solving solutions.  
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Therefore, a simplified quasi-static vehicle model for P2 PHEV is considered to be suf-

ficient enough to maintain the vehicle physical causality and provide a plant model to 

develop the agent quickly and efficiently. A later study will be conducted to compare the 

accuracy of the developed model in energy consumption estimation with the high-fidelity 

plant model.  

2.3.1 MODEL PARAMETERS 

The vehicle powertrain component parameters of the investigated P2 PHEV are supplied 

by the AVL DSP department and listed in Table 2 for the most important parameters. The 

powertrain architecture is shown in Figure 7 as well. 

 

Figure 7 - P2 PHEV powertrain architecture used in the thesis [21]. 

In P2-PHEV, there are several energy-consuming devices in the vehicle called auxiliary 

systems which are for vehicle safety or comfort considerations, e.g. lights and infotain-

ment devices. Indeed, the auxiliary power value changes under various driving conditions 

[22]. Therefore, the auxiliary power consumption is assumed as a constant 500W which 

is a default setting for other existing P2-HCU simulations.  
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Table 2 - Component parameters of the P2 PHEV model, source: AVL DSP department. 

Component Parameter Value 

Vehicle Total mass 2000 kg 

Frontal area 2.35 m2 

ICE Type 1.2L TGDI Gasoline Engine 

Maximum power 102 kW @ 5500 rpm 

EM Type Permanent Magnet Synchronous Motor  

Maximum power 94 kW 

Battery Capacity 14.7 kWh 

Nominal voltage 350 V 

Maximum charge/dis-

charge current 

450 A 

 Useable SoC range 20% - 95% 

Transmission Type 7-speed dual-clutch with gear ratio 

[16.799 9.444 6.323 4.718 3.498 2.776 2.386] 

Misc. Electrical auxiliary load 500 W 

 

2.3.2 LONGITUDINAL VEHICLE MODEL  

The longitudinal vehicle model depends on the dynamics of the vehicle in order to gen-

erate forward motion. It is developed to calculate the power and torque demanded by the 

driver given the operation condition of the vehicle. The free-body diagram of the vehicle 

is shown in Figure 8. 
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Figure 8 - Vehicle free-body diagram. 

Considering the vehicle moves on a road with inclination 𝜃, the power demand 𝑃𝑑 de-

pends on the drivetrain internal power loss 𝑃𝑖𝑛𝑡 𝑙𝑜𝑠𝑠 , and external forces 𝐹𝑒𝑥𝑡 as given by 

equation (2.1): 

 𝜔 is crankshaft rotational speed, 𝜌 is the air density, 𝐴 is the frontal area, 𝐶𝑑 is the aero-

dynamic drag coefficient, 𝐶𝑟 𝑖𝑠 rolling resistance coefficients, 𝑚 is vehicle mass, 𝜃 is the 

inclination angle, and 𝑉 is the current vehicle speed. The drivetrain 𝑇𝑙𝑜𝑠𝑠 results from the 

internal mechanical friction losses which depend on the rotational speed, the torque, and 

the gear selected.  

Gear selection and shifting maps are used as a lookup table for the vehicle model simu-

lation. Figure 9 shows the upshift and downshift maps which are considered only for the 

hybrid mode among others such as Sport and E-drive modes for model simplicity. 

𝑃𝑑 = 𝑃𝑖𝑛𝑡 𝑙𝑜𝑠𝑠 + (𝐹𝑒𝑥𝑡 ∙ 𝑉) (2.1a) 

      = (𝑇𝑙𝑜𝑠𝑠 ∙  𝜔)  + (𝐹𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝐹𝑡𝑖𝑟𝑒 + 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ) ∙ 𝑉 (2.1b) 

      = (𝑇𝑙𝑜𝑠𝑠 ∙  𝜔)  + ( 
1

2
𝜌𝐴𝐶𝑑𝑉2 +  𝑚𝑔 𝑐𝑜𝑠(𝜃)𝐶𝑟 + 𝑚𝑔 𝑠𝑖𝑛(𝜃) + 𝑚𝑎 ) ∙ 𝑉 (2.1c) 
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Figure 9 - The gear shift map for the 7-speed dual-clutch transmission considering 

only the hybrid mode, source: AVL DSP team. 

2.3.3 DRIVETRAIN COMPONENT MODELS 

Vehicle components are developed based on mathematical models and empirical perfor-

mance maps. The ICE has a quasi-static fuel consumption model where the engine tran-

sients are neglected due to being much faster than the vehicle dynamics. The fuel con-

sumption depends on the engine rotational speed 𝜔𝐼𝐶𝐸 and engine torque 𝑇𝐼𝐶𝐸 as de-

scribed by equation (2.2) which is plotted as the ICE Brake-Specific Fuel Consumption 

(BSFC) map in Figure 10. 

 

Figure 10 - ICE BSFC map (g/kWh), source: AVL DSP team. 

𝑚𝑓𝑢𝑒𝑙 𝐼𝐶𝐸 = 𝑓(𝜔𝐼𝐶𝐸  , 𝑇𝐼𝐶𝐸) (2.2) 
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The Electric Machine (EM) model calculates the motor efficiency 𝜂𝐸𝑀 as a function of 

the motor rotational speed 𝜔𝐸𝑀 and the torque 𝑇𝐸𝑀 governed by equation (2.3). The motor 

transient dynamics are assumed to be small, hence neglected. The EM efficiency map for 

both modes, the eMotor in the positive torque region and the inverter in the negative 

torque region, is shown in Figure 11. 

 

𝜂𝐸𝑀 = 𝑓(𝜔𝐸𝑀 , 𝑇𝐸𝑀) (2.3) 

 

 

Figure 11 - EM efficiency maps, source: AVL DSP team. 

The battery is modeled based on the Thevenin model which is famously applied in hybrid 

electric vehicles [23]. The Thevenin-based equivalent electric circuit configuration is 

shown in Figure 12.  

 

Figure 12 - Battery equivalent electric circuit based on Thevenin's model [23]. 
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The change in the battery’s state of charge (SoC) is modeled with equation (2.4). 

The equation parameters are open-circuit voltage 𝑉𝑜𝑐, battery internal resistance 𝑅𝑏𝑎𝑡,  

battery terminals consumed power 𝑃𝑏𝑎𝑡, and battery capacitance 𝑄𝑏𝑎𝑡. Battery pre-deter-

mined maps are used to estimate the open-circuit voltage and internal resistance only at 

25 °C for model simplicity as shown in Figure 13. The minimum and maximum battery 

SoC thresholds are set to be [20%, 95%] for the sake of battery health. 

  

Figure 13 - Powertrain battery characteristics at 25 °C, source: AVL DSP team. 

𝑆�̇�𝐶 = −
1

𝑄𝑏𝑎𝑡
 .

𝑉𝑜𝑐 − √𝑉𝑜𝑐
  2 − 4 𝑃𝑏𝑎𝑡 𝑅𝑏𝑎𝑡

2 𝑅𝑏𝑎𝑡
 

 

(2.4) 



3 State of the art EMSs  

20 

3 STATE OF THE ART EMSS 

 This chapter focuses on state-of-the-art strategies for solving the energy management 

problem of the hybrid powertrain. It distinguishes, on one hand, the offline strategies and 

on the other hand the online strategies, applicable to the real-time control of the P2-

PHEVs. It gives the reader an overview of various recent studies related to the EMS prob-

lem for the aforementioned vehicle architecture and the thesis problem statement is re-

visited in section 3.3 taking into consideration the literature review reflections. 

Studies on the design and control of hybrid vehicles began in the 1970s. Many prototypes 

were made although, the development of energy management strategies was not keeping 

up with the boom in the hybrid vehicles market. The energy management of the hybrid 

vehicle has been the subject of many studies in the field of research in recent years. Dif-

ferent strategies have been proposed, analyzed, and compared with each other, mostly by 

simulation. Few studies have been tested on a Hardware-In-the-Loop (HIL) test bench 

and few others have been implemented on vehicle prototypes. Figure 14 demonstrates the 

different classes of energy management strategies and more details are followed in sec-

tions 3.1 and 3.2.  

3.1 RULES-BASED EMSS 

Rules-based strategies, also called heuristic-based strategies, allow rapid implementation 

without the need to thoroughly study the energy flows in the hybrid system. In general, 

there is no objective function to minimize, and the control outputs are determined 

 

Figure 14 - Classification of the energy management strategies for HEVs [24]. 
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according to deterministic rules using look-up tables or simple logic. The vehicle can 

shift between various driving modes according to the current powertrain components state 

such as SoC, vehicle speed, temperature, and components limitation [20]. In addition to 

the deterministic rules, fuzzy logic rule-based strategies have more operational freedom. 

The problem solution is easily understood by human experts for further adjustments and 

improvements. Moreover, the control law is robust regarding measurement noise and 

components variability with real-time adaption [25-26]. 

Rules-based methods are still most used due to their simplicity, low computational power 

demand, real-time capabilities, and robustness. Their performance depends on the setting 

of the parameters (often called parameters calibration) which is usually done empirically 

and then validated by experiment. Obtaining the optimal value of such parameters be-

comes possible in simulation with the help of optimization algorithms such as genetic 

algorithms [27]. However, these values strongly depend on the system characteristics. 

The generalization of a certain strategy to other architectures, or even to other driving 

scenarios in the same vehicle, is impractical. 

The PHEV system is a multi-domain, nonlinear and time-varying system. Accordingly, 

the calibration of the parameters obtained does not mean the obtained results are optimal. 

A heuristic approach does not guarantee optimality, but it nevertheless provides avenues 

for improving the vehicle's energy efficiency. 

3.2 OPTIMIZATION-BASED EMSS 

Rules-based strategies are simple, often robust, and quick to implement. However, the 

pursuit of performance optimization and generalization to several architectures encour-

ages researchers to develop new optimization methods derived from mathematical theo-

ries, mainly depending on optimal control theory. 

The energy management problem can be formulated as an optimal control problem of 

balancing power distribution of two different energy sources with desired control objec-

tives, physical constraints, and limitations (Figure 15).  Control objectives, one or multi-

ple, can be optimizing fuel consumption, emissions, battery State of Health (SoH), SoC, 

or vehicle operational costs [28].  
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The state variables, for example, SoC, driver torque demand, velocity, etc., are provided 

to the powertrain dynamics model in advance where fuel consumption and SoC change 

(energy sources power output) are calculated. Thus, a high-fidelity model of the power-

train components is required that considers the calculations' non-linearity such as engine 

BSFC, motor/generator efficiency maps, and battery SoC relation with open-circuit volt-

age and internal resistance. 

The system's physical constraints are the component limitations such as engine speed, 

torque, and battery charge/discharge rate. Moreover, other constraints such as satisfying 

power demand, drivability, Noise, Vibration, and Harshness (NVH) might be imposed as 

additional system requirements. 

 

Figure 15 - The formulation of the energy-management problem for PHEVs [28]. 

3.2.1 GLOBAL OPTIMIZATION-BASED EMSS 

 DYNAMIC PROGRAMMING  

One of the most frequently used techniques to solve the energy management problem for 

a globally optimal solution is Dynamic Programming (DP). It is considered the most ef-

ficient general approach for sequential optimization of discrete dynamical systems with 

an additive cost function under uncertainty [29]. 
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From a mathematical point of view, DP also deals with the stochastic aspects of the prob-

lem and it is a proven efficient technique for various problems such as the shortest path 

problem. It is well suited to solve the problem of optimizing the energy management 

strategy of the hybrid vehicles, in particular when compliance with conditional con-

straints is required, as presented by previous studies [13, 15-16, 20, 30-31]. 

DP has a non-causal property which means it requires a finite horizon with a defined 

velocity and torque profile in the future in order to obtain global optimality that will be 

valid only for that specific driving cycle. Therefore, DP is impractical to be implemented 

as a real-time controller, but the results can be providing theoretical benchmarks for other 

implementable control algorithms. 

 STOCHASTIC DYNAMIC PROGRAMMING  

Another derived algorithm from DP is Stochastic Dynamic Programming (SDP). It fol-

lows a well-defined mathematical procedure where generalization to other systems is pos-

sible without the need of re-determining calibration parameters. The driving cycle pre-

diction (stochastic variables) can be achieved either by a normal distribution of the vehi-

cle speed, which is more adapted to reality or by the Markov chain considering both the 

speed and the traction power.  

Energy management control algorithms based on SDP are developed by several studies 

recently. Wang et al. proposed an SDP heuristic approach based on the rules extracted 

from the results obtained offline by DDP to achieve a near-optimal solution in real-time 

[32]. Another study formulated the optimization objective as a tradeoff between fuel sav-

ings and electrical powertrain stress indicated by incorporating the square of battery 

charge (C-rate) [33]. 

3.2.2 INSTANTANEOUS OPTIMIZATION-BASED EMSS 

 EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY (ECMS) 

The Equivalent Consumption Minimization Strategy (ECMS) has been proposed by Pa-

ganelli in 1999 [34]. The idea of this approach is to convert battery energy to fuel 
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consumption by multiplying an equivalent factor λ. The usage of such a conversion is 

assumed because the consumed electric energy in PHEVs is compensated with fuel in the 

future to charge the battery. The Hamiltonian instantaneous cost function of ECMS, based 

on the calculus of variations or Pontryagin’s Minimum Principle [35], is formulated in 

equation (3.1). 𝜆(𝑡) is the equivalent factor which defines the equivalence between fuel 

consumption and electricity, while 𝑃𝐵𝑎𝑡(𝑡) is the instantaneous battery charge/discharge 

electric power. 

The ECMS approach depends on tuning the 𝜆(𝑡) parameter meticulously because its 

change contributes to battery charge/discharge behavior each time step which directly 

affects the total fuel consumption. Although the ECMS is direct and intuitive to under-

stand, the major problem with this approach is results sensitivity to the value of λ, which 

leads to unstable behavior of the strategy. A bad initialization of λ might lead to a signif-

icant increase in consumption over the cycle covered in real-time while simply assuming 

it to be a constant value does not lead to outstanding fuel economy behavior. Based on 

that, the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) is intro-

duced with the idea of estimating in real-time the equivalent cost λ making it possible to 

reduce fuel consumption while ensuring that the state of charge remains within acceptable 

limits [35-36].  

 MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) is a commonly used optimal control strategy to solve 

constrained multi-input multi-output problems. In comparison to other EMSs, the MPC 

is more far-sighted than the ECMS which helps to gain better sub-optimal results. Addi-

tionally, it is simpler in the computational burdensome and does not require predictive 

information as GOP techniques such as the DP. 

The MPC solves a finite-horizon optimization problem for each time instance within a 

finite receding prediction window. Hence, a control-oriented vehicle model is to be 

𝑚𝑖𝑛
𝑡

𝑓(𝑡) = 𝑚𝑒𝑞𝑢𝑖𝑣.  𝑓𝑢𝑒𝑙(𝑡) = 𝑚𝑓𝑢𝑒𝑙 𝐼𝐶𝐸  (𝑡) +  𝜆(𝑡)  ∙ 𝑃𝐵𝑎𝑡(𝑡)   

(3.1) 

Subject to: component constraints.  



3 State of the art EMSs  

25 

implemented inside the MPC that is used to optimize the control variable 𝑢(t) within the 

moving horizon window (t+1, t+2, …., t+ ηPH) as shown in Figure 16. The optimization 

results are ηPH control variables 𝑢(t+1), 𝑢(t+2), …, 𝑢(t+ηPH) for the next ηPH time seg-

ments. However, only the first output control variable 𝑢(t+1) is applied and this process 

is repeated by moving the prediction horizon window one by one step forward.  

 

Figure 16 - MPC strategy with prediction and control horizon ηPH and ηCH respectively 

[37].  

MPC is considered a model-based control strategy that can optimize multiple objectives 

simultaneously. Accordingly, it has numerous applications in real-world problems. The 

HEVs control problem, on the contrary, is a nonlinear and constrained problem that re-

quires an MPC based on nonlinear dynamic models and nonlinear solvers to be used. A 

non-linear MPC is developed in [38] with a promising calculation accuracy, but the high 

computational resources required make it impractical for real-time implementation on 

HCUs. 

Several studies developed more simplified methods to trade-off between accuracy and 

real-time capability. Linearizing and discretizing the model is one approach so that the 

cost function can be reformulated as a quadratic function which can be solved by Quad-

ratic Programming (QP). Guo et al. implemented an MPC-based EMS, with a novel ve-

locity prediction method adopting QP, that achieved improvement in fuel economy with 
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2.87 ms computational time [39]. Although such simplification has advantages in com-

putational time, further fuel economy improvement is desirable.  

Explicit MPC (eMPC) is another practical real-time implementable algorithm. It com-

putes a set of function evaluations offline (optimal policy), that is stored in a state-de-

pendent lookup table. The eMPC does not require an optimization solver in real-time 

which significantly improves computational time and meets the memory and the compu-

tational power of the automotive hardware. A near-optimal eMPC was developed for a 

power-split Toyota Prius PHEV. The performance is acceptable for limited states, inputs, 

and constraints. A simplified control-oriented model was implemented although such 

power-split HEV is much more sophisticated [40]. 

The aforementioned linear and explicit MPCs fail to achieve satisfying improvement in 

the fuel economy of HEVs. Consequently, several studies discussed solving a nonlinear 

model-based MPC. The Continuation/Generalized Minimum RESidual method 

(C/GMRES) is used in [17] with a 2D dynamics model to solve the MPC receding opti-

mization problem for HEVs while a particle swarm optimization-based nonlinear MPC 

strategy (PSO-based MPC) is proposed in [41] saving 10% in the fuel consumption in 

comparison to the CDCS strategy.  

In conclusion, the MPC-based energy management strategies offer a feasible solution to 

real-time HCUs, although a trade-off between accuracy and real-time capability is to be 

considered. Tuning prediction horizon length and discrete-time sample highly affects the 

real-time performance of the MPC besides the selected vehicle model fidelity level, the 

optimization solver, and vehicle hardware capabilities as well [21]. 

 REINFORCEMENT LEARNING  

Machine learning is a subfield of Artificial Intelligence (AI) that is growing recently by 

providing state-of-the-art solutions to various problems in many research fields. Rein-

forcement Learning is an advanced mathematical formulation to control problems utiliz-

ing machine learning techniques and algorithms. RL-based energy management ap-

proaches in HEVs/ PHEVs took immense attention of several researchers due to their 
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ability to learn control policies through interaction without being explicitly programmed 

on a certain strategy.  

The reinforcement learning framework embraces an agent that learns how to select the 

optimal control actions by interacting with the environment that feeds it back with the 

immediate reward and the updated state. The agent objective is to maximize the cumula-

tive episodic reward given by the environment as illustrated in Figure 17. 

 

Figure 17 - The RL framework and its representation in the energy-management prob-

lem [28]. 

In HEVs, the agent “energy management controller” uses a trial and error search process 

to investigate which action leads to the maximum cumulative return in the future. The 

environment “HEV” serves as a plant in the normal control process by executing the agent 

control decision and returning the next state and the immediate reward. The environment 

is represented by the driving conditions, powertrain components modeling, and dynam-

ics. The agent is trained “offline” with a limited number of driving cycles to build a con-

trol policy that shall be generalized to other never-seen driving cycles in the real world. 

When the agent is deployed in the vehicle, it keeps learning from its actions’ return and 

improves the control policy by “online” learning. Further details about RL algorithms 

implementation and techniques are covered in section 4.2. 

Xiaosong, et.al classified RL methods in energy management into two categories, sim-

plex, and hybrid algorithms. The former indicates using a simple tabular algorithm to 
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derive the EMS control policy such as Q-learning, SARSA, and Dyna while the latter 

uses a commixture of other information or algorithms such as trip information, predictive 

algorithms, and deep learning using neural networks [28]. Both simplex and hybrid algo-

rithms include model-free and model-based RL agents. Model-free algorithms, such as 

Q-learning and SARSA, do not depend on Transition Probability Matrices (TPM), which 

represents the probability of getting a certain next state given the current state and action, 

to take the action. On the contrary, model-based RL algorithms, such as DynaQ, do not 

only learn a control policy through interacting with the environment, but also learn the 

environment dynamics and use such knowledge to improve the overall learning process, 

hence the agent performance. 

 RL SIMPLEX ALGORITHMS  

Simplex algorithms derive the EMS decision using a simple tabular algorithm of the RL 

framework. Several researchers began seeking to achieve breakthroughs in the hybrid 

vehicles EMSs. Considering PHEVs, Qi et al. proposed using a Q-learning algorithm to 

deplete the battery SOC optimally throughout the cycle. The resulting control policy is to 

be combined with the charge-sustaining strategy to balance the optimality and real-time 

performance. The authors claim their strategy can achieve 8% and 12% fuel saving with 

and without considering charging opportunities respectively [42]. 

In 2014, Yue et al. utilized a TD(λ)- learning-based model-free algorithm as an EMS for 

a hybrid vehicle with a supercapacitor and battery. The action space is continuous which 

controls the current flow into and from both energy reservoirs [43].  The same algorithm 

was used by Lin et al. to derive an advanced strategy for a thermal HEV using ADvanced 

VehIcle SimulatOR (ADVISOR). The resulting control strategy was compared with the 

rule-based strategy using different driving cycles with analyzing both the convergence 

and the complexity of such an approach [44]. 

The researchers’ contributions in RL were not only limited to innovative algorithms but 

also novel reward functions. In 2014, Liu et al. defined a new reward signal based on the 

driver power demand, the battery SOC, and the remaining travel distance obtained from 

GPS data. The authors proposed using the remaining travel distance as an additional state 
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to the agent because it is highly correlated to the future energy consumption which the 

agent tries to learn and optimize continuously. The tabular TD(0) algorithm was utilized 

to train the estimated Q-table. The results confirmed the agent’s self-improving capabil-

ity, and the performance was very close to the optimal results generated by the DP algo-

rithm [45]. One year later in 2015, Lin et al. proposed a nested RL-based framework to 

minimize the HEVs operation cost. The agent has an inner loop that focuses on minimiz-

ing the fuel cost and an outer loop that works on battery replacement cost minimization. 

Experimental results showed an operation cost reduction of up to 48% [46].  

Other researchers focused on another branch of RL called Inverse Reinforcement Learn-

ing (IRL) which labors on learning the agent objectives and reward function from a hu-

man expert control policy executed to the environment as illustrated in Figure 18. 

 

 

 

Figure 18 - Reinforcement learning and Inverse Reinforcement learning; source: 

CS885 Lecture 7, Prof. Pascal Poupart, University of Waterloo. 

Vogal et al. used IRL to predict driver behavior by utilizing a probabilistic driving route 

prediction system and accordingly, the engine and motor power-split ratio is calculated. 

Results showed an improvement of 1.22% in fuel consumption while the authors believe 

their approach has high potential to increase vehicle power efficiency without modifying 

hardware or changing the driver behavior [47].  

The model-based Dyna RL algorithm was investigated by Liu et al. in 2015 for a hybrid 

electric tracked vehicle.  The control performance of the Dyna and Q-learning algorithms 

was compared including fuel cost savings and computational load. Q-learning showed a 

faster computational time with 43% of the Dyna algorithm but with 1.7% higher fuel 
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consumption. The Dyna-based fuel consumption was lower than the SDP and very close 

to the DP results [48].  

In summary, simplex algorithms such as Q-learning, Dyna, and TD(λ) showed great po-

tential for online realization in EMS for hybrid and plug-in hybrid electric vehicles. How-

ever, such tabular algorithms are not capable of handling stochastic driving situations 

including driving behavior and road environments. Furthermore, the discretized Q-tables 

are not a very efficient methodology to represent the control policy because the fine dis-

cretization to state-space will lead to exceeding the hardware resources available in 

HEVs. 

 RL HYBRID ALGORITHMS  

The field of artificial intelligence witnessed an immense boost after the rapid develop-

ment of deep learning and neural networks in recent years. The energy management strat-

egies for HEV/PHEV gained an increasing intelligence with hybrid RL algorithms com-

monly known as Deep Reinforcement Learning (DRL). 

DRL showed great capabilities in designing adaptive energy-management strategies 

based on historical driving data as reported by Qi et al. in 2017. The agent controls the 

power-split ratio for a PHEV without depending on any predictions or predefined rules. 

The experimental results showed that the proposed model saved fuel consumption up to 

16.3% in comparison to the conventional binary control strategy [49]. Additionally, Hu 

et al. developed a DRL-based EMS with MATLAB and ADVISOR simulator previously 

introduced in [44]. They compared their online learning algorithm with the rule-based 

strategy which proved to be effective. They showed how such a model can ensure opti-

mality and real-time applicability when trained with sufficient data [50]. 

Adaptability to different powertrain models and driving situations was discussed in detail 

by [51] in addition to different drivers’ behavior [52], which is proven to be a promising 

fuel efficiency improvement technique. Actor-critic is another novel technique used in 

DRL algorithms to represent the agent learning process with continuous action space. 

Such an algorithm is leveraged by He et al. to overcome the discretization challenge in 

tabular Q-learning algorithms and tackle the curse of the state variable dimensionality 
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problem. Stochastic gradient descent is used to train the neural network “Q-value func-

tion” and results showed achieving 89% of the fuel economy of DP with unknown driving 

conditions [53]. 

The horizon of DRL-based algorithms is not only limited to controlling the engine power 

or the power-split ratio, but also driving modes and charging/discharging strategies. Re-

cently in 2020, Wang et al. proposed a DRL-based agent for automatic mode-switching 

of a multimode PHEV, Chevrolet Volt 2016. RL agent is trained offline with the Future 

Automotive Systems Technology Simulator (FASTSim) to select either charge depletion 

mode or charge sustaining mode [54]. The authors claim two benefits of such an action 

space selection; 1) it guarantees the vehicle will run on a highly optimized control action 

flow and the RL agent will not be required to handle highly dynamical changes and re-

quests inside the HCU. 2) the RL agent will not replace the current HCU control algo-

rithm however, it over-rides the EMS mode selection strategy so as to be engaged or 

disengaged from the control decision process whenever required. Experimental results 

showed an improvement in fuel savings from 5.5% up to 6.4% depending on the initial 

battery SoC. 

Future communication technologies in the vehicle industry, incorporating the Internet of 

Things (IoT) and smart cities, such as Vehicle to X (V2X) including Vehicle to Vehicle 

(V2V), Vehicle to Grid (V2G), and Vehicle to Cloud (V2C), have leveraged the intelli-

gence potential of DRL approaches in hybrid vehicles EMSs.  Hoang et al. broadened the 

DRL action space to control charging and discharging strategies for PHEVs. The pro-

posed approach depends on the information available from the advanced V2G and V2C 

communication (Figure 19).  

The energy cost problem was formulated by an MDP, and the RL agent decides the online 

charging and cyber insurance strategies. The energy-management strategy considers the 

price information and the charging stations load to make an optimal decision such as 

when to charge/discharge in an online fashion. What is noticeable in this approach is that 

the EMS problem is extended from a single to multiple vehicles in one connected envi-

ronment. Results are verified through simulations and showed that cyber insurance is able 

to maximize the revenue of PHEV users and deal with cyber risks efficiently [55]. 
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Figure 19 - Cyber insurance for PEVs charging/discharging processes [55]. 

More advanced hybridization in RL algorithms considering Connected and Automated 

Vehicles (CAVs) was introduced by Zhu e al. in 2021. CAVs with multiple power sources 

exhibit promising fuel savings through designing the optimal speed and power depletion 

by the virtue of connectivity look-ahead information and mapping features. This complex 

problem was formulated as a Partially Observable Markov Decision Process (POMDP) 

solved by the DRL actor-critic algorithm. Compared to a baseline controller, the proposed 

agent was able to save 17.4% more fuel by modulating vehicle velocity throughout the 

trip route and performing an energy-efficient approach/departure at signalized intersec-

tions [56]. 

Ultimately, migrating the rule-based energy management strategies for the majority of 

the HEVs and PHEVs in the market is a necessity in the era of big data and connectivity. 

DRL-based energy-management strategies showed superior performance in the scope of 

diverse problems which designates to where the future research and development for au-

tomotive OEMs should be directed. Several challenges for DRL hybrid algorithms shall 
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be taken into consideration, such as the onboard control unit computational power and 

storage resources. The former challenge is the need for an extra computer to be installed 

in the vehicle to process the data and train the control policy in parallel with the vehicle 

operation. The latter is collecting the data and storage since DRL needs a large amount 

of data to be able to generalize and adapt the derived control strategy for different driving 

situations. Network communication and Intelligent Transportation Systems (ITSs) will 

empower the DRL-based energy-management strategies to be applied in real-time in the 

future while overcoming the current stumbling obstacles and challenges. 

3.3 FURTHER PROBLEM STATEMENT 

The ultimate research objective as proposed in section 1.3 is to improve PHEV's overall 

fuel economy behavior by implementing an advanced energy management strategy that 

controls the power distribution decision. The developed method should be compatible 

with the existing P2-HCU. The trip distance is longer than the AER, which is the precon-

dition of this thesis where optimization control strategies are advantageous. 

The energy management strategies adopted in this thesis can be classified into offline and 

online strategies. Prior knowledge of the whole trip is a requirement for the offline GOP 

techniques such as DDP which invalidates the real-time applicability into the HCU. How-

ever, the performance results from the GOP are considered as benchmarks for the online 

simulation results, which reveal the potential of online strategies. DDP is used in this 

research to better understand the optimal behavior in each driving condition and bench-

mark the online controller performance.  

The driving mode decision, selected by the P2-HCU, is a discrete optimization problem 

and accordingly, this research creates an optimization-based control strategy for the P2-

HCU. RL models are proposed, which were shown to be promising advanced optimal-

close methods for the HEV’s control problem. In the meantime, vehicle drivability and 

driver comfort objectives were considered in the online RL agent instead of being sacri-

ficed too much for better fuel economy. Real-time capabilities, drive-train constraints, 

hardware resources utilization, and performance are discussed in Chapter 4 and compared 

experimentally in Chapter 5.  
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This thesis aims to provide a framework for further research efforts utilizing RL in HEV’s 

control problem.  To sum up, the thesis includes the subsequent key steps: 

− DDP-based solver implementation, offline global optimization calculation, and 

analysis in Section 4.1. 

− Tabular RL Q-learning algorithms design and implementation in Section 4.2.1 

− Deep Q-learning techniques further investigation and integration into the existing 

P2-HCU control scheme in Section 4.2.2. 

− Simulation and results analysis in Chapter 5. 

− Concluding remarks, prospects and recommendations are in Chapter 6. 
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4 METHODOLOGY 

This chapter deals with the underlying methods used for the rest of the thesis. The chapter 

includes two main sections. Section 4.1 describes the DDP approach revealing the bench-

marking used to evaluate the subsequent developed RL-based EMSs. Section 4.2 demon-

strates Reinforcement Learning algorithms and their improvement techniques while ex-

perimental details and results are presented in chapter 5. 

4.1 DYNAMIC PROGRAMMING  

Section 3.2.1 revealed that GOP is a promising solution to the HEV control problem due 

to its ability to guarantee optimality. It requires the knowledge of the future driving cycle 

ahead to compute the sequence of optimal control inputs applied to the HEV in order to 

meet the optimization objective. However, GOP techniques are impractical in the context 

of HEVs due to several reasons: 

a. The non-causal characteristic, because accurate future driving information is not 

realistically available even with predictive information of the driver behavior and 

navigation.  

b. The mathematical problem formulation is stochastic, not deterministic, which re-

quires building a transition probability matrix for the future vehicle state predic-

tion. 

c. Several model simplifications and assumptions are implemented to avoid the huge 

computational burdens associated with the optimization problem solutions. 

Accordingly, a Deterministic Dynamic Programming-based solver (DDP-based) is de-

veloped which can deliver a near-optimal solution that is close to the best theoretical 

power distribution. The following section discusses the design of the DDP control strat-

egy for P2-PHEV which is developed to run offline within MATLAB to offer a bench-

mark for the online control strategies to be developed. 
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4.1.1 DDP-BASED SOLVER FORMULATION 

DP is a numerical technique that applies to any kind of problem that can be solved at 

sequenced stages (divide-and-conquer approach). DP major components are recursion 

which is used to solve the subproblems recursively, and memoization that is used to store 

the computed values in a table for caching purposes.[13] 

DP approaches extend the divide-and-conquer approach with two techniques, top-down 

(memoization) and bottom-up (tabulation). Both techniques cache and reuse the subprob-

lems’ solutions which help in improving the program performance dramatically. 

− Top-down (memoization): it's a similar approach to recursion as it looks for the 

value in the table first which acts as a cache before computing solutions. If the 

problem solution is found, then the result will be taken from the cache. Otherwise, 

the problem will be solved, and the results are likely to be stored in the table for 

future use. 

− Bottom-up (tabulation): the opposite approach of the top-down which avoids re-

cursion. In this approach, the problem is solved in a bottom-up manner by solving 

all the related subproblems first. It is typically done by filling up all entries in the 

table. Based on the results in the table, the solution to the original problem is 

computed.  

The PHEV problem can be expressed mathematically in a discrete-time space in equation 

(4.1) as follows: 

s𝑘+1 is the system state at time 𝑘 that ranges from 0 to the driving cycle duration 𝑛. 𝑎𝑘 is 

the control variable and 𝑓(𝑠𝑘, 𝑎𝑘) represents the system dynamics [29]. The DP problem 

is discretized into n sub-optimization steps, and a sequence of control inputs, following 

the optimal policy π = {a0
∗, a1

∗, …. an-1∗}, is found based on the principle of optimality. 

s𝑘+1 = 𝑓(𝑠𝑘, 𝑎𝑘), 𝑘 = 0,1, … 𝑛 − 1 
 

(4.1) 

𝑚𝑖𝑛      𝐽 = 𝐽(𝑠𝑛) +  ∑ 𝐽(𝑠𝑘, 𝑎𝑘)

𝑛−1

𝑘=0

 
 

(4.2) 
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Created by Bellman, the principle of optimality states that an optimal policy has the prop-

erty that, independent of the initial state and decision, the remaining decisions must form 

an optimal policy with regards to the state resulting from the first decision [57]. The Bell-

man principle contributed to the popularization of DP and its recent transformation into 

a systematic tool in different optimal control problems. 

For the P2-PHEV quasi-static system, SoC is the state variable and driving mode is the 

control variable. The discrete-time space PHEV system and the overall control optimiza-

tion problem are reformulated in equation (4.3) and defined to minimize the cost function 

formulated in equation (4.4). Optimal control policy, which is the sequence of driving 

modes selection during the cycle, needs to be found under various constraints for each 

component as described in equations (4.5) to (4.9). 

Subject to 

 

A backward DDP-based solver is developed in Algorithm 1 assuming a deterministic 

environment which means that stochastic uncertainty is not considered [30].  

  

𝑆𝑜𝐶𝑘+1 = 𝑓(𝑆𝑜𝐶𝑘, 𝑎𝑘), 𝑘 = 0,1, … 𝑛 − 1 
 

(4.3) 

𝑚𝑖𝑛𝑢(𝑘)      𝑚𝑓𝑢𝑒𝑙 = [�̇�𝑓𝑢𝑒𝑙(𝑆𝑜𝐶𝑛) +  ∑ �̇�𝑓𝑢𝑒𝑙(𝑆𝑜𝐶𝑘 , 𝑎𝑘)

𝑛−1

𝑘=0

] ∆𝑡 
 

(4.4) 

𝑎𝑘  ∈ {𝑎1, 𝑎2, … 𝑎𝑘𝑚𝑎𝑥
} (4.5) 

𝑆𝑜𝐶𝑚𝑖𝑛𝑘
≤  𝑆𝑜𝐶𝑘 < 𝑆𝑜𝐶𝑚𝑎𝑥𝑘

 , 𝑆𝑜𝐶0 = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡 (4.6) 

𝑇𝐼𝐶𝐸𝑚𝑖𝑛𝑘
 ≤  𝑇𝐼𝐶𝐸𝑘

<  𝑇𝐼𝐶𝐸𝑚𝑎𝑥𝑘
 (4.7) 

𝑇𝐸𝑀𝑚𝑖𝑛𝑘
 ≤  𝑇𝐸𝑀𝑘

<  𝑇𝐸𝑀𝑚𝑎𝑥𝑘
 (4.8) 

𝐼𝐵𝑎𝑡𝑚𝑖𝑛𝑘
 ≤  𝐼𝐵𝑎𝑡𝑘

<  𝐼𝐵𝑎𝑡𝑚𝑎𝑥𝑘
 (4.9) 
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Algorithm 1: Deterministic Dynamic Programming for P2-PHEV 

1:  Step 1 (Initialization) 

2: Define initial and final state variables. 

3: Initialize k discrete steps number and state grid. 

4: Step 2 (Backward Recursion):  

5: for k = 𝑛 − 1 →  0 

6: Calculate cost 𝐽𝑘(𝑠𝑘) = min
𝑢𝑘

[𝐿(𝑠𝑘, 𝑎𝑘) + 𝐽𝑘+1
∗ (𝑠𝑘+1)] 

7: argmin
𝑎𝑘

∗
𝐽𝑘(𝑠𝑘) 

8: Memoize min cost into optimal cost-to-go function 𝐽𝑘+1
∗ (𝑠𝑘+1) 

9: end for; 

10: Step 3 (Forward simulation):  

11: for k = 0 →  𝑛 − 1  

12: Apply 𝑎𝑘
∗  from optimal policy 𝜋∗ = {a0

∗ , 𝑎1
∗ , 𝑎2

∗ … , 𝑎𝑛−1
∗ } 

13: Calculate the accumulated cost 𝐽(𝑠, 𝑎∗) ← ∑ 𝐽𝑘(𝑠𝑘, 𝑎𝑘
∗ )𝑛−1

𝑘=0  

14 end for; 

 

4.1.2 DRIVING MODES SEGMENTATION 

In HEV optimization problems, the driving modes can be divided into two operating seg-

ments: free segment and fixed segment. Fixed modes are selected in all the discrete-time 

steps where the SoC change is explicit and purely determined by the driver or the diving 

cycle. However, free modes are selected in the time steps where HCU must make the 

power distribution decision [58]. Additionally, the emergent modes category contains the 

modes applied in the emergent situations where the SoC is very close to the lowest bound-

ary. This segmentation helps to shrink the computation burden of the DP since there is 

no need to optimize the control variable for the fixed segments. 

The driving modes categories are explained in more detail as follows: 

− Fixed segments (AddBoost, Recup, and Stop/Standstill): 
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The AddBoost mode is activated when the demanded torque is beyond the ICE 

maximum torque under certain speeds. The ICE maximum torque is defined as a 

component limitation in the PHEV system which cannot be overridden by the 

HCU decision. Recup mode is selected always when the demanded torque is neg-

ative. The calibration parameters in P2-PHEV defined the SoC range for recuper-

ation to be between 94% and 21%. The battery overcharge phenomenon can only 

happen when a very deep steep downhill driving situation is encountered when 

the battery is full, which is not the case in all the driving cycles used in this thesis. 

Stop/Standstill is considered a fixed mode as it is activated if the demanded torque 

and velocity are both zero. 

− Free segments (ConvDrv, EltlDrv, OptmGentn, and SubBoost): 

Free segments include the time steps where deciding the energy distribution is 

crucial for accomplishing the optimization target. The ConvDrv and EltlDrv 

modes stand for drawing the demanded energy from a single energy source, either 

the electricity or the fuel. OptmGentn and SubBoost are not enabled all the time 

in reality due to other constraints and objectives such as stability and NVH. For 

the P2 PHEV, the OptmGentn mode is more limited since the ICE is always con-

nected to the driveline. 

− Emergent Modes (ldleGentn and MinGentn): 

These category modes are selected when the battery SoC is near the minimum 

threshold, 20% for the sake of battery health. However, the ICE under both modes 

is not usually working on optimal load points.  

− Excluded modes (SubBoost): 

Substitute Boost (SubBoost) is not allowed in P2 PHEV and is replaced by Con-

vDrv when SoC falls below the lower threshold or EltlDrv if it exceeds the upper 

threshold. 

To find the global minimum fuel consumption, or in other words, to solve the GOP’s 

control problem, DDP needs to search for the optimal modes’ selection only in the time 

segments where free modes are available. In this work, the time segments where the 
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demanded torque is negative or equals zero in addition to both emergent modes and Sub-

Boost mode are not considered as a selection option to the agent. 

4.2 REINFORCEMENT LEARNING 

RL is a subset of machine learning used for solving control problems. This method allows 

the agent to automatically determine the ideal behavior by reinforcing or inhibiting pat-

terns of behavior to maximize the reward, which is the environment feedback. The RL 

differs from supervised learning, a commonly known technique in machine learning, in 

that the latter uses the training data to explicitly correct undesired behaviors. However, 

RL applies sequential decisions and learns through a delayed environment feedback (re-

ward/penalty) by giving appropriate compensation for the learning outcomes which 

makes it more suitable for applications in real-time such as the HEV’s EMS. 

 As illustrated in the RL concept in Figure 20, the system starts at state st and the agent 

decides on a certain action at that is executed in the environment. The next state st+1 (often 

called s' in several studies) and the next reward rt+1 are fed by the environment back to 

the agent where the learning process is done accordingly. 

4.2.1 TABULAR Q-LEARNING BASED EMS 

Among popular RL algorithms, Q-learning, developed by Werbos and Watkins in 1989 

[59- 60], is a widely used method to learn optimal control policies online. It depends on 

the Temporal Difference (TD) technique to estimate future rewards giving the current 

state in a bootstrapping fashion [61]. 

 

Figure 20 - Reinforcement learning concept 
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The HEV cost function in an infinite horizon is described in equation (4.10) and expressed 

recursively using the Bellman equation as equations (4.11) and (4.12). 𝛾 is the discount 

factor which determines either the agent cares more about the immediate or the distant 

rewards in the future when 𝛾 approaches 0 or 1 respectively. 

Equation (4.12) satisfies the Bellman optimality condition when the right-hand side 

equals the left-hand side or at least the difference between them is minimized. The tem-

poral difference error is defined as the difference between them as equation (4.13) states. 

  

a) Monto Carlo b) Temporal Difference 

Figure 21 - Monte Carlo and Temporal Difference learning backup diagrams [62]. 

  

TD learning estimates cumulative future reward based on the current reward and next 

state estimate while Monto Carlo learning (MC) randomly samples the environment for 

the entire episode till the terminal state as shown in Figure 21. TD learning shows 

  𝐽𝜋(𝑠𝑘) =  ∑ 𝛾𝑖−𝑘 𝐿(𝑠𝑖, 𝑎𝑖)

∞

𝑖=𝑘

 
 

(4.10) 

  𝐽𝜋(𝑠𝑘) = 𝐿(𝑠𝑘, 𝑎𝑘)  +  𝛾 ∑ 𝛾𝑖−(𝑘+1) 𝐿(𝑠𝑖, 𝑎𝑖)

∞

𝑖=𝑘+1

 
 

(4.11) 

  𝐽𝜋(𝑠𝑘) = 𝐿(𝑠𝑘, 𝜋(𝑠𝑘)) +  𝛾 𝐽𝜋(𝑠𝑘+1) 
 

(4.12) 

  𝑒𝑘 = 𝐿(𝑠𝑘, 𝜋(𝑠𝑘)) +  𝛾 𝐽𝜋(𝑠𝑘+1) −  𝐽𝜋(𝑠𝑘) 
 

(4.13) 
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improved real-time performance in comparison to MC learning although it comes at the 

expense of the sample efficiency and the solution suboptimality. 

The HEV control problem cost 𝐽𝜋(𝑠𝑘) can be updated using the equation (4.13) as fol-

lows: 

The learning rate α, which controls the update process, ranges from 0 to 1 where 0 means 

no learning happens and 1 means that the update fully uses the most recent knowledge. 

The Q-learning approach defines the Q-value function as a state-action value function 

following equation (4.15) [62]. 

 𝑄𝜋(𝑠𝑘, 𝑎𝑘) and 𝐿(𝑠𝑘, 𝑎𝑘) are the function and the environment immediate reward of the 

state 𝑠𝑘 and the action 𝑎𝑘 respectively. Using the TD learning, the Q-function can be 

updated in equation (4.16) in the same way as equation (4.14). 

Equation (4.16) presents the essence of the Q-learning algorithm whose convergence for 

a finite MDP has been proven based on stochastic approximation methods by Watkins 

[59].  

− Exploration/ exploitation strategy 

For an RL agent, to learn a correct state-action value (Q-value) for all possible state-

action pairs and find the optimal policy that maximizes the total cumulative reward, it 

shall try different actions in different states which is referred to as exploring the environ-

ment “exploration”. On the other hand, if the agent is just exploring, the episodic cumu-

lative reward is never maximized. Accordingly, the agent shall make use of the policy 

learned, which is called "exploitation", to exploit the available knowledge to maximize 

the rewards received. 

  𝐽𝜋(𝑠𝑘) ← 𝐽𝜋(𝑠𝑘) +  𝛼 [𝐿(𝑠𝑘, 𝜋(𝑠𝑘))  +  𝛾 𝐽𝜋(𝑠𝑘+1) − 𝐽𝜋(𝑠𝑘)] 
 

(4.14) 

  𝑄𝜋(𝑠𝑘, 𝑎𝑘) = 𝐿(𝑠𝑘, 𝑎𝑘)  +  𝛾 𝐽𝜋(𝑠𝑘+1) (4.15) 

  Q(𝑠𝑘 , 𝑎𝑘) ← Q(𝑠𝑘, 𝑎𝑘) +  𝛼 [𝑟𝑘  +  𝛾 max
𝑎

Q(𝑠𝑘+1, 𝑎) − Q(𝑠𝑘, 𝑎𝑘)]  

(4.16) 
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The trade-off between exploration and exploitation is one of the biggest challenges in RL 

problems. The ε-greedy policy is a widely used technique in several studies [24, 28, 50]. 

The strategy defines an exploration rate ε that is set initially to one. This exploration rate 

is the probability that the agent will explore the environment rather than exploit it. With 

ε = 1, the agent selects a random action sampled uniformly each time step. As the agent 

learns more about the environment, ε shall degrade at a pre-specified rate so that the 

probability of exploration becomes less, and greedy actions are selected more frequently 

with 1- ε probability. 

− Problem space definition 

The RL agent for P2-PHEV has a continuous state space defined by 𝑠𝑘 =

 [𝑆𝑜𝐶𝑘, 𝑇𝑡𝑜𝑡𝑘
, 𝑉𝑘 , 𝐷𝑟𝑒𝑚𝑘

, 𝐸𝑜𝑛𝑘
]  where 𝑆𝑜𝐶𝑘 is the current battery state of charge, 𝑇𝑡𝑜𝑡𝑘

 is 

the driver torque demand, 𝑉𝑘is the vehicle velocity, 𝐷𝑟𝑒𝑚𝑘
is the trip remaining distance 

and 𝐸𝑜𝑛𝑘
 is the engine on/off state at time step 𝑘.  𝐷𝑟𝑒𝑚𝑘

 and 𝐸𝑜𝑛𝑘
 is included in the state 

space for a later use in the RL reward function definition in section 4.2.4.3. 

The action space is discrete where the control variable, the driving mode selection, 𝑎𝑘  ∈

{0,1,3,6,7,8} because this driving mode set consists of the allowed modes to be selected 

by the agent. Refer to Table 1 and section 2.2 for more details.  

Analogous to equations (4.3) to (4.9), P2-PHEV’s discrete-time space control optimiza-

tion problem, reward function 𝑟(𝑠𝑘, 𝑎𝑘) and system constraints as described in equations 

(4.17) to (4.24). 

 

 

 [𝑆𝑜𝐶𝑘+1, 𝑇𝑡𝑜𝑡𝑘+1
, 𝑉𝑘+1, 𝐷𝑟𝑒𝑚𝑘+1

, 𝐸𝑜𝑛𝑘+1
]

= 𝑓( [𝑆𝑜𝐶𝑘, 𝑇𝑡𝑜𝑡𝑘
, 𝑉𝑘, 𝐷𝑟𝑒𝑚𝑘

, 𝐸𝑜𝑛𝑘
], 𝑎𝑘),   𝑘 = 0,1, … 𝑛 − 1 

(4.17) 

𝑚𝑖𝑛      𝐽𝜋(𝑠0) = lim
n→∞

𝐸{ ∑   𝛾𝑘 𝑟(𝑠𝑘, 𝑎𝑘)  𝑛−1
 𝑘=0 }  (4.18) 

𝑤ℎ𝑒𝑟𝑒     𝑟(𝑠𝑘, 𝑎𝑘) = �̇�𝑓𝑢𝑒𝑙(𝑠𝑘, 𝑎𝑘)  (4.19) 
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− Q-function representation 

The tabular Q-Learning based EMS algorithm updates the Q-value for each state-action 

pair using equation (4.16) until the Q-function converges to the optimal Q-function (Q∗). 

This approach is called the iteration of values. Q-function is represented in a table called 

Q-table whose rows represent the states, and the columns represent the actions as illus-

trated in Figure 22. Thus, the table dimensions are the number of states multiplied by the 

number of actions. 

 

Since the agent knows nothing about the environment or the expected returns for the state-

action pairs, all Q-values in the table are first initialized to zeros. During training, the 

agent performs several episodes where the Q-values produced for the experienced state-

action pairs are updated and stored in the Q-table. Therefore, continuous state space is 

not possible as the Q-table number of rows of would be infinite, and accordingly, state-

space discretization is a necessity.  

According to the exploration strategy, the agent selects the greedy action based on the 

highest Q-value for the current state, that is why Q-learning is called a value-based RL 

Subject to  

𝑎𝑘  ∈ {0,1,3,6,7,8} (4.20) 

𝑆𝑜𝐶𝑚𝑖𝑛𝑘  ≤  𝑆𝑜𝐶𝑘 < 𝑆𝑜𝐶𝑚𝑎𝑥𝑘
 , 𝑆𝑜𝐶0 = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡 (4.21) 

𝑇𝐼𝐶𝐸𝑚𝑖𝑛𝑘
 ≤  𝑇𝐼𝐶𝐸𝑘

<  𝑇𝐼𝐶𝐸𝑚𝑎𝑥𝑘
 (4.22) 

𝑇𝐸𝑀𝑚𝑖𝑛𝑘
 ≤  𝑇𝐸𝑀𝑘

<  𝑇𝐸𝑀𝑚𝑎𝑥𝑘
 (4.23) 

𝐼𝐵𝑎𝑡𝑚𝑖𝑛𝑘
 ≤  𝐼𝐵𝑎𝑡𝑘

<  𝐼𝐵𝑎𝑡𝑚𝑎𝑥𝑘
 (4.24) 

 

Figure 22 - Q-function tabular representation [63]. 
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method. The P2-PHEV’s EMS algorithm based on a model-free Q-learning RL agent is 

represented in Algorithm 2. 

Algorithm 2: Model-free Q-learning algorithm for P2-PHEV 

1:  Set values for learning rate 𝛼, discount factor 𝛾, epsilon ε, epsilon decay dε 

2: Initialize Q(𝑠, 𝑎) to zeros 

3: Repeat for episode = 1: number of episodes 

4: for k = 1: number of steps per episode 

5: With probability ε, select a random action 𝑎𝑘  

6: Otherwise, select 𝑎𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎) 

7: Execute action 𝑎𝑘 and observe reward 𝑟𝑘 and state 𝑠𝑘+1 

8: Update Q 

Q(s, 𝑎) ← Q(s, 𝑎) +  𝛼 [𝑟 +  𝛾 max
𝑎

Q(s′, 𝑎) − Q(s, 𝑎)] 

9: s ← s′,  ε ← ε ∙ 𝑑ε 

10: end for; 

11: end for; 

4.2.2 DEEP Q-LEARNING BASED EMS 

Deep Q-learning, often called Deep Q-Network (DQN), is an advanced version of Q-

Learning that allows the agent to utilize Deep Learning (DL) capabilities to achieve im-

proved performance in complex control problems. DQN was first proposed by DeepMind 

in a paper published by Nature in 2015 solving challenging problems of classic Atari 

2600 games [64]. Subsequently, several researchers investigated using DQN because the 

DL could empower the RL to directly deal with high-dimensional continuous state spaces 

which imply an infinite number of states. 

The iterative process of calculating and updating Q-values for each state-action pair in a 

large state space becomes inefficient and perhaps impractical due to the limited compu-

tational resources and real-time performance requirements. The advantage of DQN is that 

the agent control policy can be a continuous function (neural network defined by several 
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hyperparameters) that can be generalized to new unvisited states or previously visited 

states with uncertainty. 

 NEURAL NETWORK FUNCTION REPRESENTATION 

The DNN representation is used to estimate and update the Q-values of each state-action 

pair in a given environment, and in turn by agent training, the network approaches the 

optimal Q-function. Figure 23 shows how a neural network can represent the same Q-

values as the tabular Q-learning method shown previously in Figure 22. 

 

The DQN has an Artificial Neural Network (ANN) with a state input layer, n-hidden 

layers with m-neurons in each layer, and a linear regression output layer. The input layer 

includes state values 𝑠𝑘 =  [𝑆𝑜𝐶𝑘, 𝑇𝑡𝑜𝑡𝑘
, 𝑉𝑘, 𝐷𝑟𝑒𝑚𝑘

, 𝐸𝑜𝑛𝑘
] and the output layer estimates 

the Q-value of each action in the agent action space. Such a network that represents the 

agent control policy is called a “Policy Network” as demonstrated in Figure 24. The EM 

RL algorithm based on a model-free Q-network agent is represented in Algorithm 3. The 

RL training parameters and Neural Network (NN) hyperparameters are discussed in chap-

ter 5 in the context of the experiments conducted using the proposed algorithm.  

 

Figure 24 - DQN policy network 

 

Figure 23 - Q-function neural network representation [63]. 
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Algorithm 3: Model-free DQN algorithm for P2-PHEV 

1:  Set values for RL training parameters and NN hyperparameters 

2: Initialize Q network with random weights 𝜃 and memory 𝐷 with capacity 𝑁 

3: for episode = 1: number of episodes 

4: Reset environment with 𝑠0 

5: for k = 1: number of steps per episode 

6: With probability ε, select a random action 𝑎𝑘  

7: Otherwise, select 𝑎𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠𝑘, 𝑎) 

8: Execute action 𝑎𝑘 and observe reward 𝑟𝑘 and state 𝑠𝑘+1 

9: Store transition (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) in memory 𝐷 

10: s ← s′,  ε ← ε ∙ 𝑑ε  

11: Sample random minibatch of (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗, 𝑠𝑗+1) from memory 𝐷: 

12: 
Set 𝑦𝑗 = {

𝑟𝑗                                                   if 𝑠𝑗  is terminal         

𝑟𝑗 +  𝛾 max
𝑎

𝑄(𝑠𝑗+1, 𝑎;  𝜃)     otherwise                  
 

13: 
Perform gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗  ;  𝜃))

2

 

14: end for; 

15: end for; 

− DNN-learning based on experience replay  

The agent experience is defined as the 4D tuple (state, action, reward, next state) = 

(𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1). Replay Memory is a set of experiences of size N that uses the standard 

First In First Out (FIFO) buffer to ensure that the network is always trained on all new 

incoming experiences. If network learning is only done from the successive experiences 

directly from the environment, experiences would be strongly correlated, and the learning 

would be therefore inefficient. Accordingly, sampling random experience tuples from the 

Replay Memory resolves such a correlation problem. 

DNN training begins at step 11 in Algorithm 3 by retrieving a random sample batch 

(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1) from the replay memory. The state batch 𝑠𝑗 is fed as input to the policy 

network for the forward propagation. The network then produces an estimated Q-value 

for each possible action from the given input state. The optimal Q-values (often called 
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target Q-values) are calculated at step 12 in Algorithm 3 which is the same as the Q-

learning update equation (4.16).  The loss function is then defined as the error between 

the optimal Q-value and the Q-value of the action stored in the replay memory as formu-

lated in equation (4.25). 

A DNN optimization method, such as batch gradient descent, is then used to update the 

network weights to minimize the loss. Minimizing the loss leads the output Q-values of 

the policy network for each state-action pair to approximate the target Q-values given by 

the Bellman equation. The reader is referred to reference [65] for more information about 

the DNN forward/backward propagation and training processes. 

Batch Gradient Descent (BGD) is a basic algorithm used to drive the convergence of the 

neural network by minimizing the cost function formulated in equation (4.25). BGD is a 

relatively fast optimizer and intuitive to grasp the mathematics behind it. However, it can 

be easily stuck at a local minimum, and convergence is not always guaranteed with rela-

tively large learning rates. Other optimizers such as Stochastic Gradient Descent (SGD) 

[66], Adaptive Gradients (AdaGrad) [67], and Root Mean Squared Propagation 

(RMSprop) [68] are used in several studies. Nevertheless, the Adaptive Moment Estima-

tion (ADAM) optimizer is widely used in DRL problems because it combines the AdaG-

rad and RMSProp algorithms’ best properties to efficiently handle sparse gradients on 

noisy data [69]. 

 ADDITIONAL DQN TYPES 

− Double DQN 

Seven months after proposing DQN by DeepMind in 2015, Hasselt et al. introduced the  

Double DQN (DDQN) to reduce the observed Q-values overestimation bias. It is done by 

decoupling the action selection from the target Q-value estimation leading to a more sta-

ble training and an improved policy [70]. Using the same policy network in traditional 

DQN, the estimated Q-values will update, and the target Q-values will also be discounted 

𝐿𝑜𝑠𝑠 = (𝑟𝑗 +  𝛾 max
𝑎

𝑄(𝑠𝑗+1, 𝑎;  𝜃))    − 𝑄(𝑠𝑗 , 𝑎𝑗  ;  𝜃)   (4.25) 
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since they are calculated using the same weights. Subsequentially, the Q-values are up-

dated within each iteration to get closer to the target Q-values which also move in the 

same direction, and this creates a problem that the policy network tries to catch up with 

itself. 

Hasselt et al proposed a separate target network that is a clone of the policy network with 

the same architecture and the same weights. However, the target network weights are 

frozen and only periodically or slowly get updated to match the policy Q-network 

weights. In this way, the agent training can proceed in a much more stable manner. Al-

gorithm 4 shows the implementation of the DDQN approach for the P2-PHEV problem. 

Algorithm 4: Model-free Double DQN algorithm for P2-PHEV 

1:  Set values for RL training parameters and NN hyperparameters 

2: Initialize replay memory 𝐷 with capacity 𝑁 

3: Initialize policy network Q with random weights 𝜃  

4: Initialize target network Q̂ with random weights 𝜃−  

5: for episode = 1: number of episodes 

6: Reset environment with 𝑠0 

7: for k = 1: number of steps per episode 

8: With probability ε, select a random action 𝑎𝑘  

 

Figure 25 – Hasselt et al. results for  DDQN agent playing Atari games and showing 

more stable training performance in comparison to traditional DQN [70]. 
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9: Otherwise, select 𝑎𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎) 

10: Execute action 𝑎𝑘 and observe reward 𝑟𝑘 and state 𝑠𝑘+1 

11: Store transition (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) in memory 𝐷 

12: s ← s′,  ε ← ε ∙ 𝑑ε  

13: Sample random minibatch of (𝑠𝑗, 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from memory 𝐷: 

14: 
Set 𝑦𝑗 = {

𝑟𝑗                                                      if 𝑠𝑗  is terminal          

𝑟𝑗 +  𝛾 max
𝑎

Q̂(𝑠𝑗+1, 𝑎; 𝜃−)     otherwise                  
 

15: Perform gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗  ;  𝜃))
2

with respect to 

the policy network parameters 𝜃 

16: Every C steps, set Q̂ = Q 

17: end for; 

18: end for; 

 

− DQN critic representation  

Although Mnih et.al used the DQN architecture similar to Figure 24, they referred to 

another representation, called critic representation, to parameterize the Q-function using 

neural networks [64]. 

 

Figure 26 - DQN critic representation. 

Critic representation, as shown in Figure 26, feeds the state-action pair as an input to the 

neural network and retrieves the state-action value Q(s, a) as an output. This representa-

tion output differs from the commonly used representation where the output is the Q-

value for all actions in the discrete action space. Critic representation has the drawback 
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of being required to perform a separate forward propagation to calculate the Q-value for 

each available action to select an action according to the policy which results in more 

computational cost. Such a drawback is not critical in the existing HEV problem domain 

because the maximum free modes the agent can select from each time step are three.  

However, the main advantage of the critic representation is the efficient backward prop-

agation. According to step 14 in Algorithm 4, the target value 𝑦𝑗 is calculated only for 

the executed action while the other five action values are backpropagated with the same 

value. Consequently, the network is adjusting only one of the six output values, hence the 

network learning is not very efficient. On the other hand, the critic representation has one 

output that is updated completely by the target value and the network is utilizing the 

available data in the best way. This architecture is widely used in the MATLAB rein-

forcement learning toolbox and the examples provided by Mathworks for discrete action 

space environments with Q-learning, DQN, and SARSA algorithms [71]. 

4.2.3 DRL IMPROVEMENT TECHNIQUES 

 NEURAL NETWORK ARCHITECTURE OPTIMIZATION  

Incorporating deep learning models into the RL world witnessed intensive studies on im-

proving the agent performance. Various studies confirmed that the agent performance is 

affected by changing the neural network type, architecture, hidden layers, number of neu-

rons in each layer, activation functions, and layer inputs normalization/standardization 

[72, 73]. 

Several scholars tackling similar HEV control problems using DQN agents used different 

architectures. Most of them used the Multi-Layer Perceptrons (MLP) while few consid-

ered Recurrent Neural Networks (RNN). Zhaoxuan et al. utilized an MLP neural network 

with four hidden layers each having 128 neurons followed by a Rectified Linear Unit 

(ReLU) layer [74]. Chengzhao et al. constructed the NN out of two hidden layers with 

350 neurons followed by a ReLU layer each [75]. Other architectures are considered such 

as the pyramid architecture incorporating three hidden layers with [200 100 50] neurons 
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respectively by Renzong et al. [76] and the inverse-pyramid architecture with three hid-

den layers with [20 50 100] neurons, respectively [50]. 

Given the diversity of the available NN structures, a separate optimization study is con-

ducted to select the optimal NN architecture fitting our problem domain, cycles, and re-

ward function the best. The DQN agent ran for a few episodes to collect experiences with 

a full exploration behavior and the data was recorded for further processing. The step 

rewards were accumulated by the end of each episode to represent the expected cumula-

tive return which will represent the model's desired output. The input to the model will 

be the same as the DQN agent input state and action vector.  

Several NN architectures are defined to represent the aforementioned diverse designs, 

trained using a portion of the available data, and tested with the rest to calculate the gen-

eralization error for each design as a Root Mean Square Error (RMSE). The architecture 

which gives the minimum RMSE is selected as the function approximator for the subse-

quent development steps. 

 N-STEPS BOOTSTRAPPING 

The bellman equation for estimating the Q(s, a) of each state-action pair was first intro-

duced by Sutton in 1988 [61] as follows: 

Equation (4.26) represents the 1-step TD which is often called TD(0). However, the equa-

tion is recursive which means 𝑄(𝑠𝑡+1, 𝑎𝑡+1) can be replaced by its estimate from 𝑠𝑡+1 

assuming 𝑎𝑡+1 is chosen optimally or near optimally regarding the agent current policy 

as expressed in equation (4.27). 

 Accordingly, 2-step TD up to ∞-step TD can be achieved as illustrated in Figure 27 and 

this technique is called n-steps bootstrapping. Mathematically, n-steps bootstrapping will 

help the cumulative rewards to quickly propagate back to the previous states and the Q-

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 +  𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (4.26) 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾 𝑟𝑡+1 +  𝛾2  max
𝑎

𝑄(𝑠𝑡+2, 𝑎𝑡+2) (4.27) 
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function to converge faster. The ∞-step TD, in this case, will represent the Monto Carlo 

learning as shown previously in Figure 21. 

 

Figure 27 - N-steps bootstrapping return, Sutton [62]. 

Although n-steps bootstrapping can improve the Q-function approximation convergence, 

it should be used wisely because unrolling equation (4.26) too often will cause the DQN 

to be an on-policy algorithm. DQN is considered an off-policy algorithm because the 

experiences available in the buffer don’t depend on the agent’s policy. However, un-

rolling equation (4.26) to equation (4.27) included selecting the action 𝑎𝑡+1 optimally 

according to the agent policy, hence the algorithm is getting closer to an on-policy be-

havior by increasing the n-value further.  

This technique has been studied systematically by Fedus et al. recently in 2020 revealing 

that the agent’s performance will rely heavily on the proper selection of the n-value. They 

gave suggestions based on empirical results to select the n-value to be small, e.g., 3 or 4 

[77]. 

 PRIORITIZED EXPERIENCE REPLAY 

The experience replay technique, introduced in section 4.2.2.1, is used to improve the 

agent’s learning capabilities by remembering and reusing past experiences. The experi-

ences are sampled uniformly from the memory buffer into mini-batches for agent training 

regardless of their importance and significance. Although random sampling breaks the 
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correlation between experience samples, task-relevant and important transitions are 

missed often which results in poor data utilization decreasing the learning efficiency and 

speed.   

Schaul et al. proposed a different sampling technique that samples more frequently the 

transitions with high expected learning outcomes [78]. The TD error is calculated using 

equation (4.28) during appending the transition into the memory buffer to be used later 

to evaluate the sample importance. Equation (4.29) expresses the importance probability 

of an experience sample where ε is a small number to avoid the zero division, and 𝛼 

determines the priority sampling degree where zero means random sampling and one 

means full prioritization.  

The Q-value update in DQN depends mainly on the assumption of the consistency of both 

mini-batches and memory buffer sample distributions. However, prioritization will 

change the mini-batch sample distribution which brings an additional error source in the 

Q-value estimation and the agent policy. Accordingly, the authors proposed importance-

sampling weight (IS weight) which is a factor to be multiplied by the sample priority to 

compensate for such error in equation (4.30) and is multiplied by the training loss as 

expressed in equation (4.31). 

 𝛽 is the IS weight factor controlling how much prioritization is to be applied where 𝛽 ∈

(0 ≤  𝛽 ≤ 1). The authors argue that the training is highly unstable at the beginning, 

therefore it is recommended to start 𝛽 with a small value of 0.4 up to 0.6 and to anneal it 

𝑇𝐷 =  |𝑄(𝑠𝑡+1, 𝑎𝑡)  − 𝑄(𝑠𝑡, 𝑎𝑡)| (4.28) 

𝑝𝑖 =
(𝑇𝐷𝑖 + ε )𝛼

∑ (𝑇𝐷𝑘 + ε )𝛼𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒
𝑘

 (4.29) 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  (
1

𝑝𝑖
 ∙

1

𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒
 )

𝛽

 (4.30) 

𝐽 =
1

𝑚
 ∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖 ;  𝜃))

2
 ∙  𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒  (4.31) 



4 Methodology  

55 

gradually towards one where the importance sampling correction is more significant near 

the end of training. 

 TAU-SOFT UPDATE 

The DDQN algorithm, introduced in section 4.2.2.2, solves the moving target problem 

by having a separate target network for the Q-value estimation which is updated fre-

quently each C steps as demonstrated in algorithm 4. Lillicrap et al. used the ‘τ-soft up-

date’ technique to make the target network weights slowly track the learning policy net-

work instead of directly copying the weights as illustrated in equation (4.32) [79]. 

In algorithm 4, step 16 is simply replaced by equation (4.32). Choosing the 𝜏 value to be 

small, such as 0.001, constrains the target network change to be slow, hence greatly im-

proving the learning stability. Although the Q-value propagation is delayed by the target 

network soft update, the authors claim that such minor change guarantees convergence to 

a robust solution by moving the unstable function approximation problem closer to a su-

pervised learning problem. 

4.2.4 HEVS SPECIAL CONSIDERATIONS 

Although the topic of hybrid controls based on RL algorithms drew huge attention in 

recent years, most scientific publications considered replacing the energy management 

optimization part completely with the RL. The drawback of such an approach, however, 

is the difficulty to achieve a robust real-time control due to the huge computational re-

sources needed. Moreover, system constraints, safety, diagnostics, and component pro-

tection topics, which constitute a large number of hybrid control modules, are not con-

sidered, which limits this approach’s applicability to prototype and demonstration vehi-

cles. The following section discusses the feasible methodologies to implement the devel-

oped RL agent into series-intended controls. 

𝜃− =  𝜏 𝜃 +  (1 − 𝜏) 𝜃− (4.32) 
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 MODEL-BASED RL 

Planning and reinforcement learning were merged into a research field called model-

based RL. Such a new field can be defined as “any MDP approach that uses both a re-

versible model (known or learned) and learning of a value or policy to act on the envi-

ronment” [80]. 

Several model-based RL approaches were considered by researchers such as sampling 

additional data (often called Dyna-style algorithms [62, 81]), multi-step approximate dy-

namic programming, backward trials, and value gradients. The first approach is consid-

ered by the thesis while the reader is referred to [80] for more information regarding the 

other approaches. 

In 2016, Gu et.al with a team from Google proposed using sampling additional simulated 

data called imagination rollouts to improve the agent learning capabilities and lead to 

better policy [82]. Imagination rollouts are generated from a learned dynamics model to 

accelerate their model-free RL agent. They concluded that such a technique was ex-

tremely effective only when the learned dynamics model matches the true environment 

model perfectly. However, performance degrades dramatically with the imperfect learned 

model.  

  

a) Model-based RL b) Model-free RL 

Figure 28 - Model-based and model-free Reinforcement learning in HEVs [83]. 

In hybrid-electric vehicles, the powertrain model is deterministic which means the vehicle 

state (such as 𝑆𝑜𝐶𝑡, �̇�𝑓𝑢𝑒𝑙𝑡
, 𝐸𝑜𝑛𝑡

) moves deterministically to the next state (𝑆𝑜𝐶𝑡+1,  

�̇�𝑓𝑢𝑒𝑙𝑡+1
, 𝐸𝑜𝑛𝑡+1

) in the driving environment by the control input. Lee et al. used such 
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system characteristics to develop a model-based Q-learning agent with two separate sta-

tistical models; one for the SoC prediction and the other for the fuel consumption estima-

tion [83]. Both models are combined into an approximation model and used in a Dyna-Q 

algorithm to generate synthetic experiences and improve the agent policy with as shown 

in Figure 28a compared to Figure 28b. 

Based on the findings of Gu et al. and Lee et al., two supervised learning NN models 

were developed using the same methodology, as explained in section 4.2.3, to generate 

the data and train several architectures for the minimum training and generalization er-

rors. Both models are combined into a deterministic environment model to be used in 

generating synthetic experiences each time step and appending them into a simulated re-

play buffer as shown in Figure 29. Simulated experiences are bootstrapped for n-steps in 

the future to provide more on-policy behavior for the agent which showed some benefit 

in Q-function approximation in the early stages of the learning process as concluded by 

Gu et al. [82]. The detailed algorithm of the model-based DDQN agent with n-steps boot-

strapping is presented in algorithm 5.  

 

Figure 29 - Real and simulated experiences in model-based RL. 
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Algorithm 5:  Model-based Double DQN algorithm with 𝑛-steps bootstrapping for 

P2-PHEV 

1:  Set values for RL training parameters and NNs hyperparameters 

2: Initialize replay memory 𝐷, simulated replay memory 𝑆 and model buffer 𝑀 with 

capacity 𝑁 

3: Initialize policy network Q with random weights 𝜃  

4: Initialize target network Q̂ with random weights 𝜃−  

5: Load pre-fitted dynamics model ℳ ← ∅  

6: for episode = 1: number of episodes, do 

7: Reset environment with 𝑠0 

8: for k = 1: number of steps per episode, do 

9: With probability ε, select a random action 𝑎𝑘
1   

10: Otherwise, select 𝑎𝑘
1 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎) 

11: Execute action 𝑎𝑘
1 , observe reward 𝑟𝑘,1 and state 𝑠𝑘+1 

12: Simulate actions 𝑎𝑘
2,3

, observe reward 𝑟𝑘
2,3

 and state 𝑠𝑘+1
2,3

 

13: Store transition 𝑇𝑘
1 = (𝑠𝑘 , 𝑎𝑘

1 , 𝑟𝑘 , 𝑠𝑘+1) in memories 𝐷, 𝑀 and simulated  

transitions 𝑇𝑘
2 = (𝑠𝑘 , 𝑎𝑘

2 , 𝑟𝑘
2, 𝑠𝑘+1

2 ) and 𝑇𝑘
3 = (𝑠𝑘 , 𝑎𝑘

3 , 𝑟𝑘
3, 𝑠𝑘+1

3 ) in memory 𝑆 

14: s ← s′,  ε ← ε ∙ 𝑑ε 

15: Use last n transitions from 𝐷 to bootstrap 𝑇𝑘−𝑛
1  for 𝑛-steps, use ℳ to boot-

strap 𝑇𝑘−𝑛
2  and 𝑇𝑘−𝑛

3  with on-policy actions and replace all in 𝐷, 𝑆 buffers 

16: Sample minibatch of 𝑚 transitions from memories 𝐷 and 𝑆 

17: 
Set 𝑦𝑗 = {

𝑟𝑗                                                      if 𝑠𝑗is terminal          

𝑟𝑗 +  𝛾 𝑚𝑎𝑥
𝑎

�̂�(𝑠𝑗+1, 𝑎;  𝜃−)     otherwise                  
 

18: 
Perform gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗, 𝑎𝑗  ;  𝜃))

2

with respect to  

policy network parameters 𝜃 

19: Update target network weights 𝜃− ←  𝜏 𝜃 +  (1 − 𝜏) 𝜃− 

20: end for; 

21: Sample minibatch of random transitions from memory 𝑀 

22: 
Perform gradient descent on (𝑦𝑗 − ℳ(𝑠𝑗, 𝑎𝑗; ∅))

2

 on model parameters ∅ 

23: end for; 
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 ACTION MASKING 

Incorporating system constraints, safety, diagnostics, and protection into the HEV’s RL-

developed algorithm is achieved through the action masking technique. The idea is to 

define the conditions imposed by the system functionalities as a “mode enabler” vector 

which is considered by the RL agent to select the appropriate action each time step. In 

this way, only the modes that are allowed from the system point of view will be selected 

by the RL agent. 

The conventional RL architecture is shown in Figure 30a where the agent freely selects 

the action according to its policy and the environment responds with the system state and 

reward. While Figure 30b illustrates the modification proposed to the RL architecture 

based on the action masking idea presented by Vinyals et al. [84]. The main part of HCU 

decides on the available modes for the RL to select from according to its rule-based con-

trol scheme and constructs the ‘mode enabler’ logical vector. This vector is to be multi-

plied by the action space modes to result in a vector of the only available actions at the 

current state. The RL agent selects the appropriate action from them according to its pol-

icy and this action is further processed into the HCU remaining control functionalities 

and sent to the environment to be executed. 

 

 

 
 
 

a) 
 

b) 

Figure 30 – a) The conventional and b) the proposed RL architectures, source: AVL DSP 

team. 
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 REWARD FUNCTION 

The reward signal represents the search objective of the RL problem where its proper 

selection directly affects the agent performance. At each training step, the agent selects 

an action to be executed in the environment and evaluated by returning a feedback scalar 

value called the reward. Accordingly, the agent can learn to incentivize the actions which 

led to higher rewards and inhibits the others led to lower rewards. The power of using RL 

in control systems is the ability to define multiple objectives to be maximized or mini-

mized simultaneously in the reward function, hence its proper selection is a core task in 

the RL development cycle. 

Various scholars researched the best battery depletion rate that brings better fuel economy 

to hybrid vehicles for a long time. They noticed that gradual battery SoC depletion, sus-

taining the battery charge over the entire trip, tends to provide a near-optimal performance 

for the EMS problem. Accordingly, space-domain indexed SoC reference is proposed to 

guide the SoC depletion rate gradually in the entire trip taking into account the prior 

knowledge of the trip distance [85–88]. The trip distance can be estimated from the nav-

igation systems available nowadays in modern vehicles while Li et.al proposed a model 

called History Cumulative Trip Information (HCTI) to estimate its value with experi-

mental proven accuracy [89]. The HCTI estimates the travel distance considering the his-

torical record of the driver as a function of the day and time. The reward function defined 

utilizing the travel distance is shown in equation (4.33) where 𝜒 and 𝜑 are set to 40 and 

36 respectively after careful tuning. 

The objectives considered in this thesis include driver comfort and vehicle drivability too. 

Hence, another term is added to equation (4.33) to inhibit the frequent engine start/stop 

switching to improve the vehicle efficiency with a smooth operational behavior as shown 

in equations (4.34) and (4.35). 

𝑅𝑒𝑤𝑎𝑟𝑑 = −𝑡𝑎𝑛ℎ(𝜑 . |𝑆𝑜𝐶 −  𝑆𝑜𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|  +  𝜒 . �̇�𝑓𝑢𝑒𝑙) (4.33) 

𝐶𝑜𝑠𝑡 = 𝑡𝑎𝑛ℎ( 𝜑 . |𝑆𝑜𝐶 −  𝑆𝑜𝐶𝑂𝑝𝑡𝑖𝑚𝑎𝑙|  +  𝜒 . �̇�𝑓𝑢𝑒𝑙 +  𝜓 . 𝐸𝑠𝑤𝑖𝑡𝑐ℎ) (4.34) 

𝑆𝑜𝐶𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙   . (1 − 𝑑/𝐷)  +   𝑑/𝐷  . 𝑆𝑜𝐶𝑓𝑖𝑛𝑎𝑙  (4.35) 
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𝜒 and 𝜑 are using the same values and 𝜓 is set to be 0.7 after tuning. 𝐸𝑠𝑤𝑖𝑡𝑐ℎ is a binary 

value to indicate engine change state either starting or shutting down. 𝑑 is the traveled 

distance while 𝐷 is the total distance of the entire trip.  

The negative sign is removed as the reward function is renamed to represent a positive 

cost function to be minimized by the agent. Two changes were done to compensate for 

such change, the first is to select the action that represents the minimum Q-value satisfy-

ing 𝑎 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑄(𝑠, 𝑎) instead of 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎) in algorithms 3-5. The second 

change is to update the Q-value with 𝛾 𝑚𝑖𝑛
𝑎

�̂�(𝑠𝑗+1, 𝑎;  𝜃−) instead of 𝛾 𝑚𝑎𝑥
𝑎

�̂�(𝑠𝑗+1, 𝑎;  𝜃−) 

in the same algorithms too. The aforementioned changes bound the Q-network cumula-

tive return estimates to be a positive value which showed improved performance incor-

porating the ReLU activation function in the hidden layers as will be shown and discussed 

in the results in Chapter 5. 
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5 RESULTS AND ANALYSIS 

In this chapter, several experiments are performed to examine the proposed methodolo-

gies that were introduced previously in chapter 4. The driving cycles used through the 

whole chapter are introduced in section 5.1 while the simplified vehicle model validation 

is illustrated in section 5.2. RL agents are discussed in section 5.3 where separate de-

signed experiments are conducted in sections 5.3.1- 5.3.4. The contribution of each pro-

posed algorithmic module is tested and key conclusions are drawn. Based on such cogni-

tions, an E-DQN is developed in section 5.3.5 and tested for generalization using two un-

seen cycles with different initial SoC levels. 

5.1 BOUNDARY CONDITIONS 

The driving cycles used in this chapter are NEDC, Highway Fuel Economy Driving 

Schedule (HWFET), Urban Dynamometer Driving Schedule (UDDS), and GRAZ cycle. 

HWFET is a highway cycle, UDDS is an urban cycle often called FTP-72 (FTP, Federal 

Test Procedure) while NEDC is usually used to assess the emission levels and fuel econ-

omy [90]. The three cycles are often used by scholars for research purposes.  

However, the GRAZ cycle is a transient driving cycle defined by the AVL DSP team for 

internal use. It is a highly dynamic cycle due to several velocity and altitude fluctuations 

in each segment. GRAZ cycle is quite typical for long journey driving situations in Eu-

rope. It can be divided into four segments: city cycle, highway cycle, rural cycle, and 

another city cycle with around 53 km overall distance completed within 4445s (1.235 

hours). The four-cycle velocity profiles are shown in Figure 31. 
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Figure 31 – The velocity profiles of the driving cycles used in chapter 5. 
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5.2 SIMPLIFIED VEHICLE MODEL VALIDATION 

The accuracy of the simplified vehicle model influences the optimality of the trained RL 

control strategy because it directly affects the fuel consumption and SoC change estima-

tion. Therefore, model validation results shall reflect and quantify the estimation error for 

fuel consumption and SoC change compared to the high-fidelity vehicle model. Driving 

cycle information such as speed and road gradient time series in addition to a sequence 

of selected driving modes following the CDCS strategy are used as inputs for both the 

simplified and the high-fidelity vehicle models.  

 

Figure 32 – Simplified vehicle model diagram. 
 

Figure 32 shows the operational flow diagram of the model where the driving cycle in-

formation is used to calculate the wheel torque demand in the longitudinal model and 

then, the crankshaft torque demand is calculated in the drive-train model. Combined with 

the control strategy selected mode, detailed torque distribution between ICE and EM de-

cision is determined. The torque demand from the ICE (𝑇𝑞𝐼𝐶𝐸) and the EM (𝑇𝑞𝐸𝑀) are 

used in the Engine and EM/Battery models respectively to calculate the SoC change and 

the fuel consumption as model outputs. 

The NEDC driving cycle shown in Figure 31a is used for the model validation. The AER 

of the considered P2 PHEV is 64 km while a single NEDC cycle has a distance of 11 km. 

Therefore, 6-repeated NEDC (6-NEDC) are simulated to cover the full battery charge 

deletion to the minimum threshold.  
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The model validation experiments begin with using the high-fidelity model to run the 

driving cycle with control actions following the CDCS strategy implemented in the 

HCU’s calibration data and the rule-based controller provided by the AVL DSP team. 

The control inputs and model simulation outputs are logged to be implemented into the 

intended model to be validated. The SoC estimation is evaluated by running the 6-NEDC 

cycle with a full battery (95% SoC) while the fuel consumption estimation is evaluated 

better by running the same cycle with an empty battery (20% SoC). Both SoC depletion 

and fuel consumption validation experiment results are shown in Figure 33 and Figure 34 

respectively.  

 

Figure 33 - SoC depletion trajectories comparison with a full battery in the 6-NEDC 

cycle, source: AVL DSP team. 

 

 

Figure 34 - Fuel consumption trajectories comparison with an empty battery in the 6-

NEDC cycle, source: AVL DSP team. 

 

The results assert that SoC and fuel consumption differences are negligible. The SoC 

difference oscillates between -0.3:0.2% while the fuel consumption difference ranges be-

tween 30:50 ml, which is 1.1% of the 4500 ml total fuel consumption. It is realized that 

the sudden dynamic transient activities such as acceleration, deceleration or gear shift, or 
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simplification of some parameters lead to the differences between both models. However, 

being all in an acceptable range, it is concluded that the simplified vehicle model is ac-

curate enough to be used instead of the high-fidelity model for further experimentations. 

5.3 REINFORCEMENT LEARNING AGENTS 

5.3.1 TABULAR Q-LEARNING BASED EMS 

Algorithm 2 showed how the tabular Q-learning method is incorporated into an RL agent 

to solve the energy management problem in the P2-PHEV. The environment state space 

(SoC, Ttot, V, Drem, Eon) is continuous, therefore a discretization of (40, 20, 20, 20, 2) is 

applied resulting in a Q-table with dimensions of (640,000 x 3). The training hyperpa-

rameters are tuned after several experiments and summarized in Table 3. 

Table 3 - Q-learning hyperparameters. 

Learning rate 𝛼 0.01 Epsilon decay rate 𝑑𝜀 0.01 

Discount rate 𝛾 0.995 Epsilon minimum 𝜀𝑚𝑖𝑛 0.1 

Epsilon 𝜀 1   

 

 

 

Figure 35 - Q-learning agent results on the GRAZ cycle. 

a) 

 

 

 
 

b) 
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Figure 35 demonstrates the Q-learning performance results on the GRAZ cycle with ini-

tial SoC of 75%. Figure 35a shows the episode cumulative return in addition to the Q0 

which represents the estimated Q-value at the beginning of the episode. Q0 represents the 

agent’s expected cumulative return and the closer it is to the true return, the better the 

agent can expect future rewards, and accordingly, the best actions can be taken to mini-

mize the cumulative episode cost. Nevertheless, Q0 did not approach the true return value 

which reveals the agent does not correctly learn the environment. 

 

Figure 36 - Discretized states visit frequency per episode. 

The Q-learning based agent suffers from the curse of dimensionality due to discretization 

[45]. Although the discretization level used causes the Q-table to be huge (640,000 x 3) 

and requires large memory to handle, it is not sufficient for proper segregation and dif-

ferentiation between adjacent states.  

The histogram in Figure 36 shows how frequently each state is visited during a single 

episode.  The results reveal that the majority of the states are visited more than once up 

to 532 times. In discrete state-space environments such as the grid world, discretization 

is not applied hence each state-action pair holds a Q-value that fully represents the dis-

counted cumulative return following the optimal policy till the episode end according to 

the Q-value definition. Although in the discretized continuous state space environments 

such as HEV’s, the discretized states are visited more frequently with different Q-values 

which causes the Q-function to diverge and never approximate its true representation. 
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Figure 35b shows the true cumulative return and the Q-value for each time-step/state in 

the current episode. Proceeding with the agent training, the trend of the estimated Q-

values shall follow the true return especially with small values of the exploration term 𝜀. 

However, due to the coarse discretization and the curse of dimensionality problem, both 

curves never followed each other with different hyperparameters in several experiments.  

The tabular Q-learning approach is concluded not to be suitable for future expanded ap-

plications with large state space environments such as HEVs. The deep Q-network ap-

proach offers a solution to this problem and avoids the state space discretization by intro-

ducing an NN outperforming the tabular Q-learning according to several papers discussed 

in section 3.2.2.5.  

5.3.2 DEEP Q-LEARNING BASED EMS 

Algorithms 3 and 4 with the hard and the τ-soft update, introduced in section 4.2.3, are 

experimented together running the GRAZ cycle with the following set of hyperparame-

ters shown in Table 4. For the upcoming experiments, the same hyperparameters defined 

in Table 4 are used unless stated otherwise. The DQN network utilized has the critic 

representation discussed in section 4.2.2.2 with four hidden layers each having 32 neu-

rons followed by a ReLU activation layer. 

Table 4 - DQN-learning hyperparameters. 

Learning rate μ 0.0025 Discount rate 𝛾 0.995 

Epsilon 𝜀 1 n-steps 16 

Epsilon decay rate 𝑑𝜀 0.005 Mini-batch size 32 

Epsilon minimum 𝜀𝑚𝑖𝑛 0.1 Experience buffer size 10,000 

NN optimizer ADAM Experience buffer sampling Random 

 

The NN performance highly depends on the scale and dimensions of the input features 

either in the classification or more importantly in the regression problems as is the case 

with the DRL. ML researchers recommend pre-processing the input data to be normalized 

in a range of 0-1 or standardized with a zero mean and a standard deviation of 1 [91].  



5 Results and analysis  

69 

Data normalization would be more practical in the HEV problem domain especially in 

deploying the RL agent in a test driving cycle with unknown inputs mean or standard 

deviation. Therefore, inputs normalization is used in state-action pair Q-value estimation 

and during the critic network training process with inputs and normalization ranges 

shown in Table 5. 

Table 5 – DQN inputs and normalization ranges. 

Input Range units Normalization range 

State of Charge SoC 20:95 % 

0: 1 

Torque demand Ttot -90:310 N.m 

Velocity V 0:44 m/s 

Remaining distance Drem 0:160 km 

Engine run Eon 0:1 - 

Action a 0:8 - 

 

The results are shown in Figure 37 and Figure 38 disclose how each agent interacts with 

the environment and learns differently. The DQN agent has a single network that is used 

to update the policy and evaluate the target value from the same network. Previous studies 

did not recommend a single network DQN for learning and training stability issues. How-

ever, in our problem domain, it behaves stably and properly.  

The DDQN with hard update synchronized the target network with the policy network in 

every 10 episodes in the aforementioned experimental setup. It is clear in Figure 38b how 

slow it is for the Q0 to be close to the cost and to keep tracking it steadily without oscil-

lations. Nevertheless, the DDQN with 𝜏-soft update showed a quicker convergence and a 

stable behavior after episode 150. Starting from episode 200, the Q0 was almost kept 

constant which indicates that the Q-function captured a proper approximation to the true 

return value.  
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Figure 37 - DQN, DDQN with hard, and soft update results. 

 

 

Figure 38 - Detailed view of DQN, DDQN with hard, and soft update results. 
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It is worth mentioning that the converging Q0 should not match the true return because 

the epsilon value still causes some randomness in the action selection while the Q0 rep-

resents the expected return following the optimal policy completely. This was not the 

case with the DQN which followed the true return blindly from episode 200 as shown in 

Figure 38a. Accordingly, DDQN with 𝜏-soft update is recommended for upcoming ex-

periments due to its improved performance in comparison with the other two agents. 

5.3.3 DRL IMPROVEMENT TECHNIQUES 

 NEURAL NETWORK ARCHITECTURE OPTIMIZATION 

The subsequent experiment is to optimize the DRL critic and powertrain model NN ar-

chitectures using the supervised learning approach. Several designs were tested including 

uniform, pyramid, and inverse-pyramid architectures. The number of hidden layers and 

the number of neurons in each layer are changed to cover a wide range of possible de-

signs.  

The experiment data set consisted of 50,000 training instances. The experiment ran three 

times, each time using a group of 2,000, 10,000, and 50,000 of the training instances 

respectively. Each group uses 80% of the available dataset to train the NN and 20% to 

test the generalization error. The experiment was conducted in this way to find the best 

architecture that minimizes the generalization error in each group. Each group represents 

a phase in the agent learning process and for the sake of better convergence, the NN shall 

be powerful to represent the agent knowledge in the early stage of the training such as 

group one, and the later stages such as group three.  

Taking into consideration the weighted contribution corresponding to the number of the 

training instances in each group in the design selection criteria, Figure 39 showed that 

two designs achieved the minimum generalization error: [512 512] and [32 32 32 32]. 

The first design has a total number of 1024 neurons in comparison to 128 neurons in the 

second design which means the latter achieves 8x faster training with lower memory re-

quirements. Therefore, the second design (four layers with 32 neurons each) is selected 

for the thesis experiments.  
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Figure 39 - DRL critic architecture optimization results. 

The same approach is used to optimize the powertrain model NN concluding that [5,4] 

and [8,8,8] are performing the best among the other models. The latter design (three 

hidden layers with 8 neurons each) is selected due to the more representative power 

available in the model especially since both models are simple and efficient in 

computational power with low memory requirements. 

 

Figure 40 – Powertrain model architecture optimization results. 
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 N-STEPS BOOTSTRAPPING 

Four agents were tested using the hyperparameters defined in Table 4 and varying the n-

steps each as shown in the combined plot in Figure 41. Figure 42a, representing the TD(0) 

agent with n=1, had a diverging Q-function, however, it started to converge very slowly 

using n=2 as the case in Figure 42b.  

Better performance is achieved by setting n=16 as shown in Figure 42d in the contrary to 

the recommendations previously discussed in 4.2.3 of setting the n-value to be small 

around 4 for better off-policy behavior. However, it is noticed that decaying the n-value 

from 16 to 6, by subtracting 1 every 10 episodes, showed the best performance as demon-

strated in Figure 42c. After episode 100, the n-value was 6 which helped the agent to 

utilize the experience available in the replay buffer to learn more efficiently for 80 more 

episodes. The Q0 value started to stabilize after episode 100 even with oscillations due to 

the randomness in the action selection and the cost tried to come closer and closer by 

proceeding in the training. In the combined plot in Figure 41, it can be concluded that the 

decaying n-steps agent is outperforming the other agents either in the achieved cost or the 

Q-function convergence to a lower and more stable value. 

 

Figure 41 - n-steps bootstrapping combined plot. 
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Figure 42 - n-steps bootstrapping results in DRL. 
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 PRIORITIZED EXPERIENCE REPLAY 

The following experiment focused on examining the performance of the Prioritized Ex-

perience Replay (PER) compared to the random sampling experience replay (referred to 

in the figures as ~PER). The 𝛼 and ε values introduced in equation (4.29)  are selected to 

be 0.6 and 1e-10 respectively. However, according to Schaul et al., the β value used in 

equation (4.30) is started with a value of 0.4 and increased gradually to 1 with a rate of 

0.005 which is the same rate of the epsilon decay shown in Table 4 [78].  

 

Figure 43 - Prioritized sampling performance compared to random sampling in the ex-

perience replay. 

The total and expected cost of both agents in addition to the training loss are shown in 

Figure 43 and Figure 44 respectively. The effect of prioritization became significant after 

episode 90 where the prioritized experience instances are considered more for the training 

which caused the MSE to increase rapidly as shown in Figure 44. On the contrary, the 

PER agent outperformed the other starting at episode 170 by achieving a lower cost and 

a decreasing MSE till the end of the training which reflects converging to a better policy. 
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Figure 44 – the MSE of prioritized sampling compared to random sampling in the ex-

perience replay buffer. 

In conclusion, prioritized sampling offers improved performance over the random sam-

pling-based experience replay buffers with slightly increased computational resources. 

PER is recommended for later use in the RL agent training for the P2-PHEV domain. 

5.3.4 HEVS SPECIAL CONSIDERATIONS 

 ACTION MASKING 

Incorporating action masking into the RL domain is illustrated in Figure 30b. The remain-

ing HCU part is modeled by rule-based logic using the HCU’s calibration parameters to 

provide the RL agent with a  mode enabler vector. Such a vector enables only the availa-

ble actions each time-step making sure that the RL agent cannot behave in an unsafe or 

unrealistic way.  

Fixed modes such as AddBoost, Recup, and St/Sndtl modes are shown in Figure 45 in 

orange, blue, and yellow colors respectively. In the plot background, the velocity profile 

is plotted where it can be noticed that St/Sndtl mode is selected properly at zero velocity. 

The driver torque demand is plotted in the background in a silver color with a biased x-
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axis to show the negative values. The negative torque corresponds to the Recup mode 

selected while the AddBoost mode is selected often at the torque peaks especially at low 

velocities. 

 

 

Figure 45 - Action masking for fixed modes selection. 

 MODEL-BASED RL  

Algorithm 5 showed the details of the model-based RL agent considered in our P2-PHEV 

problem. Running a few experiments showed that the model-based agent has higher sen-

sitivity for the learning rate. Therefore, a lower learning rate of 0.0001 is used in the 

experiment shown in Figure 46. 

 

Figure 46 - Model-based and model-free DRL agents’ comparison. 

The results in Figure 46 showing that the model-based RL agent captured a closer value 

to the Q-function quicker than the model-free RL agent. The latter showed better 
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adherence and tracking to the training cost while the first outperformed in terms of the 

achieved cost between episode 80 till episode 265. Thereafter, both agents behaved sim-

ilarly achieving approximately the same cost and a very close final Q0 value for each.  

It is concluded that the model-based RL can benefit from the known model dynamics to 

quickly converge to the optimal Q-value while the model-free RL needs a longer time. 

However, this conclusion is valid in the early stages of the learning process when the Q-

function approximation is poor as shown in Figure 46 from episode 80 till episode 200. 

In later stages, both approaches behave similarly while the model-free approach would 

be favored due to its generality and optimality characteristics in addition to the lower 

computational resources required. The aforementioned conclusion agrees with the results 

of Gu et.al [82]. They recommended using the imagination rollouts in the early stages of 

the training to improve the Q-function approximation, then turning off the model-based 

planning later. The fine-tuning in later stages is better to be done by the model-free RL 

using real-world experiences to assure the optimality and generality of the resulting con-

trol policy.  

5.3.5 E-DQN AGENT FOR THE P2-PHEV 

The following section combines the previous conclusions and results into an extended 

version of the DQN agent (E-DQN). Experimental results are shown for the agent training 

and testing on the HWFET cycle, and the generalization is tested using the GRAZ and 

the 6-UDDS cycles with different initial SoCs for better estimating the agent behavior on 

new cycles. E-DQN is a model-free RL agent combined with prioritized experience re-

play, decaying n-steps bootstrapping, and τ-soft update.  

 TRAINING PERFORMANCE 

The training is done based on the hyperparameters defined in Table 4. Some hyperparam-

eters are modified and shown in Table 6. The change imposed in this agent training was 

to decay the learning rate linearly with a value of 0.0005 every 30 episodes. Additionally, 

the τ value is increased by 0.01 every 20 episodes to get closer to the DQN behavior by 

proceeding in the training. Based on the conclusion of the DQN and DDQN experiment 
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with results shown in Figure 38, increasing the τ value as the training proceeds was no-

ticed to improve the convergence and achieve better results. 

Table 6 – E-DQN training hyperparameters. 

Learning rate μ 0.001 Tau τ 0.01 

Learning rate decay 𝑑μ 0.0005 Tau growth rate 𝑑𝜏 0.01 

Learning rate update frequency 30 eps. Tau update frequency 20 eps. 

Learning rate minimum 𝜇𝑚𝑖𝑛  1e-05 n-steps 16 - 6 

Epsilon 𝜀 1 Experience buffer size 10,000 

Epsilon decay rate 𝑑𝜀 0.005 Experience buffer sampling Prioritized 

Epsilon minimum 𝜀𝑚𝑖𝑛 0.1 NN optimizer ADAM 
 

The agent training results are shown in Figure 47. The average cost was noticed to be 

decreasing which indicates an improved policy while the Q0 became close after episode 

120 which reflects building proper knowledge about the environment over time.  

 

Figure 47 - the training performance of E-DQN agent on the HWFET cycle with  

30% SoCinit. 

After 250 training episodes, the agent behavior was simulated which means no more neu-

ral network training and the action decision is following the policy completely with no 
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randomness. The simulation results are summarized in Table 7 while the SoC depletion 

and fuel consumption trajectories for CDCS, DP, and RL are shown in Figure 48. 

Table 7 – E-DQN simulation results on HWFET with 30% SoCinit. 

HWFET Cycle 

SoCinit = 30% 

P2-HCU Existing 

 Strategy  

DP-based solver 

 Strategy 

RL-based solver 

 Strategy 

Final SoC (%) 20.69% 20.71% 20.62% 

Fuel Consumption (ml) 652.95 631.41 641.04 

Fuel Economy Improvement 96.59% / 98.47% 

Number of engine-starts 7 50 37 

 

 

 

Figure 48 - E-DQN simulation on HWFET with 30% SoCinit. 
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The velocity is shown in Figure 48’s background not-to-scale to provide a better under-

standing of the agent behavior. It is noticed that in the high-speed segments such as 50-

130s and 320-460s, the agent mostly selected the ConvDrv mode to utilize the engine in 

the most efficient load points while the EltlDrv is selected mostly in the relatively low-

speed segments.  

The DP utilized a linear depletion of the SoC while the RL followed a different strategy 

achieving 98.47 % of the DP performance in comparison to 96.59% in CDCS. The dif-

ference between the CDCS and RL is not significant in the HWFET cycle because the 

whole cycle is in a high-speed range which means the optimum engine operation zone. 

Accordingly, the trained agent shall be simulated on other cycles to test its generalization 

capability and robustness.  

 GENERALIZATION PERFORMANCE 

The E-DQN agent’s generalization behavior is simulated using the 6-UDDS and the 

GRAZ cycles. The first cycle repeats the UDDS cycle six times to provide a longer dis-

tance outside the considered vehicle AER so that full battery depletion is possible. The 

fuel consumption and SoC trajectories for 75%, 50%, and 25% SoCinit levels, engine 

BSFC maps for 75% SoCinit for both cycles, and the numerical results summarized in 

Table 8 are used to judge the agent generalization performance for different environmen-

tal conditions. 

Different SoCinit levels highly affected the performance of the E-DQN agent compared to 

the CDCS and DP as shown in Figure 49. With 25% SoCinit, the agent almost followed 

the CDCS strategy due to the lack of available electric energy onboard, therefore proper 

energy utilization is not possible. However, at higher SoCinit levels such as 50% and 75%, 

the RL agent was closer to the DP behavior rather than the CDCS by depleting the electric 

energy wisely throughout the whole trip. This enabled the RL agent to operate the ICE 

on optimal load points as shown in Figure 50 achieving 98.7%, 97.5%, and 93.7% of the 

DP fuel economy compared to 97.7%, 90.5%, and 83.3% following the CDCS strategy 

for the 25%, 50% and 75% SoCinit levels respectively.  
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Figure 49 - E-DQN performance on 6-UDDS cycle with 25%, 50%, and 75% SoCinit. 
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Figure 50 shows the improvement of the E-DQN agent’s strategy over the CDCS 

compared to the DP. The ICE optimum operation line represents the most fuel-efficient 

operation load point at each engine rotational speed. The closer the agent to the ICE 

optimum line, the more fuel it saves. The RL agent achieved way better load points 

distribution over the CDCS which interprets the 10.46% improvement in the fuel 

economy.  

For further testing and validation of the E-DQN agent capabilities, it is deployed to the 

GRAZ cycle previously shown in Figure 31d. The agent performance on the three SoCinit 

levels is demonstrated in Figure 51. The CDCS strategy obtained 98.2%, 94.5%, and 

86.4% of the DP fuel economy for the 25%, 50%, and 75% SoCinit levels respectively 

while the RL agent outperformed the CDCS in all SoCinit levels by 99.2%, 96.6%, and 

94.3% of the DP performance. 

 
 

Figure 50 - Engine BSFC map for the 6-UDDS cycle at 75% SoCinit. 
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Figure 51 - E-DQN performance on the GRAZ cycle with 25%, 50%, and 75% SoCinit. 
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For a better understanding of the results, the GRAZ cycle with 75% SoCinit is selected as 

an example to compare the mode selection for the three strategies as illustrated in Figure 

53. The CDCS strategy in Figure 53a started depending on the ICE from the 2400s where 

SoC begins to be sustained. On the contrary, the DP fuel consumption trajectory in Figure 

51c dramatically increased between the 1700s to 2000s by selecting ConvDrv. The results 

reveal that the DP depends more on ConvDrv mode in the highway and rural segments 

where the velocity is relatively high. Moreover, EltlDrv is used instead for the other cycle 

segments where the velocity is relatively low. 

The main unique strategy of the DP is to use the ICE more in the high-speed segments 

and depends completely on the electric drive for all the other low-speed segments. Such 

a strategy strongly concurs with the ICE system characteristics of working more effi-

ciently at high velocities as illustrated in Figure 52 showing the ICE load point locations 

on the BSFC map. The DP located the load points mostly in the central region within 250 

g/kWh BSFC while the ICE load points in the CDCS strategy are located on the left 

region, which is much less optimal. In addition to the ICU utilization, DP tended to 

 

Figure 52 - Engine BSFC map for the GRAZ cycle at 75% SoCinit. 
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deplete the SoC gradually through the entire trip which coincides with the conclusion 

derived previously in section 4.2.4.3. 

 

 

 

Figure 53 - Mode selection in GRAZ cycle with 75% SoCinit. 

On the other side, the RL used a different strategy of prioritizing the EltlDrv mode always 

till the 1850s where a quick drop in the SoC takes place as shown in Figure 51c. the 

ConvDrv mode is used instead till the end of the highway segment where the EltlDrv is 

prioritized again after the 2400s. The ConvDrv mode is used for some segments later to 

maintain the SoC depletion trajectory within a proper rate while trying to minimize the 

number of engine starts to minimize the total episode cost. Figure 52 shows the engine 

BSFC map for the GRAZ cycle at 75% SoCinit where the adjacency between the DP and 
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the RL is closer than between the RL and the CDCS confirming the cognition of better 

engine utilization and higher fuel economy. 

The results in Table 8 validate the surplus of the E-DQN agent compared to the CDCS 

strategy particularly in the high SoCinit levels where much electric energy is available and 

needs proper utilization. The RL agent outperformed the CDCS with more than 10% and 

around 8% closer to DP performance in the 6-UDDS and the GRAZ cycles respectively 

with 75% SoCinit. However, its performance was very close to the CDCS by less than 1% 

improvement with 25% SoCinit in both cycles.   

 

Table 8 - E-DQN generalization performance results on 6-UDDS and GRAZ cycles. 

 

  6-UDDS Cycle GRAZ Cycle 

  25% 50% 75% 25% 50% 75% 

Final SoC (%) 

CDCS 20.6% 20.5% 20.5% 20.5% 20.5% 20.5% 

DP 20.8% 20.6% 20.6% 20.4% 20.5% 20.4% 

RL 20.8% 20.8% 20.8% 20.5% 20.4% 20.5% 

Fuel Con-

sumption (ml) 

CDCS 3962.8 2907.3 1547.6 3788.5 2676.2 1595.3 

DP 3873.5 2656.1 1326.4 3804.0 2592.6 1404.2 

RL 3924.2 2721.7 1409.7 3797.3 2681.3 1483.8 

Fuel Economy 

Improvement 

CDCS 97.70% 90.54% 83.32% 98.20% 94.50% 86.39% 

DP - - - - - - 

RL 98.69% 97.53% 93.72% 99.17% 96.58% 94.33% 

Number of  

engine starts 

CDCS 34 72 60 66 72 32 

DP 308 320 210 103 76 53 

RL 62 66 106 68 33 50 

 Moreover, the number of engine starts for the RL agent was kept in an acceptable range 

with an average of one engine start each 96.3s for the GRAZ cycle compared to one start 
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each 61.8s and 89.3s in the DP and CDCS respectively. However, the CDCS achieved 

longer time for each engine start with an average of 155.4s in the 6-UDDS compared to 

30.5s and 105.5s for the DP and the RL respectively. The previous results are shown in 

Figure 54 relative to the DP in a bar chart for easier comparison.  

 

 

Figure 54 - Results for a) fuel economy and b) engine average switch time relative to 

the DP 
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6 CONCLUDING REMARKS 

The following chapter summarizes the outcomes of the thesis and recommends some fu-

ture improvements based on an objective discussion. 

6.1 SUMMARY AND CONCLUSION 

PHEVs offer a promising solution for the increasing CO2 emission problem as one of the 

main categories in the automotive industry electrification process. PHEVs can improve 

the fuel economy due to the additional large size battery and EM. However, the improved 

economy strongly depends on the HCU control strategy. Navigation, communication de-

vices, and sensors inspired a growing development of the advanced energy management 

control strategies especially that the CDCS strategy is neither simple nor advantageous 

anymore with the increasing control objectives. 

Several scholars proved that advanced strategies inspired by AI such as reinforcement 

learning-based strategies can significantly improve the fuel economy of HEVs. The base-

ment of the thesis is a P2-PHEV while the ultimate objective of the thesis is to improve 

fuel economy by introducing an adaptive online learning RL agent into the existing HCU 

architecture.  

In this study, an offline GOP tool is developed firstly to obtain a globally optimal solution 

leading to smart power distributions that contribute mostly to the fuel economy improve-

ment. The offline GOP results are used later to benchmark the subsequent developed al-

gorithms performance to. Thereafter, RL-based algorithms are introduced to provide an 

online learning control strategy to solve the EMS for near-optimal solutions. The devel-

opment process began with describing the control problem as an infinite-horizon optimal-

control problem. The mathematical formulation is a function of the battery SoC, driver 

torque demand, vehicle speed, remaining trip distance, and the engine on/off status.  

The objective is to minimize the vehicle's expected total fuel consumption besides penal-

izing both the battery SoC deviation from a linearly space-domain indexed SoC reference, 

and the frequent engine switch. Accordingly, the design process reasonably considered 
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the drivability and comfort requirements instead of sacrificing them too much for the sake 

of fuel economy. 

Several RL-based algorithms proposed recently by the AI scientific community have been 

experimented with using a vehicle model simulation. As a result, an E-DQN agent is 

proposed by the thesis, trained on the HWFET cycle, and deployed on other two cycles 

to evaluate the performance. The E-DQN’s control strategy outperformed the CDCS 

strategy in terms of fuel economy, up to 10.46% improvement, alongside providing ade-

quate compliance with the optimization problem objectives. The thesis findings strongly 

accord to the necessity of enabling AI-based control strategies into the next generation of 

automobiles particularly in the era of autonomous driving and connected vehicles. The 

control objectives are becoming more and more complex for traditional methods to han-

dle, thus AI-enabled technologies shall be prioritized by OEMs for further research and 

development. 

6.2 FUTURE PROSPECTS AND RECOMMENDATIONS  

The accelerating development of computational resources in recent decades enabled 

novel complex and intelligent algorithms to be involved in modern control systems. Ad-

vancement in the RL field incorporating DL and NNs forms the next trend for the RL-

based HEVs/PHEVs energy management strategies. Integration with ITSs to construct a 

smart city or smart grid is coming soon with more comprehensive and complicated opti-

mization control objectives. In the future connected environment, distributed and multi-

agent DRL systems are a necessity for cooperative learning between vehicles on the road. 

The sooner the transition towards intelligent control systems by automotive OEMs, the 

better they are prepared and qualified for the upcoming challenges. The thesis presented 

an initial step overlooking the way towards realizing an intelligent adaptive energy man-

agement system for PHEVs. The upcoming research efforts shall investigate more the 

following spots: 
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− DRL algorithms: the DQN algorithm is solely considered by the thesis in DRL 

algorithms. However, other types such as the Policy Gradient family (PG) are 

promising to be examined [92] including Proximal Policy Optimization (PPO) 

[93], and Deep Deterministic Policy Gradient (DDPG) [52]. 

− Multiple objectives: for improved performance, including other objectives to be 

optimized such as greenhouse gas emissions [94], the battery SoH [95], safety, 

comfort, user convenience [96], and powertrain mobility [97], brings additional 

benefits and are advantageous.  

− RL agents testing and validation: besides the theoretical feasibility that is vali-

dated by simulation, practical implementation is necessary to be achieved through 

real vehicle evaluations. Few studies proceeded with their proposed methodolo-

gies to the HiL and vehicle-in-the-loop (ViL) testing. Therefore, more research 

efforts shall further examine the validity of such approaches in real environments. 
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7 LIST OF ABBREVIATIONS 

Abbreviation Explanation 

AdaGrad  Adaptive Gradients  

ADAM  Adaptive Moment Estimation  

AddBoost  Additive Boost  

ADVISOR ADvanced VehIcle SimulatOR  

A-ECMS  Adaptive Equivalent Consumption Minimization Strategy  

AER All-Electric Range 

AI  Artificial Intelligence  

ANN  Artificial Neural Network  

BGD  Batch Gradient Descent  

BMS  Battery Management System  

BSFC  Brake-Specific Fuel Consumption  

BSG  Belt Driven Starter/Generator 

C/GMRES  Continuation/Generalized Minimum RESidual 

CAVs  Connected and Automated Vehicles  

CD  Charge-Depletion  

CO  Carbon Oxide 

CO2 Carbon Dioxide 

ConvDrv  Conventional Drive  

CS Change-Sustaining  

DCT  Dual Clutch Transmission  

DDP  Deterministic Dynamic Programming  

DDQN  Double Deep Q-Network 

DL  Deep Learning  

DNN  Deep Neural Network  

DP Dynamic Programming  
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DQN Deep Q-Network  

DRL Deep Reinforcement Learning  

ECU  Engine Control Unit  

E-DQN  Extended- Deep Q-Network  

EltlDrv  Electric Drive  

eMPC  Explicit MPC  

ESS  Energy Storage System  

EV  Electric Vehicle 

FASTSim Future Automotive Systems Technology Simulator  

FIFO  First In First Out  

FTP Federal Test Procedure  

GOP  Global OPtimization techniques 

HCTI  History Cumulative Trip Information  

HCUs  Hybrid Control Units 

HEV  Hybrid Electric Vehicle 

HF Hybridization Factor 

HMI  Human-Machine Interface  

HV High Voltage  

HWFET Highway Fuel Economy Driving Schedule  

ICE  Internal Combustion Engine 

IoT  Internet of Things  

IRL Inverse Reinforcement Learning  

ISG Integrated Starter/Generator  

ITSs  Intelligent Transportation Systems  

ldleGentn  Idle Generation  

MC  Monto Carlo  

MinGentn  Minimum Generation  

MLP  Multi-Layer Perceptron  
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MPC  Model Predictive Control  

NEDC  New European Driving Cycle 

NN  Neural Network  

NOx Nitrogen Oxides 

NVH  Noise Vibration and Harshness  

OptmGentn  Optimum Generation  

PER  Prioritized Experience Replay  

PHEV  Plug-in Hybrid Electric Vehicle 

PMP Pontryagin Minimum Principle 

POMDP  Partially Observable Markov Decision Process  

PSO-based MPC  Particle Swarm Optimization-based MPC strategy  

QP Quadratic Programming  

Recup  Recuperation  

ReLU  Rectified Linear Unit  

RL  Reinforcement Learning  

RMSE Root Mean Square Error  

RMSprop  Root Mean Squared Propagation  

RNN Recurrent Neural Networks  

SDP Stochastic Dynamic Programming  

SGD  Stochastic Gradient Descent  

SoC  State of Charge  

SoH State of Health  

St/Sndtl  Stop/Standstill  

SubBoost  Substitute Boost  

TCU  Transmission Control Unit  

TD  Temporal Difference  

TPM Transition Probability Matrices  

TqEM EM Torque  
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TqICE ICE Torque  

UDDS  Urban Dynamometer Driving Schedule  

V2C Vehicle to Cloud  

V2G Vehicle to Grid  

V2V Vehicle to Vehicle  

V2X  Vehicle to X  

ViL Vehicle-in-the-Loop 

WLTP Worldwide Harmonized Light Vehicles Test Procedure 
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