
Predicting network performance using GNNs:
generalization to larger unseen networks

Miquel Farreras1, Paola Soto2, Miguel Camelo2, Lluı́s Fàbrega1, Pere Vilà1

1Institute of Informatics and Applications, Universitat de Girona, Girona, Spain
2IDLab, University of Antwerp, in collaboration with imec, Antwerpen, Belgium

Abstract—Autonomous Fifth Generation (5G) and Beyond 5G
(B5G) networks require modelling tools to predict the impact
on the performance when new configurations and features are
applied in the network. Modeling modern networks through
traditional mathematical analysis can lead to low accuracy, while
the execution time and resource usage are high in network
simulators. Machine Learning (ML) algorithms, and specifically
Graph Neural Networks (GNNs), are suggested as a promising
alternative since they can capture complex relationships from
graph-like data, predicting properties with high accuracy and low
resource requirements. However, they cannot generalize to larger
networks, as their prediction accuracy decreases when input data
(e.g., network topologies) is significantly different (e.g., larger)
than the training data. This paper addresses the GNNs scalability
issue by following a step-by-step approach, exploiting networking
concepts to improve a baseline model. This work is framed
in the 2021 International Telecommunication Union (ITU) and
Barcelona Neural Networking Center - Universitat Politècnica de
Catalunya (BNN-UPC) challenge. Results show that by following
the suggested steps, applied on the RouteNet baseline developed
by the BNN-UPC, can lower the Mean Average Percentage Error
(MAPE) from 187.28% to 1.838%, improving the generalization
significantly over larger graphs. Our approach is more simple
than other solutions that participated in the challenge, but
obtained similar results.

Index Terms—Digital Twins, Graph Neural Networks, ITU
AI/ML in 5G Challenge, Network Modeling, Network Perfor-
mance.

I. INTRODUCTION

The Fifth Generation (5G) and Beyond 5G (B5G) networks
require a complex performance analysis and monitoring to
support the stringent demands of Quality of Service (QoS) and
Quality of Experience (QoE) for new services, e.g., augmented
reality and Vehicle-to-Everything (V2X) services [1]. The
modeling of concrete QoS parameters such as delay, jitter,
loss, throughput, and other network’s Key Performance Indi-
cators (KPIs) for each service is crucial to develop prediction
models that decision-making algorithms can use to manage
and control the dynamic adaptation of the network in a
more efficient way and achieve the performance requirements.
Network modeling is traditionally based on mathematical
analysis [2] of the network behavior, but they are often based
on simplifying assumptions to keep tractability. Moreover,
mathematical models do not keep up with the increasing
complexity and dynamism of current networks, which makes
them hard to model, manage, and control [3]. On the other

hand, network simulators provide results at the packet level
with high accuracy. Still, their execution time and scalability
in terms of computational resources are limiting factors for
larger and constantly evolving networks [4].

Evaluating network configurations on such models quickly
(e.g., milliseconds) is crucial, even more, if we are deal-
ing with time-sensitive services, which must meet a given
deadline. To fulfill this purpose, an end-to-end model should
be available in which, given a network configuration, this
model can predict a given network KPIs as a means of
supporting other decision-making processes (e.g., admission
of new traffic).

Artificial Intelligence (AI) algorithms, and more concretely
Machine Learning (ML) ones, are currently being proposed
to create a new generation of network models that abstract
the underlying complexities by learning from data. These
AI/ML models can be easily updated by training them in
newly available data and can offer a fast prediction of network
KPIs. Therefore, they can serve to build a digital twin of the
network [5], i.e., a virtual representation of a real network, to
safely explore different network decisions and configurations
and analyze their impact on the customers KPIs before actually
deploying them.

It has been demonstrated that Neural Networks (NNs) are
good function approximators [6] and can be used to model
complex relationships from data. Nonetheless, current NN
architectures are not designed to learn from graph-like data.
These new data-based models must be as accurate as possible
to offer higher reliability. To overcome this difficulty, Graph
Neural Networks (GNNs) [7] are proposed and recently used
to estimate the performance in networking domains accu-
rately [8]. The complexity of the GNNs increases with the
network size, slowing down the training times and requiring
more resources if trained with larger networks. A possible
solution to this problem is to have a GNN-based model
that is trained using data from network topologies of small
size, in terms of the number of nodes, and being able to
generalize (i.e., to produce accurate results) when tested in
larger and unseen networks, offering fast training time and
good scalability properties. That is precisely the goal of one of
the problem statements of the 2021 edition of the ”ITU AI/ML
in 5G Challenge: applying machine learning in communication
networks” [9]. This paper relates our experience participating
in this challenge. We followed an improving step-by-step978-1-6654-0601-7/22/$31.00 © 2022 IEEE

approach, where besides following some recommendations
from the organizers, we applied feature engineering using
basic network concepts to improve the accuracy of a baseline.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the most used approaches for network
delay modeling, including the RouteNet baseline. Section III
introduces the RouteNet baseline and the Graph Neural Net-
working challenge. In Section IV, we present Girona Antwerp
Intelligence for Networks (GAIN), an improved RouteNet-
based architecture able to infer more accurately the aver-
age per-path delay in large networks while being trained in
small networks. Section V shows the comparative results we
obtained in five different scenarios, presenting the solution
that outperforms the RouteNet baseline reducing its Mean
Average Percentage Error (MAPE) from 187.28% to 1.838%.
Section VI exposes the uniqueness of the GAIN solution
compared with other competitors. Finally, we conclude the
paper in Section VII.

II. RELATED WORK

To predict performance of a network for a particular config-
uration, a model and an optimization algorithm are required.
Analytical modeling, including queuing theory [10] and other
algorithms applied to 5G and B5G [11], are traditionally used
to develop network models. However, in such modeling the
assumption of non-realistic and static properties of real-world
networks leads to poor predictions.

Packet-level network simulators are also used to simulate
network behaviors in specific conditions with more accurate
results. Unfortunately, their performance is tied to assumptions
and their computational complexity and higher execution
time [4] are a constraint for developing a fast and scalable
Digital Twin. Nevertheless, given their high accuracy, network
simulators are used to generate relevant data in which ML
models can be trained.

AI/ML solutions have been used to solve similar 5G chal-
lenges, such as network slicing [12], [13], applying tech-
niques like reinforcement learning, multilayer perceptrons,
or convolutional neural networks. Lately, GNNs are being
proposed to create networking models directly from data (i.e.,
a data-driven approach) since GNNs are able to learn the
complex relationships that arise from nodes and links [14],
which makes them more suitable to this domain than classical
ML techniques or Deep Learning (DL) [8]. Based on these
properties, RouteNet [15] model can predict KPIs by learning
directly from graph-like data such as network topologies,
routings, and served traffic as described in the next section.

III. ROUTENET AND THE ITU AI/ML 5G CHALLENGE

A. Baseline
RouteNet is a GNN model whose principal function is to

predict per-source-destination network KPIs given a particular
network configuration. In particular, as shown in Fig. 1,
RouteNet learns the network model from the data collected
over different network topologies such as their traffic and
their routing configurations, which can later on be used to
predict their performance. The resulting model captures the

Fig. 1. RouteNet model inputs and output [15]

complex relationships between properties of links and source-
destination paths in topologies.

The main working principle of RouteNet is the differentia-
tion of the data between the path-level (e.g., end-to-end delay,
end-to-end packet loss) and the link level (e.g., link delay, link
utilization). This information is encoded in learnable vectors.
Based on this assumption, the message-passing procedure used
by RouteNet [15] follows the principles:

1) The state of a path depends on the state of all the links
that lie on the path.

2) The state of a link depends on the state of all the paths
that traverse the link.

The learnable vectors are used to execute a message-
passing procedure (with a determined number of rounds) to
collect messages from all the links and paths. This message-
passing procedure, mixed with the usage of Recurrent Neural
Networks (RNNs), make GNN architecture able to infer path-
and/or link-level metrics. In RouteNet, each RNN’s hidden
state represents a function with the information of the path or
link. These RNNs have modifiable hyper-parameters to adapt
to the specific use case.

Prediction errors are measured in terms of Mean Average
Percentage Error (MAPE), which is defined as the average
value of the relative errors, in percentage as shown in Eq. (1).
The relative error is calculated by the difference between the
predicted value ŷl and the real value yi, divided by yi and
obtaining the result in absolute value. The lower the MAPE
value, the better the predictions.

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷl − yi
yi

∣∣∣∣ (1)

B. Challenge
For the challenge, we used RouteNet as a baseline model.

Unfortunately, the RouteNet model exhibited poor scalability
properties. For instance, when trained with small networks
and then used to predict results for larger networks, RouteNet
shows very high errors in the per-path average delay, in terms
of MAPE.

During the second edition of the Graph Neural Networking
challenge, the focus was on creating a scalable digital twin
for networks by tackling a fundamental limitation of existing
GNNs: the lack of generalization capabilities to larger net-
work topologies. Participants were asked to outperform the
RouteNet baseline, modifying it or designing a new GNN-
based model. The main goal was to train the model with a
dataset with network topologies of small size and then run the
validation/testing phase over a dataset with larger topologies,
maintaining a low prediction error.

This section summarizes the steps to create a scalable
solution based on RouteNet implemented in TensorFlow1.

C. Dataset

The datasets for the challenge were provided by the BNN-
UPC. These datasets were generated with OMNet++, a packet-
level network simulator. The basic RouteNet model receives
the following inputs per each sample in the dataset:

1) Topology: graph including node and link-level properties
(e.g., nodes, links, queue sizes, link capacity).

2) Flow performance: flow level and aggregate source-
destination measurements (e.g., dropped packets, aver-
age delay).

3) Flow traffic: flow level and aggregate source-destination
time and size distributions used to generate traffic (e.g.,
average bandwidth, packets generated, average packet
size).

4) Routing: paths connecting source-destination pairs.
5) Link performance: metrics of output ports (e.g., utiliza-

tion and losses, average port occupancy).
Three datasets proposed by the BNN-UPC were available

for the training, validation, and testing stages of the challenge:
• Training: small networks between 25 to 50 nodes.
• Validation: larger networks from 50 to 300 nodes to

analyse the ability of the models to generalize.
• Test: equivalent characteristics to the validation dataset.
Moreover, the validation and testing datasets were subdi-

vided by the BNN-UPC into three subsets called settings,
having different features each:

1) Setting 1 (S1). Longer paths. Focused on the artificially
generated longer paths feature concerning the training
dataset. However, the link capacities have the same
value ranges as in the training dataset. Some source-
destination pairs do not transmit traffic.

2) Setting 2 (S2). Increased link capacity. Focus on the
larger link capacity feature with respect to the training
dataset. All the source-destination pairs transmit traffic
using shortest-path routing. Moreover, there is higher
aggregated traffic and higher capacity links than in the
training dataset.

3) Setting 3 (S3). Both properties mixed. All source-
destination pairs transmit traffic using longer paths with
higher capacity links than the training dataset.

IV. IMPROVING ROUTENET FOR SCALABILITY

In this section, the improvements to the RouteNet base-
line are described step by step, including the improvement
achieved. Our work follows step-by-step testing of individual
modifications and measuring the enhancement of each applied
change, one after the other.

1https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2021
Routenet TF

A. Inferring per-path delay from predicted queue occupancy
(GAIN 1 solution)

Since the validation and test datasets contain topologies with
higher link capacities, the delay values in larger topologies are
lower than in smaller topologies. This implies that the model
is trained with data following a particular data distribution but
has to predict values that follow another distribution, which is
problematic for NNs [16].

The initial idea to solve this problem, which the challenge
organizers suggested, consisted in finding an indirect metric
that keeps a similar distribution among all the datasets and can
be used, after a post-processing step, to predict the primary
metric of the challenge (i.e., the path delay) with low error.
Based on this idea, our first approach was to use the occupancy
of a link (Qo) as the indirect metric, representing the average
utilization of a queue since it encapsulates local relationships
between offered traffic, queue size, and link capacity. The
first step, titled GAIN 1, was to test the improvement of
the original RouteNet implementation, replacing the initial
prediction of delay with the prediction of the indirect metric
Qo and inferring the path delay from that prediction.

After predicting Qo, we estimate each flow’s delay by
adding the queue delays belonging to a path in a post-
processing step. Let’s assume a path with three nodes as
depicted in Fig. 2. When the packets are sent from the src
node, they are queued in Q1 accumulating a delay. Depending
on the queuing policy (assumed to be the same in each queue),
the queue occupancy, and the link capacity, the packets will
suffer more or less delay. If a link has more capacity, the
waiting time of a packet in the queue will be lower. Once
the packets are sent to the second node using Link1, they are
queued in Q2, adding another delay. Finally, the packets are
sent through Link2 to the dst node. Therefore, the delay of
a source-destination flow can be obtained as the sum of the
delays in every flow link.

Each queue delay of this flow was computed as Eq. (3),
where Qo is the occupancy of the queue, Qs is the queue
size in number of packets, Ap is the average packet size in
number of bits, and Co is the capacity of the outgoing link
of the queue. The link delay and flow delay formulations are
presented below.

Delay flow =

Nf∑
k=1

Delay link (2)

Delay link = Qo ×Qs ×Ap/Cl (3)

The post-processing code was optimized using the appro-
priate TensorFlow data structures to increase the processing
speed and reduce code complexity. The resulting MAPE of
the GAIN 1 solution was 44.73 %.

B. Normalization of predictor features (GAIN 2 solution)
After analysing the training and validation datasets, it was

observed that data distributions of the scalar features used in
the model (detailed in Table II) were different for training,
compared to validation and test subsets, as shown in Table I.

https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2021_Routenet_TF
https://github.com/BNN-UPC/GNNetworkingChallenge/tree/2021_Routenet_TF

Fig. 2. Queue occupancy example to infer delay

TABLE I
GAIN USED FEATURES MAXIMUM AND MINIMUM VALUES

Training Validation Test
Min Max Min Max Min Max

Traffic 30.787 2048.23 30.543 2064.93 0 2061.17
Packets 0.0329 2.03633 0.03107 2.03985 0 2.0543
Capacity 10000 100000 10000 2500000 10000 2500000

Specifically, the traffic of a flow (Tf) and the capacity of a link
(Cl) had different value ranges for each dataset and between
the training and validation/test datasets, respectively.

Therefore, in GAIN 2, a min-max normalization was applied
as a pre-processing in the transformation function, using the
training dataset min-max values. The max-min normalization
was calculated using the formula in Eq. (4). Normalized value
Nv equals to the original value V subtracting the minimum
value of the feature for all the training dataset Vmin, and
dividing the result by the difference between the maximum
Vmax and Vmin of the training dataset. The TensorFlow
functions were used to find the maximum and minimum values
on the training dataset’s tensor, which efficiently reduce the
tensor to one dimension to return the desired value.

Nv =
V − Vmin

Vmax − Vmin
(4)

The result of the GAIN 2 solution was a 28.739 % MAPE.

C. Feature selection (GAIN 3 solution)
The features included in the baseline were Tf and Cl,

as described in Table II. After a correlation test between
the features available and the expected delay results in the
datasets, packets (Pf) revealed a high correlation to path
delay. In addition, this feature had value ranges very similar
in the three datasets, enhancing scalability. Consequently, it
was added to the GAIN 3 path state, also including the min-
max normalization pre-processing. The MAPE of the GAIN 3
solution was a 18.471 %.

TABLE II
FEATURES USED IN THE GAIN SOLUTIONS

Path features
Feature Definition Used in

Traffic (Tf) Traffic in a path
(bits/time unit)

All GAIN
and baseline

Packets (Pf) Packets generated in a path
(packets/time unit) GAIN 3,4,5

Link features

Capacity (Cl)
Link bandwidth
(bits/time unit)

GAIN 1,2,3
and baseline

Offered Traffic Intensity
(Ot)

Sum of Tf in a link divided
by Cl

GAIN 4,5

Fig. 3. Offered traffic intensity example of flows in a link

D. Offered Traffic Intensity (GAIN 4 solution)

When approaching the total link capacity, increasing the to-
tal Tf in a link directly impacts the queue delay by increasing
it too. Fig. 3 shows an example where a source src sends traffic
to dst. If the sum of Tf of each flow in the link is close to or
exceeds Cl, the Q1 delay will increase.

The dependence between Tf demand in a link and the
queuing delay [17], leads to the creation of a new feature
named offered traffic intensity (Ot), as shown in Eq. (5). It
was defined as the sum of the Tf of all the flows f passing
through the network link Nl divided by the bandwidth Cl of
that link, resulting in a scalar feature assigned to the link state.

Ot =

∑
f∈Nℓ

tf

Cℓ
(5)

Finally, only the feature Ot was used in GAIN 4. For that
reason, Cl did not require normalization, as it was removed
from the model, and the original values were used to calculate
the Ot. The resulting MAPE of the GAIN 4 solution was 2.612
%.

E. Hyper-parameters optimization (GAIN 5 solution)

The hyper-parameters, i.e. number of neurons for the path-
state and link-state, the readout units, the message-passing
iterations and the epochs, were optimized for our model,
testing different combined values using a grid search, defining
and combining values for each parameter, as detailed in
Table III. For each combination of hyper-parameters, a new
training followed by a check of the MAPE result was executed.

One of the effects of optimizing the hyper-parameters is the
reduction of the training epochs, as the model stabilizes the
validation results much earlier than the original 100 epochs.
For reference, the best model achieved the best result after
seven epochs. An early stopping epoch limiter is a technique
that stops the training after a number of epochs where the
model does not improve its results. The number of epochs
monitored to do the early stopping is called patience. It was
used in the GAIN 4 and GAIN 5 solutions, with a patience of
5 epochs to speed up the hyper-parameter tests.

After hyper-parameter tuning, the GAIN 5 model was
trained during seven epochs. We found that reducing the link-
state and path-state dimensions and increasing the readout
units along the message passing procedure iterations improved
the results significantly from 2.612 % to 1.838 %, the best
result of all the GAIN solutions, also improving for the
different subsets.

Another interesting effect of keeping the hyper-parameters
and epochs in a low value is the reduced Graphics Processing
Unit (GPU) power consumption, temperature, compute, and
memory utilisation as exposed in Section V.

V. RESULTS

This section reports the results obtained following the steps
described in the previous section. The GAIN 2 solution was the
one presented to the challenge, achieving a 28.739% MAPE.
GAIN 3, 4, and 5 are the results of additional improvements
after the competition.

The gradual improvement on each step is shown in Ta-
ble IV, where the RouteNet Baseline is shown to have a bad
generalization for larger graphs (S1, S2, S3 with 300 nodes)
resulting in a MAPE of 187.28% for the full testing dataset.
This is mainly caused by the out-of-distribution values when
predicting in the validation and testing dataset, especially in
S2 and S3 settings. The GAIN solutions reduced the MAPE
gradually, applying improvements step by step as described in
Section IV. From the RouteNet Baseline and GAIN 1 solution,
which was the first change over the baseline, until the GAIN
5 solution, we achieved a improvement of 24x (from 44.73 %
to 1.838%) and 101x (from 187,28% to 1.828%) lower MAPE
in all settings, respectively.

Concerning the GPU usage, it can be observed that in the
GAIN 4 solution is 4% while in the baseline it is 19%, with
the added benefit of a much faster training. One of the causes
of this reduction is the better convergence of the model, as
shown in Fig. 4. In GAIN 5 the GPU consumption is higher
than in GAIN 4, because of the higher hyper-parameters, but
GPU consumption is still kept under 15%. The hardware of
the testbed used for the training was composed of two GPUs
Nvidia GeForce GTX 1070 with 8 GB GDDR5 memory,
paired with an AMD Ryzen 5 5600X CPU, 32 GB of DDR4
RAM, and a 500 GB M.2 SSD. The time to train and test
the GAIN 5 model was about 3 hours 30 minutes, 2 hours 20
minutes for training, which is a significant reduction compared
to the original 12 hours training of the baseline.

VI. COMPARISON AGAINST OTHER SOLUTIONS

Among the many solutions that were submitted to the
challenge, here we review and compare the top ones (in
the challenge classification) to our best solution (GAIN 5).
A common characteristic used by all top solutions was the
inference of delay from the queue occupancy prediction, as
proposed by the organizers (see Section IV). This comparison
is summarized in Table V.

TABLE III
VALUES TESTED FOR OPTIMIZATION OF THE HYPER-PARAMETERS

Hyperparameter Values tested
Original
RouteNet

values

Optimized
GAIN 5
values

Link state dimension 4, 8, 16, 32, 64 16 4
Path state dimension 4, 8, 16, 32, 64 32 16
Readout units 4, 8, 16, 32, 64 8 64
Message passing iterations 6, 8, 10, 12, 14, 16 8 10
Epochs 100, variable 100 7

Fig. 4. Validation MAPE of the RouteNet baseline vs the GAIN 4 solution

PARANA team2 presented a completely implemented from
scratch solution to generalize to larger graphs. The gen-
eralization was based on baseline features (path, link-level
prediction). Coded on Pytorch and Pytorch Geometric, two
message-passing procedures were trained. The first model was
focused on learning from larger networks and used paths,
links, and nodes to perform the message-passing procedure.
The second model focused on smaller networks where only
paths and links were used. Their final submission was the
average of both.

SOFGNN team3 also used an average of two models, as
well as data augmentation for out of distribution input data and
feature engineering. The data augmentation is achieved using
the training dataset as a base, creating new examples similar
to the samples found in the validation sets. They created a new
feature called link load (%), defined as the sum of the traffic
of all flows traversing the link and divided by link capacity,
which is the same approach as the offered traffic intensity
we use in GAIN (see Section IV-D). They used the average
of two trained models, one with the square of link load and
the other including both the square and cube values of link
load. Finally, they fine-tuned the hyper-parameters, obtaining
different values than the baseline.

Out of the challenge, BNN-UPC also proposed a solution to
the scalability problem of RouteNet’s GNN [18]. The proposed
model implements another message-passing procedure and
data augmentation. A scaling factor combined with the data
augmentation was introduced to estimate the delay values of
higher capacity links. This model required 200 epochs to train,
longer than any of the submitted solutions of the challenge.

The uniqueness of our solution (GAIN 5) is the preservation
of the original RouteNet model architecture and data since
the message-passing procedure was not modified and data
augmentation was not used, resulting in implementation with
lower overhead than in the other solutions. In addition, our
approach did not use the average of multiple models to keep
the simplicity of the baseline. The use of the new feature
offered traffic intensity, designed from the knowledge of tradi-
tional queuing theory, significantly improved the accuracy of

2https://github.com/ITU-AI-ML-in-5G-Challenge/
ITU-ML5G-PS-001-PARANA

3https://github.com/ITU-AI-ML-in-5G-Challenge/
ITU-ML5G-PS-001-SOFGNN-Graph-Neural-Networking-Challenge

https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-001-PARANA
https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-001-PARANA
https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-001-SOFGNN-Graph-Neural-Networking-Challenge
https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-001-SOFGNN-Graph-Neural-Networking-Challenge

TABLE IV
TEST DATASET MAPE (%) RESULTS AND PERFORMANCE FOR BASELINE AND EACH GAIN SOLUTION

Full
testing
dataset

S1

S1

50
nodes

S1

300
nodes

S2

S2

50
nodes

S2

300
nodes

S3

S3

50
nodes

S3

300
nodes

Train
time

Avg.
train
GPU

Baseline 187.28 79.145 68.481 92.979 253.075 68.481 345.135 247.217 44.669 368.019 12h 15m ∼19%
GAIN 1 44.73 13.074 11.705 13.108 54.318 16.214 42.374 67.44 70.994 90.739 9h 45m ∼21%
GAIN 2 28.739 11.719 11.026 11.864 35.067 17.092 39.773 31.754 17.581 31.353 9h 48m ∼19%
GAIN 3 18.471 9.436 6.893 12.468 26.897 22.106 30.067 18.143 12.569 21.862 9h 40m ∼15%
GAIN 4 2.612 2.652 1.539 3.687 2.492 1.386 2.567 2.584 1.607 2.363 3h 25m ∼4%
GAIN 5 1.838 1.407 1.111 1.808 1.929 1.573 1.535 1.756 1.388 1.462 2h 20m ∼15%

the predictions. The fine-tuning of GNN hyper-parameters, set
smaller in our solution, allowed lower training and prediction
times, less memory and power usage, making our solution
more suitable in case of frequent retraining requirements.

VII. CONCLUSIONS AND FUTURE WORK

A new generation of network models are being proposed
based on GNNs, as they are able to i) accurately predict
network KPIs, and ii) be easily changed and updated to reflect
the increasing complexity and dynamism of current networks.
Nonetheless, out-of-the-box GNNs are not able to generalize
and scale to larger topologies, that is, when trained with small
networks and then used to predict results for larger networks,
their accuracy drops. In this paper we proposed GAIN, a
GNNs-based model that predicts the average per-path network
delay with good scalability properties.

GAIN is based on RouteNet’s GNN and adds to it sev-
eral improvements to achieve good scalability, including the
inference of per-path delay from the predicted link queue
occupancy, feature normalization, feature selection, feature
engineering (offered traffic intensity) and the hyper-parameter
optimization. Moreover GAIN has lower implementation over-
head, lower resource needs and faster training compared to
other existing solutions.

As future work, we plan to investigate other GNN archi-
tectures and improvements to achieve better performance, as
well as to use it in a closed-loop control context, where
GNN’s predictions are used by decision-making algorithms
(e.g., traffic admission control) deployed in the network.

TABLE V
COMPARISON OF SOLUTIONS FOR THE BNN-UPC CHALLENGE

Solution properties GAIN 5 PARANA SOFGNN ZTE
AIOps1 EricRe2

RouteNet baseline X X X
Hyperparameter tune X X X X X
Fast train/execution X X
Feature engineering X X X X X
Reimplemented
baseline X X

Message passing
redesign X X X

Multiple models X X X
Data augmentation X
MAPE (%) 1.838 1.267 1.389 1.853 1.875

1 Missing details. 2 Private solution.

ACKNOWLEDGMENT

This project has received funding from the Red temática
Go2Edge (Ref.: RED2018-102585-T), from the Ajut Pont
UdG2020/23 and Generalitat de Catalunya through Con-
solidated Research Group 2017-SGR-1318 and 2017-SGR-
1552, the Secretaria d’Universitats i Recerca del Departament
d’Empresa i Coneixement de la Generalitat de Catalunya for
the FI-SDUR fellowship funding 2020 FISDU00590 assigned
to Miquel Farreras, the Scientific Research Flanders (FWO)
under grant agreement No. G055619N, and the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no.101017109 “DAEMON”.

REFERENCES

[1] 5GPPP, AI and ML – Enablers for Beyond 5G Networks, 2021.
[2] F. Ciucu et al., “Perspectives on network calculus: no free lunch, but still

good value,” in Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer
communication, 2012, pp. 311–322.

[3] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in IEEE INFOCOM 2018-IEEE. IEEE, 2018.

[4] E. Weingaertner et al., “A performance comparison of recent network
simulators,” pp. 1 – 5, 07 2009.

[5] P. Almasan et al., “Digital Twin Network: Opportunities and Chal-
lenges,” pp. 1–7, 2022.

[6] K. Hornik et al., “Multilayer feedforward networks are universal ap-
proximators.” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[7] F. Scarselli et al., “The graph neural network model,” IEEE Transactions
on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

[8] P. Soto et al., “Atari: A graph convolutional neural network approach
for performance prediction in next-generation wlans,” Sensors, 2021.

[9] ITU, “AI for Global Summit. ITU AI/ML in 5G Challenge: Graph
Neural Networking Challenge 2021,” [Accessed 19-01-2022]. [Online].
Available: https://aiforgood.itu.int/about/aiml-in-5g-challenge/

[10] F. Ciucu et al., “Perspectives on network calculus - no free lunch, but
still good value,” Computer Communication Review, vol. 42, 10 2012.

[11] F. Debbabi et al., “Algorithmics and modeling aspects of network slicing
in 5g and beyonds network: Survey,” IEEE Access, vol. 8, 2020.

[12] B. Han et al., “Machine learning for network slicing resource manage-
ment: A comprehensive survey,” CoRR, vol. abs/2001.07974, 2020.

[13] D. Bega et al., “Deepcog: Cognitive network management in sliced 5g
networks with deep learning,” Proceedings - IEEE INFOCOM, 2019.

[14] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” CoRR, vol. abs/1806.01261, 2018.

[15] K. Rusek et al., “RouteNet: Leveraging Graph Neural Networks for
Network Modeling and Optimization in SDN,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[16] D. Hendrycks et al., “Benchmarking neural network robustness to
common corruptions and perturbations,” CoRR, 2019.

[17] J. Liebeherr et al., “On the impact of link scheduling on end-to-
end delays in large networks,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 5, pp. 1009–1020, 2011.

[18] M. Ferriol-Galmés et al., “Scaling graph-based deep learning models to
larger networks,” 2021.

https://aiforgood.itu.int/about/aiml-in-5g-challenge/

	Introduction
	Related work
	RouteNet and the ITU AI/ML 5G challenge
	Baseline
	Challenge
	Dataset

	Improving RouteNet for scalability
	Inferring per-path delay from predicted queue occupancy (GAIN 1 solution)
	Normalization of predictor features (GAIN 2 solution)
	Feature selection (GAIN 3 solution)
	Offered Traffic Intensity (GAIN 4 solution)
	Hyper-parameters optimization (GAIN 5 solution)

	Results
	Comparison against other solutions
	Conclusions and Future Work
	References

