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Abstract 

Flexible photovoltaic (PV) devices, such as those based on CIGS and perovskites, use 

polymeric front sheets for encapsulation that do not provide sufficient protection against the 

environment. The addition of nanometric AlxO layers by spatial atomic layer deposition (S-

ALD) to these polymeric materials can highly improve environmental protection due to their 

low water vapor transmission rate and is a suitable solution to be applied in roll-to-roll industrial 

production lines. A precise control of the thickness of the AlOx layers is crucial to ensure an 

effective water barrier performance. However, current thickness evaluation methods of such 

nanometric layers are costly and complex to incorporate in industrial environments. In this 

context, the present work describes and demonstrates a novel characterization methodology 

based on normal reflectance measurements and either on control parameter-based calibration 

curves or machine learning algorithms that enables a precise, low-cost and scalable assessment 

of the thickness of AlOx nanometric layers. In particular, the proposed methodology is applied 
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for precisely determining the thickness AlOx nanolayers deposited on three different substrates 

relevant for the PV industry: monocrystalline Si, Cu(In,Ga)Se2 multi-stack flexible modules 

and polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodology 

demonstrates a sensitivity < 10 nm and acquisition times ≤ 100 ms which makes it compatible 

with industrial monitoring applications. Additionally, a specific design for in-line integration 

of a normal reflectance system into a roll-to-roll production line for thickness control of 

nanometric layers is defined and proposed. 

Keywords: flexible PV, encapsulation, AlOx, normal reflectance, process monitoring, CIGS, 

machine learning, thickness assessment 

 

1. Introduction 

Light weight and flexible photovoltaic (PV) modules fully exploit the technological capabilities 

of thin film photovoltaics since, besides their inherent advantages such as reduced fragility and 

adaptation to curved surfaces that open the way to numerous applications, they can be fabricated 

through high throughput roll-to-roll (RtR) processes. This type of intensive production reduces 

both the economic and energy costs of PV, leading to devices with an increased energy return 

on energy invested (EROI) ratio, key for the expansion of solar energy.1 A critical step in the 

fabrication of flexible PV modules is the implementation of a suitable encapsulation 

architecture. Contrarily to the standard rigid modules that typically employ glass sheets for this 

purpose, the encapsulation of flexible photovoltaic modules, like those based on e.g. 

Cu(In,Ga)Se2 (CIGS) or perovskite absorber materials, relies on the use of flexible transparent 

polymeric front sheets.2 These commonly present reduced water vapour barrier properties and 

require additional protective layers to ensure a proper environmental protection and long term 

preservation of the modules.2,3 In this regard, AlOx-based nanolayers deposited on the 

polymeric front sheets by atomic layer deposition (ALD) have been demonstrated to possess a 

high conformity and compactness which confer them a very low water vapour transmission 

rate.4–9 However, conventional ALD is an extremely slow deposition technique (200 mm/h in 

RtR configuration to achieve 25 – 30 nm thick layer)4 incompatible with industrial high 

throughput processing. On the other hand, spatial ALD (S-ALD) is a technological alternative 

to standard ALD in which, in simple terms, the samples move between spatially-separated half-

reaction zones where the deposition takes place. As a consequence, the deposition rate is mainly 

limited by the amount of deposition areas and the time required to move the samples between 

them achieving deposition rates ~1 nm/s which are fully compatible with RtR web speeds.10,11 
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In the case of CIGS, on which this work is focused, it has also been demonstrated that, in 

addition to the employment of AlOx-deposited polymeric front sheets, AlOx nanolayers can also 

be directly applied on the top electrode of the devices and still provide high end barrier 

properties.5 In this context, S-ALD-deposited AlOx barriers break ground to low cost and RtR-

compatible front sheet solutions that represent a step forward for the production flexible PV 

devices. Furthermore, the use of AlOx nanolayers in PV is not limited to encapsulation and 

AlOx layers have also been successfully employed for interface engineering and passivation in 

thin films solar cells and other devices 12–16. 

Like with most applications in which nanocoatings are employed, a precise thickness control 

of the applied AlOx nanolayers is crucial for them to function properly and provide the desired 

effect. In the case of flexible PV module encapsulation, the water vapour barrier properties of 

AlOx nanolayers have been reported to drop dramatically when their thickness falls below 10 

nm8 while their brittleness increases with layer thickness making it more prone to fracture under 

bending stresses on flexible substrates.17 As such, a precise thickness control is required to 

ensure an adequate functionality of the AlOx layers for their use as water vapor barriers in 

flexible PV devices. Likewise, precise thickness control is also critical for other uses of AlOx 

layers like interface passivation18. In this context, the development of methodologies and tools 

that can be implemented at RtR lines for in-line process monitoring represents a strategic 

technological advance for improving and optimizing PV module production at mass scale. 

The reduced thickness of nanocoatings commonly requires the use of very specific 

characterization techniques like those based on X-ray photoelectron spectroscopy,19,20 atomic 

force and electron microscopy,21,22 Rutherford backscattering spectroscopy,23 

ellipsometry4,13,15,16,18,24–26 or transmittance-reflectance spectroscopy,8,27,28 among others. 

These techniques either require long acquisition times, sample destruction, and/or high energy 

(deep UV or X-ray) excitation wavelengths. Moreover, some of the mentioned techniques suffer 

from limitations related to the characteristics of the nanocoated substrate (high roughness and/or 

multi-stack configuration, sensitivity to high excitation energies etc.) and/or cannot be applied 

to large area analyses. All these issues make the implementation of the existing methods in 

high-throughput production lines very technically challenging and economically costly. 

Another critical issue regarding the scaling up of the production of flexible PV devices is layer 

homogeneity. In fact, homogeneity is usually considered one the most important barriers for 

the transference of CIGS PV devices from the laboratory to the industry level.29 In this regard, 
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the implementation of techniques that allow performing fast large-area mappings to monitor 

layer homogeneity is also of great relevance for the industry. 

In this framework, this work describes and demonstrates a novel non-destructive, fast, precise, 

low-cost and scalable characterization method for determining the thickness of AlOx 

nanometric layers (from a few to around 100 nm) that is compatible with both research and 

industrial process monitoring environments. This approach is based on normal reflectance 

measurements and takes advantage of the impact of quantum confinement (QC) effects on the 

optical properties of AlOx nanolayers as a consequence of their nanometric thickness: optical 

bandgap (Eg) and optical constants (n and k).30 The viability and effectiveness of the technique 

are demonstrated for precisely determining the thickness of AlOx nanometric layers deposited 

by S-ALD on different relevant materials for the PV industry with different characteristics: 

monocrystalline Si wafers (smooth), a complete CIGS module (multi-stack substrate), and 

polyethylene terephthalate (PET) polymer encapsulating sheets (rough). We demonstrate that 

the slight QC-induced changes in the optical properties of the AlOx layers can be detected from 

normal reflectance measurements with a simple setup and be used for layer thickness 

determination with resolutions better than 10 nm through their combination with machine 

learning algorithms. The compatibility of the proposed approach with fast micro (tenths of 

microns) and macro (up to several m2) mapping analyses, depending on the application, as well 

as the possibility of modifying the system employed, for better compatibility with in-line 

industrial process monitoring, are analysed and discussed. 

 

2. Experimental 

Data acquisition and sample description 

Figure 1 shows the normal reflectance probe that was implemented in this work and used for 

the evaluation of the thickness of AlOx nanolayers with a broad emission (400 – 1000 nm, 

approximately) halogen lamp as illumination source. The probe was coupled to an XY-crane to 

enable mapping measurements and the acquired signal was processed through a compact CCD 

spectrometer (Thorlabs CCS200). A vacuum chuck table was employed to ensure the flatness 

of flexible samples during measuring. A spot size of ~100 µm and acquisition times in the 10-

100 ms range (depending on the type of sample analysed) were employed for the measurements. 
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Figure 1. a) Schematic of the normal reflectance probe based in a broad emission halogen lamp 

and b) picture of the implemented system. 

The system described above was employed on different sets of samples for the evaluation of 

the thickness of nanometric AlOx layers deposited by means of a laboratory-scale rotary spatial-

ALD reactor31 on relevant substrates for the PV industry: i) three monocrystalline Si substrates 

coated with 25, 50 and 75 nm AlOx layers, ii) six 15×15 cm2 complete (non-encapsulated) 

flexible Cu(In,Ga)Se2 thin film photovoltaic devices (on polyimide foil substrate with Mo back 

electrode, CdS buffer layer and Al-doped zinc oxide front electrode) with 15, 25, 30, 50, 60 and 

75 nm AlOx layers (referred to as “CIGS” in the text and figures), and iii) six 15×15 cm2 

polyethylene terephthalate (PET) foil samples with 15, 25, 30, 50, 60 and 75 nm AlOx layers. 

It should be noted that these thicknesses should be taken only as nominal deposition values. 

The AlOx layers were deposited using trimethylaluminum (TMA) and water as precursors for 

aluminium and oxygen respectively. Layers were deposited at 100oC, at 30 rpm, with 50 sccm 

TMA/950 sccm dilution and 750sccm H2O at 50oC/750 sccm dilution. The coated area had a 

donut shape (see Figure 2a-c) with slight thickness variations along the radial direction 

(decreasing from the centre to the edges) which allowed to test the sensitivity of the proposed 

methodology. For the Si and CIGS samples, the normal reflectance measurements were carried 

out in a mapping configuration (30×30 measuring points grid, approximately) covering the 

whole area of the samples (see Figure 2d). In the case of the PET samples, a special low 

reflectance (<5 % in the 300 – 700 nm range) holder had to be employed due to the high 

transparency of this material to the excitation wavelengths used for the analysis. In addition, 

the use of such holder prevented the use of the XY crane for the acquisition of large area 

mappings and the measurements were performed point-by-point, manually (15 points per 

sample). 
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Figure 2. Picture of a) the CIGS-device, b) Si, and c) PET samples coated with a 75 nm AlOx 

layer. The last is the approximate schematic of the samples and measuring points. Inner and 

outer radius of the deposition area are 1.2 cm and 7.6 cm respectively. 

Additional measurements were carried out on the Si-based samples along the radial direction 

(9 points per sample) by means of ellipsometry (Horiba Jobin Yvon, Uvisel) to corroborate that 

the signal obtained from the surface of the substrate material varied as a consequence of the 

change of the optical properties of AlOx with layer thickness. The measurements were made 

with a 70º angle of incidence. 

Methodology 

In order to quantify the differences in the normal reflectance spectra and translate them into 

thickness data, the following control parameter (qt) was defined: 

𝑞𝑡 = ∑ |𝐴𝑠(𝑥) − 𝐴𝑟𝑒𝑓(𝑥)|𝑥    (1) 

where As(x) is the integrated intensity of the normal reflectance spectra of the AlOx layer in a 

selected spectral range x (400 – 900 nm in the case of the halogen lamp and 600 – 700 for the 

660 nm LED) for a specific measuring point, and Aref(x) is the average integrated intensity in 

the same range of all the measuring points corresponding to the uncoated base (substrate). The 

use of qt reduces the impact of potential sample-to-sample fluctuations in the normal reflectance 

spectra as a consequence of changes in the reflectivity of the base material (substrate) not related 

to the AlOx layers. In this way, the use of this parameter allows improving the accuracy of the 

AlOx thickness evaluation. 

In order to provide a useful methodology for the thickness quantification, the qt parameter was 

calculated for each measuring point and, then, all the qt values obtained were averaged for each 

sample and plotted versus the nominal deposition thickness for each type of substrate/AlOx 

sample. Through the fitting of such data, calibration curves were subsequently calculated to 

show the potential of the proposed methodology for predicting the thickness of an AlOx layer 

from normal reflectance measurements. 
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Alternatively, a machine learning driven methodology based on the combination of principal 

component analysis (PCA) and linear discriminant analysis (LDA) algorithms was employed 

to quantify the normal reflectance spectra and translate them into thickness data. PCA and LDA 

are both dimension-reduction algorithms, and their combination was selected due to its wide-

spread use for spectral data analysis in different methods and fields of application32–37. The goal 

of this algorithm is to learn to classify data into distinct groups defined by the user, and make 

predictions on new input data. In order to test and implement the machine learning based PCA-

LDA algorithm the Python programing environment38 with the Scikit-Learn library39 was used. 

All the experimental data were randomly divided in 70% for training and 30% for testing and 

the input features were the same as those used to calculate the qt parameter using equation (1). 

In the case of the in-sample analysis, the data points were divided in 5 groups corresponding to 

rings in the sample with rings 1 and 5 representing the outer and inner extremes, respectively 

(see Figure S1). To evaluate the performance of the algorithm, training and test scores are used. 

These values are calculated as the number of correctly classified points divided by the total 

amount, thus these values range from 0 to 1, being 0 no correct classifications at all and 1 when 

all points are correctly classified. The training scores were above 0.8 for the halogen lamp and 

above 0.6 for the LED light source (see Figure 7 and Figure 8). 

 

3. Results 

3.1. Initial validation: Si/AlOx samples 

Before employing normal reflectance, preliminary ellipsometry measurements were carried out 

on Si/AlOx samples with three different nominal layer thicknesses (25, 50 and 75 nm) and slight 

in-sample radial thickness gradient (see experimental section for further details) in order to 

corroborate that the optical properties of the samples change with the thickness of the AlOx 

layer. The results are shown in Figure 3b. It can be observed that the Ψ and Δ angles of the 

complex reflectance ratio present slight in-sample changes along the radial direction within the 

different points measured (see Figure 3a) and abrupt sample-to-sample differences as a 

consequence of the varying thicknesses. These changes consist mainly of a blue-shift of the 

spectra as the AlOx layer thickness is reduced. It should be noted that these variations represent 

the change of the complex reflectance of the Si-air structure as a consequence of the presence 

of an intermediate AlOx layer with varying thicknesses. Since the optical properties of a layered 

structure are strongly intertwined with and can be derived from its complex reflectance ratio 

(using an adequate model), it can be concluded that the variation of the latter indicates a change 
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in the optical properties of AlOx. Further analysis of the ellipsometry measurements to 

determine which specific properties are modified when the thickness of the AlOx layers is varied 

is beyond the scope of this work. However, taking into account that the deposition conditions 

were identical for the three Si/AlOx samples, the observed thickness-induced blue-shift can be 

attributed to quantum confinement QC effects.40-42 However, other effects different to QC that 

may be contributing to the changes observed in the ellipsometry measurements cannot be 

discarded. The results that will be presented throughout this work are based on the correlation 

of these slight changes of the optical properties of AlOx with normal reflectance measurements. 

 

Figure 3. a) Colour code legend of the different measuring points. b) Complex reflectance ratio 

angles of the Si/AlOx samples measured by ellipsometry in different positions along the radial 

direction. c) Raw normal reflectance spectra of the Si/AlOx samples measured in similar 

positions. 

In this way, the Si/AlOx samples were subsequently measured in similar positions along the 

radial direction with the normal reflectance system described in the experimental section (see 

Figure 1) in order to make an initial validation of the technique to detect the small variations 

observed by ellipsometry. Figure 3c shows the raw normal reflectance data acquired on the 

Si/AlOx samples. A similar shape can be observed for the spectra measured at different points 

along the radial direction of each sample with a broad band having the maximum position in 
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the 620 – 720 nm region, approximately. However, the intensity of this band is observed to vary 

from the centre (lower) to the edge (higher) of the sample in consonance with the thickness 

gradient of the deposited layers. The maximum intensity is reached for the bare uncoated Si 

substrate. On the other hand, clear sample-to-sample differences can be spotted not only as 

abrupt differences in the intensity of the reflectance spectra (with higher thickness leading the 

lower intensity), but also as a different shape of the reflectance band (with a faster decrease of 

the short wavelength part of the band as layer thickness increases). In addition, a higher in-

sample variability is found as the nominal thickness of the deposited AlOx layer increases. All 

these variations correlate well with those observed in the ellipsometry measurements (Figure 

3b) and indicate that normal reflectance is sensitive both to AlOx thickness variations in the 

order of tens of nm (sample-to-sample) but also to the slight nanometric variations (expected to 

be well below 10 nm) found within the layers. 

Once that the sensitivity of the normal reflectance technique was proved to be high enough to 

detect small thickness variations, the proposed methodology was applied to the same Si samples 

coated with 25, 50 and 75 nm AlOx layers but carrying out a mapping analysis covering the full 

surface of the sample (Figure 4a). The raw data (Figure 4a, left) show three different groups 

of spectra that have been highlighted with different colours in the figure. The groups with the 

highest (purple) and lowest (grey) intensities correspond to the Si substrate and to the measuring 

table, respectively. The last group (green-yellow gradient) encompasses all the AlOx-coated 

points. As expected, the AlOx spectra have the same characteristics as those shown in Figure 

3, i.e. similar shape, gradual in-sample variations and more abrupt sample-to-sample 

differences with changes in the reflectance band intensity and shape, with higher variability in 

the thicker samples. In order to quantify the differences in the normal reflectance spectra and 

translate them into thickness data with high sensitivity, the qt parameter was calculated for each 

point measured in every sample using equation (1). The obtained values are represented in the 

form of mappings in Figure 4a (right) where the bare Si, measuring table and donut-shaped 

AlOx areas can be clearly distinguished. Furthermore, differences in qt can be observed in the 

radial direction confirming the sensitivity of the technique to slight thickness variations below 

10 nm. On the other hand, the mappings further confirm that in-sample thickness variability 

increases with the nominal thickness of the deposited AlOx layer, with distribution limits for 

the qt parameter roughly ranging from 50 – 100, 250 – 350, and 400 – 550 for the 25 nm, 50 

nm and 75 nm samples, respectively. This indicates that the developed methodology can also 

be employed for high-resolution large area homogeneity control of deposited AlOx layers. 
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Figure 4. Raw reflectance spectra (left) and mappings of the calculated qt parameter (right) for 

Si/AlOx (a) and CIGS/AlOx (b) samples. 

The data presented in Figure 4a were employed to calculate the average qt in the donut-shaped 

AlOx-covered areas. By plotting the average qt versus the nominal thickness of the AlOx layers, 

a calibration curve is obtained for correlating the reflectance data with the thickness of the AlOx 

layers (Figure 5a). It can be observed that there appears to exist a quadratic relationship 

between the nominal thickness of the AlOx layers and the qt parameter. As such, these data 

demonstrate that normal reflectance offers a feasible and precise method for thickness 

assessment of AlOx layers deposited on monocrystalline Si substrate. 

3.2. Application of normal reflectance to AlOx thickness estimation on CIGS and PET 

Once that the proposed methodology was demonstrated for Si-based samples, it was applied to 

AlOx layers (15, 25, 30, 50, 60 and 75 nm) deposited on relevant substrates regarding the 

encapsulation of thin film flexible PV devices: CIGS and PET. 

In the case of the CIGS modules, a similar mapping to that described for the Si samples was 

performed. Three representative cases (25, 50 and 75 nm) are shown in Figure 4b while the 

complete results for all the different samples can be consulted in Figure S2. The raw spectra 

shown in the figures reveal a high degree of similarity to those obtained on Si samples with a 

broad band having the maximum position in the 620 – 720 nm region and with similar in-sample 

and sample-to-sample variability characteristics. However, a higher variability of the 
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reflectance signal arising from the base (CIGS substrate) is detected for thicknesses ≥ 50 nm, 

as well as a lower deviation for the thin AlOx coatings ≤ 30 nm. This is detected despite the fact 

that for low AlOx thickness values (≤ 30 nm), the intensity and shape of the spectra from the 

base and the AlOx-covered areas present similar values. However, the qt mappings show that 

the use of this parameter allows overcoming this issue and distinguishing the bare substrates 

from the donut-shaped AlOx-covered areas, showing to be sensitive to even the small in-sample 

AlOx thickness changes. The strong variations detected in the signal of the base material are 

related to local inhomogeneities of the CIGS absorber and/or CdS buffer layers of the devices, 

which are the main layers that reflect the excitation light employed (400 – 900 nm). The 

possibilities to overcome this obstacle will be discussed later on. 

In the case of PET, the need of using a special low-reflectance holder prevented carrying out 

large area mappings. The spectra acquired are shown in Figure S3. Again, the spectra present 

similar characteristics as those of Si and CIGS samples. However, due to the low reflectivity of 

the base material (PET), almost no shape changes of the reflection band are detected which 

indicates that the sensitivity of the proposed methodology is lower for this material. Despite the 

lower sensitivity, the changes of the band intensity are marked enough to allow detecting 

differences between the different samples. 

The average qt and calibration curves obtained for AlOx deposited on CIGS and PET are shown 

in Figure 5b and Figure 5c, respectively. These data demonstrate that normal reflectance can 

also be employed for determining the thickness of AlOx encapsulation barrier layers deposited 

on multi-stack CIGS and rough PET substrates with high accuracy. 

 

Figure 5. Average qt (red dots) and fitted calibration curves (dashed curves) obtained for AlOx 

deposited on Si (a), CIGS (b) and PET (c). The error bars correspond to the standard deviation 

(σ) of the different measured points. 
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3.3. Implementation of machine learning algorithms: CIGS test case 

Although the use of the qt control parameter and calibration curves is a perfectly suitable 

methodology for obtaining precise thickness measurements as demonstrated above, the amount 

of data generated in the large area mapping measurements carried out in this work provides an 

ideal test environment for the implementation of more advanced analysis techniques based on 

machine learning algorithms that could be suitable for analysis in industrial applications. As a 

proof of concept, a machine learning algorithm based on PCA-LDA (see more details in the 

experimental section) was applied to the experimental data obtained in the present study for the 

CIGS samples. These samples were selected as a the most relevant case for the present study 

since large area mappings were performed onto them and they present a rough surface that 

makes thickness estimation challenging by other techniques. Both the capacity to detect sample-

to-sample and in-sample variations were tested. The results are shown in Figure 6. 

 

Figure 6. PCA-LDA sample-to-sample (A) and in-sample (B) thickness classification results 

for CIGS samples. The in-sample variation analysis was performed on the 75 nm AlOx sample 

with the data grouped by rings in the radial direction (see Figure S1). 

Regarding the sample-to-sample analysis, it can be observed that the PCA-LDA algorithm 

enables a clear classification of the samples with different nominal thicknesses yielding a test 

score very close to 1 (Figure 6a). This is somehow remarkable taking into account that, as 

already mentioned, all the samples present a slight thickness radial gradient which inevitably 

produces a broadening in the classification groups complicating classification. For example, it 

is interesting to note that although some overlapping is clearly observed for the 50 and 60 nm 

samples, the algorithm is still capable of correctly classifying the points according to AlOx 

nominal layer thickness. 

As for the in-sample variability, the 75 nm AlOx sample was analyzed by dividing the data 

points in groups corresponding to 5 rings in the sample with rings 1 and 5 representing the outer 

and inner extremes, respectively (see Figure S1). As shown in Figure 6b, the algorithm enables 
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to effectively classify the points by the different thickness ring to which they belong proving, 

again, the high sensitivity of the proposed normal reflectance methodology to thickness 

variations < 10 nm. Although some overlapping can be observed between the different groups, 

this is mostly due to the thickness grading existent within the rings. 

These results prove the feasibility of employing a machine learning driven analysis coupled to 

the proposed normal reflectance approach as a powerful alternative to that based on calibration 

curves for process monitoring in an industrial environment enabling measuring nanocoating 

thicknesses with sensitivities < 10 nm. Furthermore, it should be taken into account that the 

amount of data employed for the analysis (~2640 spectra) is far from being considered “big 

data” and, as such, that this methodology can be further improved for a more precise 

classification using a higher number of training inputs. 

 

4. Discussion: Implementing normal reflectance for industrial in-line process 

monitoring 

Although normal reflectance has previously been employed for thin film thickness evaluation 

at research43-35 and process monitoring27 levels, this was done through the use of complex and 

expensive systems, long acquisition times, models based on previous knowledge on the optical 

properties of the material and/or for thicknesses larger than those used in the applications 

described here. In this way, the results presented in this work, represent a laboratory proof-of-

concept of a completely different and innovative approach that demonstrate the feasibility of 

directly employing normal reflectance data for a precise and fast determination of the thickness 

of nanometric AlOx layers deposited on Si, CIGS and PET employing a simple and inexpensive 

system. In this regard, it should be noted that the main novelty of this work lies in the fact that 

the methodology proposed does not require to understand the physical meaning of the 

differences observed in the normal reflectance spectra, but only to be able to detect these 

differences and correlate them to the thickness of the AlOx nanometric layers. However, the 

main focus of this methodology is its implementation in industrial environments, especially for 

process monitoring of AlOx barrier layers deposited by S-ALD in RtR configuration. In this 

context, several aspects must be considered in order to make the normal reflectance 

methodology more industrially-friendly. 



14 

 

 

Figure 7. Example of reflectance calibration curves obtained with a 660 nm LED source for 

Si/AlOx (a) and CIGS/AlOx (b) samples. 

The first aspect that should be considered, is the substitution of the excitation light source based 

on a standard halogen lamp by a more stable, maintenance-free, versatile and low-cost one. In 

this regard, LED-based light sources are more appropriate for the industry. The feasibility of 

employing a monochromatic LED light source (660 nm) was tested for the Si and CIGS samples 

presented above. Taking a look at the calibration curves obtained under LED illumination 

(Figure 7), it can be seen that a very high dispersion is obtained for the qt parameter in the case 

of the Si base. As for CIGS, except for the 25 and 30 nm samples which seem undistinguishable 

due to their similar qt values, the results show that the LED excitation source works in a fairly 

similar fashion as the halogen lamp. 

Additionally, the same machine learning-based analysis performed for the halogen lamp 

measurements in the CIGS samples was applied to the spectral data acquired with the LED light 

source (Figure 8). Regarding sample-to-sample analysis (Figure 8a), the test score for point 

classification is significantly lower than in the case of the halogen lamp. It can be observed that 

this is due to the fact that the 15-30 nm and 50-60 nm samples present a high overlapping 

leading to misclassification of the groups. This is in accordance with the results obtained with 

the calibration curve presented in Figure 7 for these samples. Similarly, the in-sample 

classification (Figure 8b) also presents a lower score and higher overlapping than in the case 

of the halogen lamp. 
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Figure 8. PCA-LDA sample-to-sample (A) and in-sample (B) thickness classification results 

for CIGS samples measured with an LED light source. The in-sample variation analysis was 

performed on the 75 nm of AlOx sample with the data grouped by rings in the radial direction 

(see Figure S1). 

All these dispersion/overlapping issues, though, can be resolved by tailoring the LED excitation 

employed to the characteristics of the sample to maximize the reflectance signal. Furthermore, 

the use of several multiplexed LED sources with different wavelengths would open the way to 

further optimization of the signal acquisition. Either way, the results shown in Figure 7 and 

Figure 8 indicate that the methodologies presented in this work are versatile in terms of the 

possibility of employing different illumination sources tailored to the characteristics of the 

material to be analyzed, enabling the optimization of the system in a simple way. 

Another critical aspect that should be taken into account for industrial implementation of a 

normal reflection-based monitoring tool is the methodology employed for calculating qt. In this 

work, Aref(x) was defined in Equation (1) as the average integrated intensity of all the spectra 

corresponding to the base material (see experimental section for further details). It was defined 

in such manner because the samples were analyzed only after AlOx deposition. Although the 

use of this parameter has been shown to be critical for obtaining measurements with high 

precision, the high variability of the reflectance signal throughout the different points of the 

base material is one of the reasons why the measurements present a high dispersion hindering 

the differentiation of AlOx layers with low thicknesses from the bare substrate. Nevertheless, 

in an industrial process monitoring environment, two optical probes located before and after 

the AlOx deposition process, and synchronized to measure in the exact same position would 

allow calculating Aref(x) for each measuring point (instead of using an average value) 

minimizing the signal fluctuations related to the inhomogeneities of the base material and 

improving the accuracy and reliability of the methodology. Figure 9 schematically depicts the 

design of such a system. On the other hand, it should be taken into account, that besides the 

dispersion introduced by the inhomogeneity of the base materials, the samples analyzed in this 
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work had an intentional AlOx thickness gradient along the radial direction which has introduced 

additional dispersion. This has also importantly contributed to the difficulties observed to 

distinguish the AlOx deposited areas from the bare substrate for low layer thicknesses. However, 

the results presented throughout the work have shown that the methodology employed is 

sensitive to these slight thickness changes of a few nm. As such, if Aref(x) and qt are estimated 

individually for each measuring point, the resolution of the measurements would clearly be well 

below 10 nm allowing to precisely estimate the thickness of the AlOx layers and carrying out 

high-resolution homogeneity control of deposited AlOx layers in large areas. Moreover, 

changing the measuring spot from µm to cm size would allow performing both micro and macro 

homogeneity evaluations of the thickness of the layers. 

 

Figure 9. Integration of a normal reflectance-based process monitoring tool in a RtR S-ALD 

AlOx deposition process. 

Finally, as demonstrated in this work for low amount of spectra, in an industrial environment 

where an extremely large amount of data are expected to be obtained continuously, the 

implementation of machine learning algorithms for data analysis would also represent an 

advantageous strategy for improving the precision of the measurements thanks to its higher 

resilience to both sample and instrumental related fluctuations, fast training and classification, 

continuous self-improvement, and versatility in comparison to the use of calibration curves. 
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5. Conclusions 

In this work, a novel solution has been proposed and demonstrated for determining the thickness 

of AlOx nanometric coatings using normal reflectance measurements: a non-destructive, fast, 

precise, low-cost and scalable characterization method that can be implemented both in research 

and industrial process monitoring environments. The approach is based on detecting variations 

in the normal reflectance signal of a base/AlOx/air sample originated as a consequence of the 

varying nanolayer thickness. The viability of the proposed solution for the analysis of AlOx 

layer thickness in PV devices has been demonstrated employing a self-designed normal 

reflectance system and analyzing AlOx nanolayers deposited on Si, CIGS and PET substrates. 

Large area mappings covering the full surface of the samples have been performed and 

methodologies based both on control parameter-based calibration curves and machine learning 

algorithms have been developed to relate the reflectance signal to the thickness of the AlOx 

layers for each type of sample. These methodologies have been proven to be sensitive to 

thickness variations below 10 nm and have been demonstrated to be reliable for monitoring the 

AlOx layers thickness in large area industrial environments with high resolution. Additionally, 

the limitations of the technique as well as the most critical aspects that should be regarded to 

implement a normal reflectance-based tool for industrial process monitoring have been 

discussed. As such, this work paves the way for developing a novel characterization technology 

that has direct application for monitoring industrial AlOx-based encapsulation processes for 

flexible thin film PV modules but that can also be extended to many other industrial applications 

that require a precise and simple way of evaluating the thickness of nanocoatings. 
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