IEA Task 52 Lunch Webinar Series Complex Flow

Point and lidar wind field reconstruction sensitivities in complex flow

Andrew Hastings Black, Frederic Delbos 14 February 2023

Background + Motivation

• IEA Task 32's round robin yielded ambiguous results:

- General lidar over-estimation of wind speed for many CFD and LES corrections
- Some sites are quite extreme, slopes of ~20°
- Black et al (2020) showed better performance for variety of sites and methods
- Recent literature shows turbulence can create subtle differences between anemometers and lidars depending on the wind field reconstruction (WFR)
 - Hybrid WFR eliminates turbulence sensitivities in flat terrain: *Rosenbusch et al* (2021)
 - Lundquist and Robey (2022) demonstrated variations in various stability conditions via LES
- In this presentation, we extend the theoretical basis for turbulent sensitivities, for point and lidar measurements to include complex flow
 - Bonus: from the Task 32 study, at Sites A, B, and C, the 1 Hz RTD data is available, enabling reprocessing with different WFR to sanity check this hypothesis

Wind Field Reconstruction Refresher Scalar Averaging (Scalar WFR)

Scalar averaging generates a new wind speed every second, using the last four measurements

$$\frac{N-S}{2\sin\theta} = u_i$$

$$\frac{E-W}{2\sin\theta} = v_i$$

$$\sqrt{u_i^2 + v_i^2} = V_i$$

$$\overline{V_{scalar}} = \frac{1}{600} \sum_{i=1}^{600} V_i$$

These 1 Hz wind speeds are averaged at the end of the 10-minute period to generate the average wind speed

Wind Field Reconstruction Refresher Vector Averaging (Vector WFR)

Vector averaging generates just one wind speed for each 10minute period using the average radial beam measurements

$$\frac{1}{2\sin\theta} \left[\sum N - \sum S \right] = \sum u$$
$$\frac{1}{2\sin\theta} \left[\sum W - \sum E \right] = \sum v$$

$$\overline{V_{vector}} = \frac{1}{150} \sqrt{\left(\sum u\right)^2 + \left(\sum v\right)^2}$$

Wind Field Reconstruction Refresher Hybrid Averaging (Hybrid WFR)

- Comparisons of WindCube to high quality met masts agree very well with theory for scalar and vector averaging
- In WindCube v2.1, we combine the two methods and reduce the sensitivity to turbulence by an order of magnitude

$$V_{Hybrid}^{lidar} = \frac{2}{3} V_{scalar}^{lidar} + \frac{1}{3} V_{vector}^{lidar}$$
$$= \frac{2}{3} V_{scalar}^{cup} + \frac{1}{3} V_{scalar}^{cup} + \frac{1}{6} \tilde{\sigma}^2 - \frac{1}{6} \tilde{\sigma}^2$$
$$= V_{scalar}^{cup}$$

Wind Measurement Theory Reynolds Decomposition and SO(3) Rotation Group

$$R_{x}(\theta_{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{x} & -\sin\theta_{x} \\ 0 & \sin\theta_{x} & \cos\theta_{x} \end{bmatrix}, R_{y}(\theta_{y}) = \begin{bmatrix} \cos\theta_{y} & 0 & \sin\theta_{y} \\ 0 & 1 & 0 \\ -\sin\theta_{y} & 0 & \cos\theta_{y} \end{bmatrix}, R_{z}(\theta_{z}) = \begin{bmatrix} \cos\theta_{z} & -\sin\theta_{z} & 0 \\ \sin\theta_{z} & \cos\theta_{z} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Express measurement axes using SO(3) group

Example #1: wind measurement along the North Beam of a WindCube lidar is derived:

 $R_{v}(-62^{\circ})R_{z}(0^{\circ})\boldsymbol{u}\boldsymbol{U}_{N} = \mathcal{L}_{N} = \sin(62) * (\bar{u} + u') + \cos(62) * (\bar{w} + w')$

Example #2: wind measurement along *v* for ultrasonic anemometer: $R_z (90^\circ) \boldsymbol{u} \boldsymbol{U} = \boldsymbol{v}$

For boundary layer wind: $\boldsymbol{U} = \begin{bmatrix} \bar{u} + u' \\ \bar{v} + v' \end{bmatrix}$ and measurement axis, \boldsymbol{u}

Wind Measurement Theory Simplest Configuration: USA in flat, turbulent flow

Measurements: u = u and $R_z (90^\circ) uU = v$

- 1. Expand all terms in the WFR $U_{scalar,1Hz} = \sqrt{u^2 + v^2} = \sqrt{\bar{u}^2 + 2\bar{u}u' + {u'}^2 + \bar{v}^2 + 2\bar{v}v' + {v'}^2}$
- 2. Factor out the vector average
- 3. Apply 1st order binomial expansion
- 4. Apply 2nd order binomial expansion *not fully derived yet for all cases*

$$=\sqrt{\bar{u}^{2}+\bar{v}^{2}}\sqrt{1+\frac{1}{\bar{u}^{2}+\bar{v}^{2}}\left[2\bar{u}u'+u'^{2}+2\bar{v}v'+v'^{2}\right]}$$

$$= U_{vector} \left[1 + \frac{1}{2U_{vector}^2} \left[2\bar{u}u' + u'^2 + 2\bar{v}v' + v'^2 \right] \right]$$

$$= U_{vector} \left[1 + \frac{1}{2U_{vector}^2} \left[2\bar{u}u' + 2\bar{v}v' + \left({u'}^2 + {v'}^2 \right) \sin^2 \varphi \right] \right]$$

where φ is the angle of the random fluctuations

Wind Measurement Theory

Simplest Configuration: Anemometer in flat, turbulent flow

Measurements: uU = u and $R_z (90^\circ)uU = v$

3. Apply 1st order binomial expansion

$$= U_{vector} \left[1 + \frac{1}{2U_{vector}^2} \left[2\bar{u}u' + u'^2 + 2\bar{v}v' + v'^2 \right] \right]$$

4. Summation over 10 minutes

$$= U_{vector} + \frac{1}{2U_{vector}^2} \left[2\bar{u}u' + {u'}^2 + 2\bar{v}v' + {v'}^2 \right]$$

Linear terms all drop out, only squared turbulent terms remain:

$$U_{scalar,10min} = U_{vector} + \frac{1}{2U_{vector}^2} \left[\overline{u'^2} + \overline{v'^2} \right]$$

5. Reformulate:

$$U_{scalar,10min} = U_{vector} + \frac{1}{2U_{vector}} \sum_{i,j=1}^{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ \begin{bmatrix} \overline{u'^2} & \overline{u'v'} & \overline{u'v'} \\ \overline{v'u'} & \overline{v'^2} & \overline{v'v'} \\ \overline{w'v'} & \overline{w'v'} & \overline{w'^2} \end{bmatrix} = U_{vector} + \frac{1}{2U_{vector}^2} \sum_{i,j=1}^{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ \boldsymbol{\tau_{ij}}$$

Wind Measurement Theory Anemometer in flat or complex turbulent flow

1st order Point measurement, flat, turbulent flow

$$U_{scalar,10min} = U_{vector} + \frac{1}{2U_{vector}^2} \sum_{i,j=1}^3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ \begin{bmatrix} \overline{u'v'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'v'} \\ \overline{w'v'} & \overline{w'v'} \end{bmatrix} = U_{vector} + \frac{1}{2U_{vector}} \sum_{i,j=1}^3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ \boldsymbol{\tau}_{ij}$$

What happens in complex flow?

Use SO(3) rotations again:

 $R_x(\theta_x)R_y(\theta_y)U =$ arbitrary tilt and roll applied to wind

1st order Point measurement, tilted, turbulent flow

$$\overline{U_{scalar}} = U_{vector} + \frac{1}{2U_{vector}^2} \sum_{i,j=1}^3 \begin{bmatrix} \cos^2 \theta_y + \sin^2 \theta_y \sin^2 \theta_x & \sin \theta_y \cos \theta_x & \sin \theta_y \cos \theta_y - \sin^2 \theta_x \sin \theta_y \cos \theta_y \\ \sin \theta_x \sin \theta_y \cos \theta_x & \cos^2 \theta_x & \cos^2 \theta_x & \cos^2 \theta_x \\ \sin \theta_y \cos \theta_y - \sin^2 \theta_x \sin \theta_y \cos \theta_y & \cos \theta_x \sin^2 \theta_x \cos^2 \theta_y & \sin^2 \theta_x + \sin^2 \theta_y \end{bmatrix} \circ \boldsymbol{\tau}_{ij}$$

Wind Measurement Theory General Forms

 After this derivation, a wide variety of point and lidar measurement geometries can all be expressed as a sum of the vector average and an "scalar inflation tensor".

$$U_{scalar,10min} = U_{vector} + \frac{1}{2U_{vector}} \sum_{i,j=1}^{3} \begin{vmatrix} \vec{f}_{ii} & \vec{f}_{ij} & \vec{f}_{ik} \\ \vec{f}_{ji} & \vec{f}_{jj} & \vec{f}_{jk} \\ \vec{f}_{ki} & \vec{f}_{kj} & \vec{f}_{kk} \end{vmatrix} \circ \left[\frac{u'u'}{w'u'} & \frac{u'v'}{w'v'} & \frac{u'w'}{w'v'} \\ \frac{v'u'}{w'v'} & \frac{v'v'}{w'v'} \end{vmatrix} = U_{vector} + \frac{1}{2U_{vector}} \sum_{i,j=1}^{3} \begin{vmatrix} \vec{f}_{ii} & \vec{f}_{ij} & \vec{f}_{ik} \\ \vec{f}_{ji} & \vec{f}_{jj} & \vec{f}_{jk} \\ \vec{f}_{ki} & \vec{f}_{kj} & \vec{f}_{kk} \end{vmatrix} \circ \boldsymbol{\tau}_{ij}$$
10-min scalar
WFR average
10-min vector
WFR average
10-min vector
WFR average
10-min vector

IEA Task 32 Site Data **Preliminary Reanalysis** Scalar vs. Vector WFR Comparison

VAISALA

IEA Task 32 Site Data **Preliminary Reanalysis** Scalar vs. Vector WFR Comparison

Site C: All Heights, Vector/Scalar Bias

- Up to 7% bin average differences between Scalar and Vector WFR
- Overall differences on order of 3%
- Seemingly can explain some of the ambiguities in this dataset
- Next steps:
 - Expand to other sites
 - Reprocess USA data to estimate ReST terms

Thoughts and Open Questions *Goal: Well-understood and Traceable Uncertainties*

- In traditional IEC Classification (following 61400-50-2):
 - uncertainties estimated using linear functions of various atmospheric parameters and assumptions that suitable ranges of those parameters are captured in the Classification, Validation, and specific measurement campaigns
 - Hybrid WFR weightings validated, largely eliminates turbulence sensitivity
- For a Complex Terrain Classification :
 - Anemometers and lidars have sensitivities to Reynolds Stress Tensor
 - Sensitivity "candidates" may need to be expanded
 - No set methodology for estimating uncertainties of CFD correction itself
 - Theory shows angles are even more critical than previously assumed
 - Need assumption of SMC conditions different than Classif / Valdation

Thoughts and Open Questions

Goal: Well-understood and Traceable Uncertainties

- Some proposals for traceable lidar complex terrain campaigns include met masts
 - WindEurope 2022: Montavon et al (2022); Nixon et al (2022)
 - Could USAs be included to measure the Reynolds Stress Tensor + angles ?
- LES and CFD are outstanding tools for lidar science
 - Lundquist and Robey (2022), Mann and Kelberlau (2020)
 - Could we use LES and CFD for complex Classification instead of field campaigns?
 - Classification \rightarrow LES Classification \rightarrow Flat Terrain Validation \rightarrow Complex SMC
- What Hybrid WFR weights (α * scalar + β * vector) are ideal in complex terrain?
 - Could they be site-dependent?
 - What are the key drivers? Full ReST, specific flow angles, stability, roughness length...

Thoughts and Open Questions *Goal: Well-understood and Traceable Uncertainties*

- Today we showed only a few derivations...
 - Need to methodically derive ReST sensitivities for more use cases →
 - How to model a cup? Infinite circular measurement axes?
- Estimate errors for typical ReST values in flat and complex terrain (stable, unstable, neutral)
 - Is there a 'canonical' ReST ?
- Extend theory to 2nd order

Sensor	Tilt	Roll	Yaw	Simple	Complex
Ultrasonic				Х	
Cup				Х	
Lidar				Х	
Ultrasonic	Х	Х			Х
Ultrasonic	Х	Х	Х		Х
Lidar	Х				Х
Lidar		Х			Х
Lidar			Х	Х	
Lidar			Х		Х

andrew.hastingsblack@vaisala.com

VAISALA