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Floating lidar system (FLS) deployments
... between 2009 and 2017
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Figure 1: Indicative timeline showing number of deployed FLS systems. The date of the original OWA FLS

Roadmap publication is shown in red.
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I[EA Wind [Task 32/52] perspective:

- First working group meeting on FLS
- Publication of ‘RP18" (IEA Wind Recommended

Practice 18 on Floating Lidar Systems)
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1 Lidar

2 FLS operating system

3 Energy generation system
4 Energy storage system

5 Data logging system
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8 Station-keeping system

9 Sensors

10 Motion compensation

Figure 3: Schematic drawing of an FLS and its components. Note other buoy designs and mooring
systems are possible.
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IEA Wind RP 18
What it is not about
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Recommendations for Further Work

In the course of developing this recommended practice document the authors are aware that this 1s a
“stepping-stone” on the way to a normative standard. As is natural in such a case, a number of areas
have been identified where the industry would benefit from further work on developing or codifying
recommended practice. These are summarised as follows:

1.

Case Study. Illustration of all of the points in this document, and in future developments of
this document, through a record of how each element was tackled for a real case study, would
be very informative. This particularly applies to data uncertainty topics.

Understanding gust and turbulence. What value can be derived from gust and turbulence
measurements from floating lidar systems?

Development of a repository of floating lidar system applications.

Re-assess the OWA Roadmap acceptance criteria. As the body of FLS trial data has grown
significantly since the Roadmap was first introduced, 1t would be worthwhile to review the
Roadmap criteria in the light of this data.

Use of hydrodynamics model. At present it is not clear how a hydrodynamics model can be

used to extend the use of FLS to conditions not experienced in trials. This should be investigated
further.

Most of the above items are considered to be achievable without further early-stage research, with the
probable exception of item 2. It is the authors’ recommendation that these areas, and any others
prioritised by industry stakeholders, are included in a future iteration of this document.

Other subject matter areas which are also of relevance to FLS deployments, and the authors do not
believe are comprehensively covered here are installation, licensing and safety. However, this work has
involved extensive stakeholder engagement and in that process there has been no call for further work
on these topics, hence they are not currently recommended for further development.
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Advanced Review

Floating lidar as an advanced
offshore wind speed measurement
technique: current technology
status and gap analysis in regard
to full maturity

Julia Gottschall," Brian Gribben,? Detlef Stein® and Ines Wuarth*

Floating lidar was introduced in 2009 as an offshore wind measurement technology
focusing on the specific needs of the wind industry with regard to wind resource
assessment applications. Floating lidar systems (FLS) are meant to replace an off-
shore met mast, being significantly cheaper and saving an essential part of project
upfront investment costs. But at the same time, they need to overcome particular
challenges—these are (1) the movement of the sea imparting motion on the buoy
and the lidar, and the subsequent challenge of maintaining wind speed and direc-
tion accuracy, and (2) the remoteness of the deployed system in an extremely chal-
lenging environment necessitating robust, autonomous and reliable operation of
measurement, power supply, data logging, and communication systems. The issue
of motion influences was investigated in a number of studies and is to be checked
and monitored in offshore trials of individual FLS realizations. In trials to date,
such influences have been demonstrated to be negligibly or manageably small with
the application of motion reduction or compensation strategies. Thereby, it is possi-
ble to achieve accurate wind measurement data from FLS. The second kind of chal-
lenge is tackled by implementing a sufficiently robust and reliable FLS design.
Recommended practices collected by a working group within the International
Energy Agency (IEA) Wind Task 32 and within the UK offshore wind accelerator
program offer guidance for FLS design and configuration, and furthermore set
requirements for trialing the system types and individual devices in representative
offshore conditions. © 2017 John Wiley & Sons, Ltd

WIREs Energy Environ 2017, 6:e250. doi: 10.1002/wene.250

How to cite this article: |

https://wires.onlinelibrary.wiley.com/doi/epdf/
10.1002/wene.250
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FIGURE 3 | Overview of known floating lidar system realizations—in rows from left to right and top down: (a, b) FLIDAR WindSentinel 6M,
4M, (c) SEAWATCH WindLiDAR Buoy, (d) SeaZephlR, (e) Fraunhofer IWES Wind Lidar Buoy, (f) EOLOS FLS200, (g) FORECAST, (h) DeepCLIDAR,
(i) EOLFI BLIDAR, and (j) M*EA project. (© figures by system providers as referred to in Table 1)
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Conclusions from IEA Wind Task 32 Workshop #1 (Blyth, Feb 2016)
—> Five gaps:

1.

A well-defined uncertainty framework building
the basis for a robust, complete, and unbiased
assessment of FLS measurement performance;

. The increase of mvestors’ confidence in the

technology, e.g., by arranging further relevant
stakeholder activities;

A redefined validation framework, by revising
¢.g., scope and used references of the presently
recommended trials;

Alternative approaches for validation, utilizing
another (so far not developed) concept for

transferring traceability to the FLS measure-
ments; and finally

Enabling Tl measurements from FLS.
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So, what about FLS Turbulence Intensity (TI) ?
Some literature .. #1
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So, what about FLS Turbulence Intensity (TI) ?

Some literature .. #2
— Floating lidar motion compensation
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So, what about FLS Turbulence Intensity (TI) ?
Some literature .. #3
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So, what about FLS Turbulence Intensity (TI) ..
s this solved now?

Not really .. We still don’t know (sufficiently well) how to verify / calibrate FLS Tl, i.e.
- Which metric

- Which reference

- Which verification process

- Which KPIs and respective acceptance criteria

- = Scope of the Carbon Trust OWA “FTI" Project [Oldbaum, Fraunhofer IWES, France Energies Marines — 2022/23]

\
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Not only focus on TI ..
How about atmospheric stability?
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in the marine atmospheric boundary layer

William J. Shaw', Larry K. Berg', Mithu Debnath’, Georgios Deskos?, Caroline DraxI>-,
Virendra P. Ghate®, Charlotte B. Hasager”, Rao Kotamarthi*, Jeffrey D. Mirocha®, Paytsar Muradyan®,
William J. Pringle*, David D. Turner’, and James M. Wilczak®

!Pacific Northwest National Laboratory, Richland, WA 99352, USA
National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
3Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA
4 Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA
SDTU Wind Energy, Technical University of Denmark, Risg Campus, Roskilde, Denmark
SLawrence Livermore National Laboratory, Livermore, CA 94550, USA
"Global Systems Laboratory, NOAA, Boulder, CO 80305, USA
$Physical Sciences Laboratory, NOAA, Boulder, CO 80305, USA

—
2/28/2023 © Fraunhofer IWES % Fraunhofer

IWES

Slide 17



Further challenges within atmospheric sciences

.. which may be solved by FLS
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Further challenges within atmospheric sciences
.. which may be solved by FLS .
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Figure 5. A high-shear wind event measured by a floating lidar deployed within the wind lease areas of the New Jersey coast (top). The
Slide 19 2/28/2023 © Fraunhofer IWES middle figure provides the time-averaged wind speed profiles of the black boxes shown in the top figure. The SST and air temperature at 2m
height measured at the same location are provided in the bottom figure (from Debnath et al., 2021).
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Further challenges within atmospheric sciences
.. which may be solved by FLS

phenomena such as low-level jets, which are dirncult o
simulate accurately but are low enough in altitude to sig-
nificantly affect both power generation and mechanical
loads on turbine structures.

— Optimal modeling approaches offshore are currently un-
clear with respect to the way the ocean and the atmo-
sphere should be coupled for the various time and space
scale of interest. Does the ocean mixed layer need to be
fully coupled to the marine ABL? Should there be two-
way coupling between the waves and the atmosphere,
or is one-way coupling sufficient? Can artificial intelli-
gence and ML assist with some of the more troublesome
parameterizations?

Precipitation is a significant contributor to leading-

those distributions actually are.

8.2 Specific challenges and recommendations
8.2.1 Model validation

There is no substitute for observations in the real atmo-
sphere for validation of atmospheric models, and validating
observations need to span a large subset of the conditions to
which models will be applied. The marine ABL, however,
is a notably hostile environment for making measurements,
and there are few stable platforms at sea on which to mount
sophisticated profiling instrumentation. Except for satellite
observations of clouds and the surface and for surface mea-
surements from buoys, long-term observations of the marine
ABL, especially in the rotor-swept area, remain rare. Recom-
mendations are the following:

— Remote sensing methods.

These methods are currently the most promising
path for obtaining key observations above the sur-
face in a cost-effective manner. Motion-correcting
Doppler lidar systems are now routinely mounted
on buoys and deployed for many months, and these
excel at providing wind profiles through the rotor-
swept area of wind turbines. However, this only
provides wind information to a maximum altitude
of about 300m above the surface. To understand
resource characterization model performance, the
following information is also needed:

e wind vector profiles through the entire depth of
the marine ABL and above, as are currently pro-
vided on land by Doppler radars and Doppler
lidars

e profiles of temperature and humidity at least
through the depth of the marine ABL, as are
provided on land by multichannel infrared and
microwave radiometer profiling systems

e the depth z; of the boundary layer, an impor-
tant metric for model performance and poten-
tially available from automated measurements
with laser-based systems and temperature pro-
files retrieved from multichannel radiometers

e turbulence profiles, derived from lidar- or radar-
based systems, adapted for moving platforms at
sed.

— Additional observations.

e Eddy correlation measurements of near-surface
turbulence, including temperature and water va-
por, are needed to evaluate conditions of valid-
ity for classical theories of the atmosphere.
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So, what do we/you want to do in Task 52
on the topic of floating lidar?
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