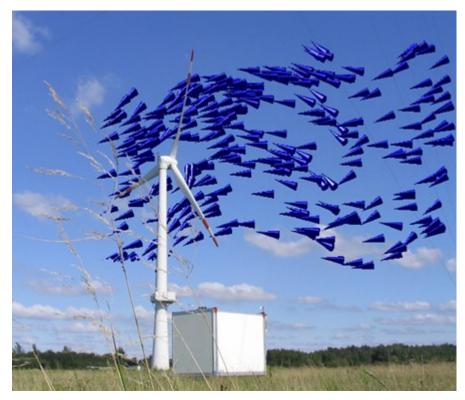
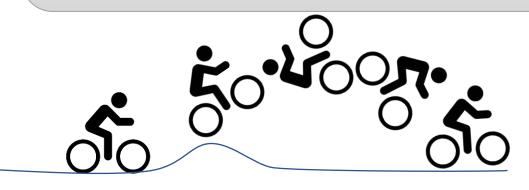
Lidar-Assisted Control Working Group

Task 52 Wind Lidar: Large-Scale Deployment of Wind Lidar


David Schlipf Flensburg University of Applied Sciences

Lunch Seminar 13.02.2023


Technology Collaboration Programme

Motivation for Lidar Assisted Control

- wind is changing over space and time
- conventional control reacts after impact
- lidar technology provides wind preview
- better control performance is expected

- Biggest market: one lidar for every wind turbine!
- Development over the last years showed: It's not a wonder weapon, but still promising!
- Main task in IEA: make application easy!

LAC Working Group

- Participants
 - Further participants very welcome
 - Communication via Teams & emails
- Goal: Recommended Practices on Lidar-Assisted Control
 - Building up on existing documents
- Next Planned Activities
 - More Webinars
 - Get started with the RP
 - LAC open-source tools
 - Improvement OpenFAST Lidar Simulator (Feng, Torque 2022)
 - Integrate baseline Feedforward controller into ROSCO (Feng & David, WESC, 2022)

Last Name	First Name	Affiliation	Country
De Battista	Marc	Windey	China
Guo	Feng	sowento	Germany
Hailong	Zhu	Movelaser	China
Hou Lio	Alan Wai	DTU	Denmark
KAWABATA	Hirokazu	AIST	Japan
Kidambi	Anantha	OWC	Germany
Lei	Liu	Goldwind	China
Pérez Brovia	Santiago	sowento	Germany
Raach	Steffen	sowento	Germany
Schild	Axel	IAV	Germany
Schlipf	David	Flensburg University of Applied Sciences	Germany
Shigang	Yao	Goldwind	China
Simley	Eric	NREL	USA
Steven	White	ZX lidars	UK
Zhang	Zhaoyu	Politecnico di Milano	Italy

* remote sensing

MDPI

Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

Eric Simley ^{1,*}, Holger Fürst ², Florian Haizmann ² and David Schlipf ²

 Global Wind Summit 2018
 IOP Publishing

 IOP Conf. Series: Journal of Physics: Conf. Series 1102 (2018) 012010
 doi:10.1088/1742-6596/1102/1/012010

 Comparison
 IOP Publishing

 ournal of Physics: Conference Series
 1618 (2020) 042029
 doi:10.1088/1742-6596/1618/4/042029

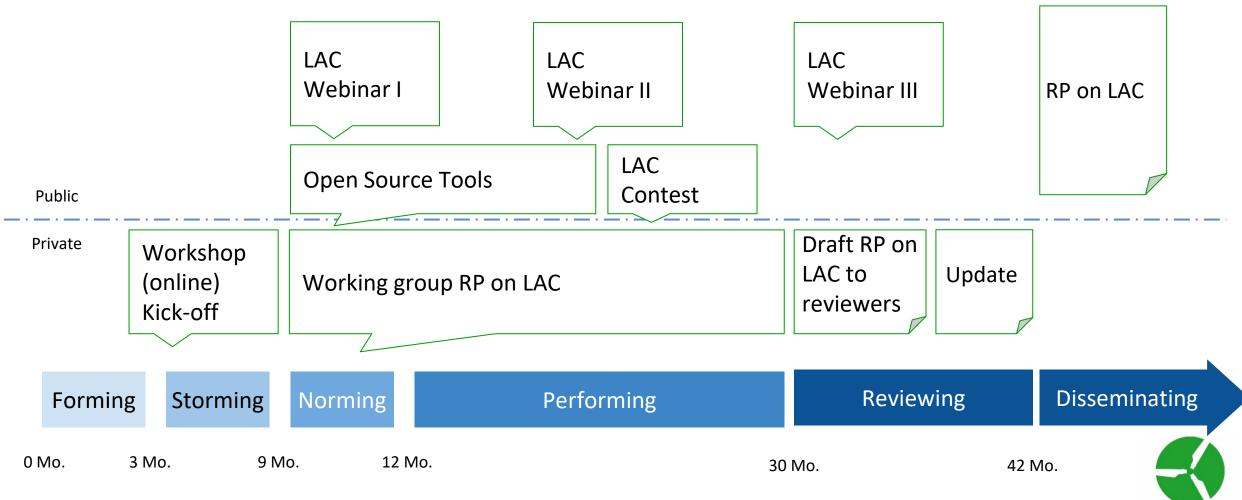
IEA Wind Task 32 and Task 37: Optimizing Wind

Engineering

Turbines with Lidar-Assisted Control Using Systems

IEA Wind Task 32: Best Practices for the Certification of Lidar-Assisted Control Applications

David Schlipf¹, Nikolai Hille², Steffen Raach³, Andrew Scholbrock⁴, Eric Simley^{4*}


Eric Simley¹, Pietro Bortolotti¹, Andrew Scholbrock¹, David Schlipf⁹, Katherine Dykes³ WESC, 2022)

☐ fengguoFUAS / OpenFAST3.0_LidSim
 Public

LAC Working Group

iea wind