
29-03-2021

D2.1 – Report on a first alpha release of the I/O
library, ready for WP4

Version V1.0

GA no 952165

Dissemination Level

� PU: Public
� PP: Restricted to other programme participants (including the Commission)
� RE: Restricted to a group specified by the consortium (including the Commission)
� CO: Confidential, only for members of the consortium (including the Commission)

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Document Information

Project Title Targeting Real Chemical accuracy at the EXascale

Project Acronym TREX

Grant Agreement No 952165

Instrument Call: H2020-INFRAEDI-2019-1

Topic INFRAEDI-05-2020 Centres of Excellence in EXascale computing

Start Date of Project 01-10-2020

Duration of Project 36 Months

Project Website https://trex-coe.eu/

Deliverable Number D2.1

Deliverable title D2.1 – Report on a first alpha release of the I/O library, ready for WP4,
as seen in GA

Due Date M06 – 31-03-2021 (from GA)

Actual Submission Date 29-03-2021

Work Package WP2 – Code modularization and interfacing

Lead Author (Org) Sandro Sorella (Scuola Internazionale Superiore di Studi Avanzati di
trieste (SISSA))

Contributing Author(s) (Org) Anthony Scemama (Centre National de la Recherche Scientifique
(CNRS))

Reviewers (Org) François Coppens (Université de Versailles Saint-Quentin-en-yvelines
(UVSQ)), Pablo Oliveira (UVSQ), Matúš Dubecký (Slovenská tech-
nická univerzita v Bratislave (STUBA)), Jan Beerens (Universiteit
Twente (UT)

Version V1.0

Dissemination level PU

Nature Report

Draft / final Final

No. of pages including cover 29

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

i of vii

https://trex-coe.eu/

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Disclaimer

TREX: Targeting Real Chemical Accuracy at the Exascale project has received
funding from the European Union Horizon 2020 research and innovation program
under Grant Agreement No. 952165.

The content of this document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

ii of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Versioning

Version Date Authors Notes

1.0 29-03-2021 Sandro Sorella (SISSA) First Official Release

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iii of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Abbreviations

AO Atomic Orbital

API Application Programming Interface

BSE Basis Set Exchange

CI Configuration Interaction

CNRS Centre National de la Recherche Scientifique

CoE Center of Excellence

ECP Effective Core Potential

ERI Electron Repulsion Integral

EZFIO Easy Fortran Input/Output

GPFS General Parallel File System

HDF5 Hierarchical Data Format

HPC High Performance Computing

I/O Input/Output

MO Molecular Orbital

QMC Quantum Monte Carlo

SISSA Scuola Internazionale Superiore di Studi Avanzati di trieste

STUBA Slovenská technická univerzita v Bratislave

TREX Targeting REal chemical accuracy at the eXascale

TREXIO TREX Input/Output

UT Universiteit Twente

UVSQ Université de Versailles Saint-Quentin-en-yvelines

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iv of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Table of Contents

Document Information . i

Disclaimer . ii

Versioning. iii

Abbreviations . iv

Table of Contents . v

List of Figures . vi

List of Tables . vii

1 Introduction . 1

2 Content of the files . 2
Metadata . 2
Nuclei . 2
Electrons . 2
Atomic Basis set . 2
Atomic Orbitals . 3
Effective core potentials . 3
One-electron integrals in the AO basis set . 3
Two-electron integrals in the AO basis set . 4
One-electron integrals in the MO basis set. 4
Two-electron integrals in the MO basis set . 4
Summary . 4

3 Design of the library . 6
License . 6
The front end . 6
Conventions . 9
Error handling. 10
Safety . 10
Prototype library . 10
The back end . 10

4 Illustrative example of usage of the library . 11

References . I

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

v of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

List of Figures

1 Dependencies between the codes and the data. Codes are represented in gray, and
data are represented in white. 1

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

vi of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

List of Tables

1 Information that should be stored in the file. 4

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

vii of vii

D2.1– Report on a first alpha release of the I/O library, ready for WP4

1 Introduction

We build a library to help inter-operability between codes in the field of quantum chemistry, primarily
focused on enabling the communication of data between the flagship codes of the Targeting REal
chemical accuracy at the eXascale (TREX) Center of Excellence (CoE) (NECI, GammCor, Quantum
Package, QMC=Chem, CHAMP, TurboRVB, QML). We expect this library to be also adopted by
the community beyond the TREX CoE.

The data that needs to be stored is the electronic wave function, which is obtained from a
post-Hartree-Fock calculation, or the one- and two-body density matrices, together with the one-
and two-electron integrals that are necessary to compute the energy or other properties. As a wave
function can be obtained by executing multiple codes in a complex workflow, the library should give
the possibility to build the files incrementally using multiple codes.

XYZ
 coordinates

Quantum
 Package

QMC=Chem

TurboRVB

CHAMP

Atomic
 basis set

Pseudo-
potentials

Integrals
 in AO basis

GammCor

Integrals
 in MO basis

NECI

Density
 matrices

Determinant
 expansion

CSF
 expansion

Molecular
 orbitals

Properties

QML

Figure 1: Dependencies between the codes and the data. Codes are represented in gray, and data
are represented in white.

Fig. 1 shows which data are read and written by all of the codes of the TREX CoE. The objective
of this library is to organize all the data in a file, and provide a common interface to make the data
easily accessible to all the codes.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

1 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

2 Content of the files

The files need to be self-contained: they should contain all the information needed to reconstruct the
wave functions from an external program, without relying on any extra service to provide additional
data. For instance, all the parameters of the atomic basis set should be explicitly stored instead of
storing only the conventional name of the basis, which would require obtaining the parameters from
another source. It is important for the files to be self-contained, as they are intended to be archived
on an open-data repository: this reduces their dependencies on other services and therefore increases
their re-usability.

Metadata

As we expect our files to be archived in open-data repositories, we need to give the possibility to
the users to store some metadata inside the files. We propose to store the list of names of the
codes which have participated to the creation of the file, a list of authors of the file, and a textual
description.

Nuclei

We consider wave functions where the nuclei are considered as fixed point charges. The file should
contain information describing the positions of the nuclei, their charges, their labels, and the point-
group symmetry of the system.

Electrons

We consider wave functions expressed in the spin-free formalism, where the number of ↑ and ↓
electrons is fixed.

Atomic Basis set

We consider here basis functions centered on nuclei. Hence, we enable the possibility to define dummy
atoms to place basis functions in random positions.

The atomic basis set is defined as a list of shells. Each shell s is centered on a center A, possesses
a given angular momentum l and a radial function Rs. The radial function is a linear combination of
Nprim primitive functions that can be of type Slater (p = 1) or Gaussian (p = 2), parameterized by
exponents γks and coefficients aks:

Rs(r) = Ns|r−RA|ns

Nprim∑
k=1

aks exp (−γks|r−RA|p) .

In the case of Gaussian functions, ns is always zero. The normalization factor Ns ensures that all the
functions of the shell are normalized to unity. As this normalization requires the ability to compute
overlap integrals, the normalization factors should be written in the file to ensure that the file is
self-contained and does not require the client program to have the ability to compute such integrals.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

2 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Atomic Orbitals

Going from the atomic basis set to Atomic Orbitals (AOs) implies a systematic construction of all
the angular functions of each shell. We consider two cases for the angular functions: the real-
valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical
harmonics, the AOs are ordered in increasing magnetic quantum number (−l ≤ m ≤ l), and in the
case of polynomials we choose the canonical ordering of the Libint[1] library, i.e

p : px, py, pz

d : dxx, dxy, dxz, dyy, dyz, dzz

f : fxxx, fxxy, fxxz, fxyy, fxyz, fxzz, fyyy, fyyz, fyzz, fzzz

etc.

AOs are defined as
χi(r) = Pη(i)(r)Rθ(i)(r)

where i is the atomic orbital index, P encodes for either the polynomials or the spherical harmonics,
θ(i) returns the shell on which the AO is expanded, and η(i) denotes which angular function is chosen.

Effective core potentials

It is common to use Effective Core Potentials (ECPs) in Quantum Monte Carlo (QMC) calculations.
An ECP V pp

A replacing the core electrons of atom A is the sum of a local component V loc
A and a

non-local component V non-loc
A .[2] The local component is given by

V loc
A (r) = −Z

eff
A

r
+
Zeff
A

r
exp

(
−αA r2

)
+ Zeff αA r exp

(
−βA r2

)
+ γA exp

(
−δA r2

)
,

and the component obtained after localizing the non-local operator is

V non-loc
A (r) = ζA exp

(
−ηA r2

)
|0〉〈0|+ µA exp

(
−νA r2

)
|1〉〈1|

where r = |r−RA| is the distance to the nucleus on which the potential is centered, Zeff
A is the effec-

tive charge due to the removed electrons, |0〉〈0| and |1〉〈1| are projections over zero and one principal
angular momenta, respectively (generalization to higher angular momenta is straightforward), and all
the parameters labeled by Greek letters are parameters.

One-electron integrals in the AO basis set

The one-electron integrals are of the form

Oij =

∫
χi(r) Ô χj(r)dr,

where Ô is a one-electron operator. The integrals needed to compute the energy are the overlap
integrals S with Ô = 1, the kinetic energy integrals T with Ô = ∇2, the electron-nucleus potential
integrals V with Ô = −

∑
A−Zeff

A /|r−RA|, and the effective core potential integrals Vpp with

Ô = V pp. It is also convenient to store the core Hamiltonian integrals, defined as the sum of all the
previously mentioned one-electron integrals.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

3 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Two-electron integrals in the AO basis set

Electron Repulsion Integrals (ERIs) are given by

Wpqrs =

∫∫
χ∗
p(r1)χ

∗
q(r2)

1

|r1 − r2|
χr(r1)χs(r2) dr1dr2

ERIs have (p, q, r, s) as indices, so their number grows formally as N4 where N is the number of
AOs. However, due to the locality of the AOs these integrals are negligible when the overlap between
〈χp|χr〉 or 〈χq|χs〉 is close to zero. Hence, this data structure is sparse, and it is preferable to store
only the non-zero values. One can also remark that the ERIs are symmetric with respect to the
exchange of electron coordinates r1 and r2, and for real orbitals one can also exchange the indices p
and r and/or q and s. This enables an even more compact storage if only unique values are stored.

One-electron integrals in the MO basis set

Post Hartree-Fock methods generally require integrals transformed from the AO basis set to the
Molecular Orbital (MO) basis set, so it is convenient to be able to read them from a file. Some
codes within TREX don’t enforce the orthogonality between the MOs, so we provide the possibility
to store the overlap matrix of the MOs in addition to all the other ones (kinetic, potential, ECP, core
Hamiltonian).

Two-electron integrals in the MO basis set

The transformation of ERIs from the AO to the MO basis can be expensive, as it scales as N5.
Therefore, storing these integrals is often necessary. The structure of these integrals is the same as
the integrals in the AO basis set, with the same permutation symmetry in the indices:

WMO
ijkl =

∫∫
φ∗
i (r1)φ

∗
j(r2)

1

|r1 − r2|
φk(r1)φl(r2) dr1dr2

However, as the MOs are generally delocalized, these data structures are less sparse than their AO
counterparts.

Summary

Table 1, summarizes the data that need to be stored in the files.

Table 1: Information that should be stored in the file.

Metadata File description

Code used to write the file

Authors of the file

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

4 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Nuclei Number of nuclei

Atomic charges

XYZ coordinates

Atom labels

Point-group Symmetry

Electrons Number of ↑ and ↓ electrons

ECPs Effective charge

Exponents of the local component

Coefficients of the local component

Powers of r of the local component

Exponents of the non-local component

Coefficients of the non-local component

Powers of r of the non-local component

Atomic basis set Type : Gaussian or Slater

Cartesian or spherical coordinates

Normalization factors of the shells

Nuclei on which the functions are centered

Angular momenta

Exponents of the primitives

Coefficients of the primitives

One-electron integrals in the AO basis Overlap integrals

Kinetic energy

Potential energy

Local component of the ECP

Non-Local component of the ECP

Core Hamiltonian

Two-electron integrals in the AO basis Array of indices of ERI

Array of values of ERI

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

5 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Molecular orbitals Type : Hartree-Fock, Localized, Natural, . . .

Coefficients

Class : Core, Inactive, Active, Virtual, Deleted, . . .

Symmetry

Occupation number

One-electron integrals in the MO basis Kinetic energy

Potential energy

Local component of the ECP

Non-Local component of the ECP

Core Hamiltonian

Two-electron integrals in the MO basis Array of indices of ERI

Array of values of ERI

3 Design of the library

The design of the library is split in two distinct sections: the front end, and the back end. The front
end is the interface between the users and the library, and the back end is the interface between the
library and the physical storage. The library is designed to decouple as much as possible the front
end from the back end.

License

The library is licensed under the open-source 3-clause BSD license to facilitate its adoption in all
quantum chemistry software, commercial or not.

The front end

From table 1, it appears clearly that the data can be organized in a tree structure, where the root
of the tree is the file, elementary pieces of data are leaves of the tree, and the nodes between the
root and the leaves constitute groups. Hence, the data is organized in groups (the left column of
Table 1), and each group contains the associated data.

Most of the codes of the CoE are written in Fortran, with some scripts in Python. Therefore, the
Application Programming Interface (API) should be such that the functions can be called easily in
Fortran, and such that a Python interface to the library is easy to write. These constraints have lead
us to the choice of implementing the library in C, with interfaces for Fortran and Python.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

6 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

To maximize the portability of the library, the data exposed to the user in the API are reduced
to the subset of elementary C types: 32-/64-bit integers and floats, scalars or arrays. The integer
types defined in <stdint.h> (int64_t and int32_t) are used instead of the native C integer types.
Boolean variables are stored as integers, 1 for true and 0 for false, and complex numbers are
represented as an array of two floats, the real part at address 0 and the imaginary part at address 1.

The library allows the user to create, open or close a file, and check if the file exists. The file
may be opened in read-only mode to protect it from accidental data corruption.

Once the file is open, any kind of data can be read by calling the corresponding function. The
function names for data access obey the following structure:

trexio_<read|write|has>_<group>_<data>

where <data> is the data to access, <group> is the group in which the data belongs, and
<read|write|has> can read, write, or test if the data exists in the file. For example, if a user
wants to read the array of nuclear coordinates, the function trexio_read_nucleus_coord should
be called.

As the different data types are rather limited and the rules to build the function names are
simple, the best strategy is to generate automatically the C code for all these functions from a simple
configuration file, trex.json as:

1 {

2 "metadata": {

3 "code_num" : ["int" , []]

4 , "code" : ["char", ["metadata.code_num" , "128"]]

5 , "author_num" : ["int" , []]

6 , "author" : ["char", ["metadata.author_num", "128"]]

7 , "description_length" : ["int" , []]

8 , "description" : ["char", ["metadata.description_length"]]

9 },

10

11 "electron": {

12 "up_num" : ["int", []]

13 , "dn_num" : ["int", []]

14 },

15

16 "nucleus": {

17 "num" : ["int" , []]

18 , "charge" : ["float", ["nucleus.num"]]

19 , "coord" : ["float", ["nucleus.num", "3"]]

20 , "label" : ["char" , ["nucleus.num", "32"]]

21 , "point_group" : ["char" , ["32"]]

22 },

23

24 "ecp": {

25 "lmax_plus_1" : ["int" , ["nucleus.num"]]

26 , "z_core" : ["int" , ["nucleus.num"]]

27 , "local_n" : ["int" , ["nucleus.num"]]

28 , "local_num_n_max" : ["int" , []]

29 , "local_exponent" : ["float", ["nucleus.num", "ecp.local_num_n_max"]]

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

7 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

30 , "local_coef" : ["float", ["nucleus.num", "ecp.local_num_n_max"]]

31 , "local_power" : ["int" , ["nucleus.num", "ecp.local_num_n_max"]]

32 , "non_local_n" : ["int" , ["nucleus.num"]]

33 , "non_local_num_n_max": ["int" , []]

34 , "non_local_exponent" : ["float", ["nucleus.num", "ecp.non_local_num_n_max"]]

35 , "non_local_coef" : ["float", ["nucleus.num", "ecp.non_local_num_n_max"]]

36 , "non_local_power" : ["int" , ["nucleus.num", "ecp.non_local_num_n_max"]]

37 },

38

39 "basis" : {

40 "type" : ["char" , ["32"]]

41 , "shell_num" : ["int" , []]

42 , "shell_factor" : ["float", ["basis.shell_num"]]

43 , "shell_center" : ["int" , ["basis.shell_num"]]

44 , "shell_ang_mom" : ["int" , ["basis.shell_num"]]

45 , "shell_prim_num" : ["int" , ["basis.shell_num"]]

46 , "prim_index" : ["int" , ["basis.shell_num"]]

47 , "prim_num" : ["int" , []]

48 , "exponent" : ["float", ["basis.prim_num"]]

49 , "coefficient" : ["float", ["basis.prim_num"]]

50 },

51

52 "ao" : {

53 "num" : ["int" , []]

54 , "cartesian" : ["int" , []]

55 , "shell" : ["int" , ["ao.num"]]

56 , "normalization" : ["float", ["ao.num"]]

57 },

58

59 "basis_1e_int" : {

60 "overlap" : ["float", ["ao.num", "ao.num"]]

61 , "kinetic" : ["float", ["ao.num", "ao.num"]]

62 , "potential" : ["float", ["ao.num", "ao.num"]]

63 , "ecp_local" : ["float", ["ao.num", "ao.num"]]

64 , "ecp_non_local" : ["float", ["ao.num", "ao.num"]]

65 , "core_hamiltonian" : ["float", ["ao.num", "ao.num"]]

66 },

67

68 "basis_2e_int" : {

69 "eri" : ["float sparse", ["ao.num", "ao.num", "ao.num", "ao.num"]]

70 },

71

72 "mo" : {

73 "type" : ["char" , ["32"]]

74 , "num" : ["int" , []]

75 , "coef" : ["float", ["basis.shell_num", "mo.num"]]

76 , "class" : ["char" , ["mo.num", "32"]]

77 , "symmetry" : ["char" , ["mo.num", "32"]]

78 , "occupation" : ["float", ["mo.num"]]

79 },

80

81 "mo_1e_int" : {

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

8 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

82 "kinetic" : ["float", ["mo.num", "mo.num"]]

83 , "potential" : ["float", ["mo.num", "mo.num"]]

84 , "ecp_local" : ["float", ["mo.num", "mo.num"]]

85 , "ecp_non_local" : ["float", ["mo.num", "mo.num"]]

86 , "core_hamiltonian" : ["float", ["mo.num", "mo.num"]]

87 },

88

89 "mo_2e_int" : {

90 "eri" : ["float sparse", ["mo.num", "mo.num", "mo.num", "mo.num"]]

91 },

92

93 "rdm" : {

94 "one_e" : ["float", ["mo.num", "mo.num"]]

95 , "two_e" : ["float sparse", ["mo.num", "mo.num", "mo.num", "mo.num"]]

96 }

97 }

Such a simple file will be extremely valuable for the evolution of the library when some additional
features will need to be implemented, such as the Configuration Interaction (CI) wave function, the
Jastrow factor, data for periodic systems (cell tensor), range-separated ERIs, etc.

Conventions

To facilitate the understanding of the users, we have defined strong conventions. Indeed, using as
few exceptions as possible makes it easier for users to guess the answers to their questions.

• All the data are stored in atomic units.

• Preprocessor constants are expressed in upper case.

• Pointers are always set to NULL when not attached to a memory block.

• The singular is always used for the names of the variables.

• The num suffix denotes counting. For example apple num is the number of apples.

• All the functions will be provided with two versions. One with a 32-bit representation of integers,
and one with a 64-bit. This will reduce the risk of integer overflows.

• The first argument of the functions is always the file handle.

• The functions always return an exit code.

• Reading functions pass the argument in which to read the data by address, similarly to scanf.

• Writing functions pass the argument to be written by value, similarly to printf.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

9 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

Error handling

In case of error, the user of the library should be informed that the called function did not succeed in
performing the requested work. The library should never make the calling program crash, nor decide
to halt the execution. It should not even take the decision to print something on the terminal. The
choice of how to handle the errors should be left completely to the code calling the function.

An effort is made in checking the validity of all the arguments of the functions to ensure that the
preconditions are fulfilled. If some unexpected behavior happens, the function returns with an error
code, which can be translated to a string using a function call.

Safety

Multiple precautions need to be taken to prevent users from accidentally corrupting files. For the
alpha release, we have chosen the simple model in which when the file is opened by a process, the
file is locked until it is closed. This ensures that the data previously read from the file has not been
changed by another process, so it is easy to ensure that the data read from the file and cached in
memory is consistent with the data stored in the file.

A second level of safety needs to be added for multi-threaded environments, to avoid situations
where multiple threads write the same data at the same time, which could lead to inconsistent data
being written. All the provided functions are thread-safe.

Prototype library

Before implementing the actual TREX Input/Output (TREXIO) library, a prototype was created
using the design exposed in the previous section. This library is available in a repository under the
TREX GitHub organization1. This prototype uses the Easy Fortran Input/Output (EZFIO) library
generator[3] as a back end to generate the stored files. This enabled us to concentrate on the front
end, which is the direct interface to the users, while being able to use it to see if it can be conveniently
used in practice.

The back end

We would like the data to be organized in the file, reproducing the hierarchy of the data. Using
a binary format is desirable for the performance of large data sets, such as integrals or density
matrices, but binary files are not necessarily compatible between different architectures because of
the endianness of the binary representation. Hence, if we store data in binary format, the back end
should make the files machine-independent by handling properly the endianness.

Finally, as the produced files are likely to be archived on open data repositories, it is desirable to
have the possibility to compress them efficiently.

The EZFIO library, already used in QMC=Chem and Quantum Package, fulfills some of the
requirements (automatically generated library and hierarchical storage). But this library is not well
adapted to High Performance Computing (HPC) systems. EZFIO generates a large number of small

1https://github.com/trex-coe/trex-io-prototype

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

10 of 20

https://github.com/trex-coe/trex-io-prototype

D2.1– Report on a first alpha release of the I/O library, ready for WP4

files, and large supercomputers use distributed file systems such as Lustre[4], General Parallel File
System (GPFS)[5] or BeeGFS[6] which all suffer from a huge performance impact when multiple files
are used. In addition, EZFIO is intended to be easy to use, but Input/Output (I/O) performance is
not the main objective of this library.

The Hierarchical Data Format (HDF5) file format and library[7] address properly all the required
aspects. The first version of HDF5 was released in 1998, so this file format has been present in the
HPC landscape for a long time. The data can be stored in a hierarchy similar to a file system, exactly
in the way we described in table 1. The library also provides compression possibilities, and is reputed
for its high performance read/write operations.

Although HDF5 fulfills all our needs, we need to be careful about some important side effects of
using such a library. First, as data are written in a binary format, it is possible to corrupt a file if
the program crashes during a write operation. Secondly, HDF5 is a complex piece of software, which
might not be installed (or even difficult to install) on some systems. If our library only provides an
HDF5 back end, the users unable to install HDF5 will not be able to use our library, and therefore
will not be able to use any of the TREX codes. Hence, we need to protect our users from these
situations.

We also provide a text-file back end. This back end is by far less efficient, but is has the advantage
that it requires no dependencies. We also provide a tool to convert files from the HDF5 format to
the text format, to ensure that if some large data have been prepared in the HDF5 format, it can be
converted to the text file format for following calculations.

The separation of the front end and the back end makes it easy to implement new back ends in
the future.

4 Illustrative example of usage of the library

We propose here to show as an example a Fortran program that reads x, y, z coordinates of a molecule
and a basis set from a file obtained from the Basis Set Exchange (BSE) web site,[8] and stores it
into a file using the TREXIO library.

1 subroutine fail_if_error(file,info)

2 use trexio

3 implicit none

4 integer*8, intent(in) :: file

5 integer, intent(in) :: info

6 character*(*), intent(out) :: message

7

8 if (info /= TREXIO_SUCCESS) then

9 call trexio_strerror(file, info, message)

10 print *, info, message

11 stop -1

12 end if

13 end subroutine check_success

14

15 !--

16

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

11 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

17 subroutine read_xyz(trex_file, xyz_filename)

18 use trexio

19 implicit none

20 integer*8, intent(in) :: trex_file

21 character*(128), intent(in) :: xyz_filename

22 integer*8 :: nucl_num ! Number of nuclei

23 character*(256) :: title ! Title of the file

24 character*(32), allocatable :: nucl_label(:) ! Atom labels

25 real*8, allocatable :: nucl_charge(:) ! Nuclear charges

26 real*8, allocatable :: nucl_coord(:,:) ! Nuclear coordinates

27 integer*8 :: i

28 integer :: j

29 integer :: info

30 double precision, parameter :: a0 = 0.52917721067d0

31

32 open(unit=10,file=xyz_filename)

33

34 read(10,*) nucl_num

35

36 allocate(nucl_label(nucl_num), &

37 nucl_charge(nucl_num), &

38 nucl_coord(3,nucl_num))

39

40 read(10,'(A)') title

41

42 do i=1,nucl_num

43 read(10,*) nucl_label(i), nucl_coord(1:3,i)

44

45 info = trexio_element_number_of_symbol(trim(nucl_label(i)), j)

46 call check_success(info, 'Unable to convert symbol to number')

47

48 nucl_charge(i) = dble(j)

49 end do

50

51 close(10)

52

53 ! Convert into atomic units

54 nucl_coord = nucl_coord / a0

55

56 info = trexio_write_nucleus_num(trex_file,nucl_num)

57 call check_success(info, 'Unable to write number of nuclei')

58

59 info = trexio_write_nucleus_coord(trex_file,nucl_coord)

60 call check_success(info, 'Unable to write nuclear coordinates')

61

62 info = trexio_write_nucleus_charge(trex_file,nucl_charge)

63 call check_success(info, 'Unable to write nuclear charges')

64

65 info = trexio_write_nucleus_label(trex_file,nucl_label)

66 call check_success(info, 'Unable to write nuclear labels')

67

68 beta_num = int(sum(nucl_charge(:)))/2

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

12 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

69 alpha_num = int(sum(nucl_charge(:))) - beta_num

70

71 info = trexio_write_electron_up_num(trex_file,alpha_num)

72 call check_success(info, 'Unable to write up electrons')

73

74 info = trexio_write_electron_dn_num(trex_file,beta_num)

75 call check_success(info, 'Unable to write dn electrons')

76

77 end subroutine read_xyz

78

79 !--

80

81 subroutine read_basis(trex_file, basis_filename)

82 use trexio

83 implicit none

84 integer*8, intent(in) :: trex_file

85 character*(128), intent(in) :: basis_filename

86

87 integer*8 :: nucl_num ! Number of nuclei

88 character*(32), allocatable :: nucl_label(:) ! Atom labels

89 integer*8 :: shell_num, prim_num

90 integer*8, allocatable :: shell_center(:)

91 integer , allocatable :: shell_ang_mom(:)

92 integer*8, allocatable :: shell_prim_num(:)

93 integer*8, allocatable :: prim_index(:)

94 double precision, allocatable :: shell_factor(:)

95 double precision, allocatable :: exponent(:)

96 double precision, allocatable :: coefficient(:)

97 character*(32) :: label

98 character*(80) :: buffer

99 integer :: i,j,k,n_shell,n_prim

100 integer :: info

101

102 open(unit=10, file=basis_filename)

103

104 info = trexio_read_nucleus_num(trex_file, nucl_num)

105 call check_success(info, 'Unable to read number of nuclei')

106

107 allocate(nucl_label(nucl_num))

108 info = trexio_read_nucleus_label(trex_file, nucl_label)

109 call check_success(info, 'Unable to read nuclear label')

110

111 shell_num = 0

112 prim_num = 0

113 ! Find dimensioning variables

114 do i=1,nucl_num

115 info = trexio_element_name_of_symbol(nucl_label(i), label)

116 call check_success(info, 'Unable to get name of label')

117

118 ! Find element

119 rewind(10)

120 do

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

13 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

121 read(10,*, iostat=j) buffer

122 if (j < 0) exit

123 if (trim(buffer) == trim(label)) then

124 j=0

125 exit

126 end if

127 end do

128 if (j < 0) exit

129

130 ! Read shell

131 do

132 read(10,*,iostat=k) buffer, j

133 if (k /= 0) exit

134 shell_num = shell_num + 1

135 prim_num = prim_num + j

136 do k=1,j

137 read(10,*)

138 end do

139 end do

140

141 end do

142

143 buffer = 'Gaussian'

144 info = trexio_write_basis_type(trex_file, buffer)

145 call check_success(info, 'Unable to write basis type')

146

147 info = trexio_write_basis_shell_num(trex_file, shell_num)

148 call check_success(info, 'Unable to write basis shell_num')

149

150 info = trexio_write_basis_prim_num(trex_file, prim_num)

151 call check_success(info, 'Unable to write basis prim_num')

152

153 allocate(shell_center(shell_num), &

154 shell_ang_mom(shell_num), &

155 shell_prim_num(shell_num), &

156 prim_index(shell_num), &

157 shell_factor(shell_num), &

158 exponent(prim_num), &

159 coefficient(prim_num))

160

161 shell_num = 1

162 prim_num = 1

163 ! Read data

164 do i=1,nucl_num

165 info = trexio_element_name_of_symbol(nucl_label(i), label)

166 call check_success(info, 'Unable to get name of label')

167

168 ! Find element

169 rewind(10)

170 do

171 read(10,*, iostat=j) buffer

172 if (j < 0) exit

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

14 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

173 if (trim(buffer) == trim(label)) then

174 j=0

175 exit

176 end if

177 end do

178

179 ! Read shell

180 do

181 read(10,*,iostat=j) label, k

182 if (j /= 0) exit

183 select case (label(1:1))

184 case ('S')

185 shell_ang_mom(shell_num) = 0

186 case ('P')

187 shell_ang_mom(shell_num) = 1

188 case ('D')

189 shell_ang_mom(shell_num) = 2

190 case ('F')

191 shell_ang_mom(shell_num) = 3

192 case ('G')

193 shell_ang_mom(shell_num) = 4

194 case ('H')

195 shell_ang_mom(shell_num) = 5

196 case ('I')

197 shell_ang_mom(shell_num) = 6

198 case default

199 stop 'Too high angular momentum'

200 end select

201 shell_prim_num(shell_num) = k

202 shell_center(shell_num) = i

203 prim_index(shell_num) = prim_num

204 do j=1,shell_prim_num(shell_num)

205 read(10,*) buffer, exponent(prim_num), coefficient(prim_num)

206 prim_num = prim_num + 1

207 end do

208 shell_num = shell_num + 1

209 end do

210

211 end do

212

213 close(10)

214

215 info = trexio_write_basis_shell_center(trex_file, shell_center)

216 call check_success(info, 'Unable to write basis shell_center')

217

218 info = trexio_write_basis_shell_ang_mom(trex_file, shell_ang_mom)

219 call check_success(info, 'Unable to write basis shell_ang_mom')

220

221 info = trexio_write_basis_shell_prim_num(trex_file, shell_prim_num)

222 call check_success(info, 'Unable to write basis shell_prim_num')

223

224 info = trexio_write_basis_prim_index(trex_file, prim_index)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

15 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

225 call check_success(info, 'Unable to write basis prim_index')

226

227 info = trexio_write_basis_exponent(trex_file, exponent)

228 call check_success(info, 'Unable to write basis exponent')

229

230 info = trexio_write_basis_coefficient(trex_file, coefficient)

231 call check_success(info, 'Unable to write basis coefficient')

232

233 return

234

235 10 continue

236 stop 'Unable to find element in basis write file'

237 end subroutine read_basis

238

239 !--

240

241 program write_example

242 use trexio

243 implicit none

244

245 character*(128) :: xyz_filename ! Name of the xyz file

246 character*(128) :: basis_filename ! Name of the basis file

247 integer*8 :: trex_file ! Handle for the TREX file

248 integer :: i

249 integer :: info

250 character*(*), parameter :: trex_filename = 'trex_file'

251

252 ! Get the xyz file name from the command line and user name

253 ! ===

254

255 i = command_argument_count()

256 if (i /= 2) then

257 print *, 'Expected:'

258 print *, ' - xyz file as 1st argument'

259 print *, ' - basis file as 2nd argument'

260 print *, './fortran_write cyanoformaldehyde.xyz cc-pvtz'

261 stop -1

262 end if

263

264 call get_command_argument(1,xyz_filename)

265 call get_command_argument(2,basis_filename)

266

267 ! Open the TREX file

268 ! ------------------

269

270 trex_file = trexio_open(trex_filename,'w', TREXIO_HDF5)

271

272 ! Write the data

273 ! --------------

274

275 call read_xyz(trex_file, xyz_filename)

276 call read_basis(trex_file, basis_filename)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

16 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

277

278 ! Close the file

279 ! --------------

280

281 info = trexio_close(trex_file)

282 call check_success(info, 'Unable to close file')

283

284 print *, 'Wrote file '//trim(trex_filename)

285

286 end program write_example

To read back the data and print it, we can use the following program:

1 subroutine check_success(info,message)

2 use trexio

3 implicit none

4 integer, intent(in) :: info

5 character*(*) :: message

6

7 if (info /= TREXIO_SUCCESS) then

8 print *, info, message

9 stop -1

10 end if

11 end subroutine check_success

12

13 !--

14

15 subroutine read_electrons(trex_file, alpha_num, beta_num)

16 use trexio

17 implicit none

18 integer*8, intent(in) :: trex_file

19 integer*8, intent(out) :: alpha_num, beta_num

20 integer :: info

21

22 info = trexio_read_electron_up_num(trex_file,alpha_num)

23 call check_success(info, 'Unable to read up electrons')

24

25 info = trexio_read_electron_dn_num(trex_file,beta_num)

26 call check_success(info, 'Unable to read dn electrons')

27 end subroutine read_electrons

28

29 !--

30

31 subroutine read_nuclei(trex_file, nucl_num, nucl_coord, nucl_charge, nucl_label)

32 use trexio

33 implicit none

34 integer*8, intent(in) :: trex_file

35 integer*8, intent(in) :: nucl_num

36 double precision, intent(out) :: nucl_coord(3,nucl_num)

37 double precision, intent(out) :: nucl_charge(nucl_num)

38 character*(32), intent(out) :: nucl_label(nucl_num)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

17 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

39

40 integer :: info

41

42 info = trexio_read_nucleus_coord(trex_file,nucl_coord)

43 call check_success(info, 'Unable to read nuclear coordinates')

44

45 info = trexio_read_nucleus_charge(trex_file,nucl_charge)

46 call check_success(info, 'Unable to read nuclear charges')

47

48 info = trexio_read_nucleus_label(trex_file,nucl_label)

49 call check_success(info, 'Unable to read nuclear labels')

50

51 end subroutine read_nuclei

52

53 !--

54

55 subroutine read_basis(trex_file, shell_num, prim_num, center, ang_mom, &

56 shell_prim_num, prim_index, expo, coef)

57 use trexio

58 implicit none

59 integer*8, intent(in) :: trex_file

60 integer*8, intent(in) :: shell_num, prim_num

61 integer*8, intent(out) :: center(shell_num), shell_prim_num(shell_num)

62 integer , intent(out) :: ang_mom(shell_num)

63 integer*8, intent(out) :: prim_index(shell_num)

64 double precision, intent(out) :: expo(prim_num)

65 double precision, intent(out) :: coef(prim_num)

66

67 integer :: info

68

69 info = trexio_read_basis_shell_center(trex_file, center)

70 call check_success(info, 'Unable to read basis shell_center')

71

72 info = trexio_read_basis_shell_ang_mom(trex_file, ang_mom)

73 call check_success(info, 'Unable to read basis shell_ang_mom')

74

75 info = trexio_read_basis_shell_prim_num(trex_file, shell_prim_num)

76 call check_success(info, 'Unable to read basis shell_prim_num')

77

78 info = trexio_read_basis_prim_index(trex_file, prim_index)

79 call check_success(info, 'Unable to read basis prim_index')

80

81 info = trexio_read_basis_exponent(trex_file, expo)

82 call check_success(info, 'Unable to read basis exponent')

83

84 info = trexio_read_basis_coefficient(trex_file, coef)

85 call check_success(info, 'Unable to read basis coefficient')

86

87 end subroutine read_basis

88

89 !--

90

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

18 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

91 program read_example

92 use trexio

93 implicit none

94 integer*8 :: nucl_num ! Number of nuclei

95 character*(32), allocatable :: nucl_label(:) ! Atom labels

96 real*8, allocatable :: nucl_charge(:) ! Nuclear charges

97 real*8, allocatable :: nucl_coord(:,:) ! Nuclear coordinates

98 integer*8 :: alpha_num ! Number of alpha electrons

99 integer*8 :: beta_num ! Number of beta electrons

100

101 integer*8 :: trex_file ! Handle for the TREX file

102 integer :: i,j,k

103 integer :: info

104 character*(*), parameter :: trex_filename = 'trex_file'

105 double precision, parameter :: a0 = 0.52917721067d0

106

107 integer*8 :: shell_num, prim_num

108 integer*8, allocatable :: shell_center(:)

109 integer , allocatable :: shell_ang_mom(:)

110 integer*8, allocatable :: shell_prim_num(:)

111 integer*8, allocatable :: prim_index(:)

112 double precision, allocatable :: shell_factor(:)

113 double precision, allocatable :: exponent(:)

114 double precision, allocatable :: coefficient(:)

115 character*(32) :: bastype

116 character*(32) :: label

117 character, parameter :: ang_mom(0:6) = (/ 'S', 'P', 'D', 'F', 'G', 'H', 'I' /)

118

119 ! Read the data from the TREX file

120 ! ================================

121

122 ! Open the file

123 ! -------------

124

125 trex_file = trexio_open(trex_filename,'r',TREXIO_HDF5)

126

127 ! Read the data

128 ! -------------

129

130 call read_electrons(trex_file,alpha_num,beta_num)

131 print *, 'Electrons: ', alpha_num, ' up, ', beta_num, ' down'

132

133

134 info = trexio_read_nucleus_num(trex_file,nucl_num)

135 call check_success(info, 'Unable to read number of nuclei')

136

137 allocate(nucl_coord(3,nucl_num), &

138 nucl_charge(nucl_num), &

139 nucl_label(nucl_num))

140

141 call read_nuclei(trex_file, nucl_num, nucl_coord, nucl_charge, nucl_label)

142

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

19 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

143 do i=1,nucl_num

144 print '(A4, 2X, F4.1,3(3X,F12.8))', nucl_label(i), nucl_charge(i), nucl_coord(1:3,i)

145 end do

146

147

148 bastype=''

149 info = trexio_read_basis_type(trex_file, bastype)

150 call check_success(info, 'Unable to read basis type')

151 print *, 'Basis type: ', trim(bastype)

152

153 info = trexio_read_basis_shell_num(trex_file, shell_num)

154 call check_success(info, 'Unable to read basis shell_num')

155

156 info = trexio_read_basis_prim_num(trex_file, prim_num)

157 call check_success(info, 'Unable to read basis prim_num')

158

159 allocate(shell_center(shell_num), &

160 shell_ang_mom(shell_num), &

161 shell_prim_num(shell_num), &

162 prim_index(shell_num), &

163 shell_factor(shell_num), &

164 exponent(prim_num), &

165 coefficient(prim_num))

166

167 call read_basis(trex_file, shell_num, prim_num, shell_center, &

168 shell_ang_mom, shell_prim_num, prim_index, exponent, coefficient)

169

170 k=0

171 do i=1,shell_num

172 if (shell_center(i) /= k) then

173 k = shell_center(i)

174 info = trexio_element_name_of_symbol(trim(nucl_label(k)),label)

175 call check_success(info, 'Unable to read name of element :')

176 print *, ''

177 print *, trim(label)

178 end if

179 print *, ang_mom(shell_ang_mom(i)), shell_prim_num(i)

180 do j=1,shell_prim_num(i)

181 print '(I3,X,E16.8,3X,E16.8)', j, &

182 exponent(prim_index(i)+j-1) , coefficient(prim_index(i)+j-1)

183 end do

184 end do

185

186

187 ! Close the file

188 ! --------------

189

190 info = trexio_close(trex_file)

191 call check_success(info, 'Unable to close file')

192

193 end program read_example

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

20 of 20

D2.1– Report on a first alpha release of the I/O library, ready for WP4

References

[1] E. F. Valeev, “Libint: A library for the evaluation of molecular integrals of many-body operators
over gaussian functions,” http://libint.valeyev.net/, 2020, version 2.7.0-beta.6.

[2] M. Burkatzki, C. Filippi, and M. Dolg, “Energy-consistent small-core pseudopotentials for 3d-
transition metals adapted to quantum Monte Carlo calculations,” J. Chem. Phys., vol. 129,
no. 16, p. 164115, Oct 2008.

[3] “The Easy Fortran Input/Output (EZFIO) library generator,” Mar 2021, [Online; accessed 5.
Mar. 2021]. [Online]. Available: https://gitlab.com/scemama/EZFIO

[4] “Lustre file system,” Mar 2021, [Online; accessed 5. Mar. 2021]. [Online]. Available:
https://www.lustre.org

[5] “GPFS (General Parallel File System) - IBM,” Mar 2021, [Online; accessed 5. Mar. 2021].
[Online]. Available: https://researcher.watson.ibm.com/researcher/view group.php?id=4840

[6] “BeeGFS Documentation v7.2.1 — BeeGFS Documentation v7.2.1,” Feb 2021, [Online;
accessed 5. Mar. 2021]. [Online]. Available: https://doc.beegfs.io/latest/index.html

[7] The HDF Group. (2000-2010) Hierarchical data format version 5. [Online]. Available:
http://www.hdfgroup.org/HDF5

[8] “Basis Set Exchange (BSE),” Mar 2021, [Online; accessed 5. Mar. 2021]. [Online]. Available:
https://www.basissetexchange.org

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

I of I

https://gitlab.com/scemama/EZFIO
https://www.lustre.org
https://researcher.watson.ibm.com/researcher/view_group.php?id=4840
https://doc.beegfs.io/latest/index.html
http://www.hdfgroup.org/HDF5
https://www.basissetexchange.org

	Document Information
	Disclaimer
	Versioning
	Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Content of the files
	Metadata
	Nuclei
	Electrons
	Atomic Basis set
	Atomic Orbitals
	Effective core potentials
	One-electron integrals in the AO basis set
	Two-electron integrals in the AO basis set
	One-electron integrals in the MO basis set
	Two-electron integrals in the MO basis set
	Summary

	3 Design of the library
	License
	The front end
	Conventions
	Error handling
	Safety
	Prototype library
	The back end

	4 Illustrative example of usage of the library
	References

