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Abstract

Inspired by a work from P. Kumam, N.V. Dung and K. Sitytithakerngkiet [Filomat 29 (2015), 1549–1556],
we investigate the problem of obtaining fixed point results for generalizations of Ćirić’s contraction in the
realm of quasi-metric spaces.
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1. Introduction and preliminaries

Since Ćirić obtained in [4, Theorem 1] his famous fixed point theorem in terms of the so-called quasi-
contractions, many authors have extended and improved this theorem in several directions and contexts (see
e.g. [1, 2, 3, 8, 9, 10, 13, 16, 17, 19] and the references therein). Here, we will focus our attention on the
generalizations of Ćirić’s theorem for quasi-metric spaces. This approach is not new; in fact, old contributions
in this setting can be found in [8, 9, 19]. However, more recent investigations, mainly those conducted in
[13, 17], have encouraged us to carry out the study presented in this note.

Let us recall that although the notion of a quasi-metric (for the T1 case) was introduced by Wilson [23]
in 1931, the systematized study of the topological properties of these spaces and their relations with other
topological structures begins with the article [11] by Kelly. Since then, many authors have contributed to
the development of the theory of quasi-metric spaces (see e.g. [6, 14, 5] and the references therein). More-
over, several authors have applied (non-T1) quasi-metric spaces and some related structures to successfully
modelling, among others, various fundamental procedures that appear in theoretical computer science (see
e.g. [7, 15, 20, 21, 22]).
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In the sequel, by R,R+,N and ω we will denote the sets of real numbers, the set of non-negative real
numbers, the set of positive integer numbers and the set of non-negative integer numbers, respectively.

A quasi-metric on a set X is a function d : X × X → R+ verifying the following conditions for all
x, y, z ∈ X:

(qm1) d(x, y) = d(y, x) = 0⇔ x = y;

(qm2) d(x, z) ≤ d(x, y) + d(y, z).

If the quasi-metric d satisfies
(qm1’) d(x, y) = 0⇔ x = y;

for all x, y ∈ X, we say that d is a T1 quasi-metric on X.
A (T1) quasi-metric space is a pair (X, d) where X is a set and d is a (T1) quasi-metric on X.
If (X, d) is a quasi-metric space, the function ds : X ×X → R+ given by ds(x, y) = max{d(x, y), d(y, x)}

for all x, y ∈ X, is a metric on X.
Let (X, d) be a quasi-metric space. For each x ∈ X and ε > 0 put Bd(x, ε) = {y ∈ X : d(x, y) < ε}.

Then, the family {Bd(x, ε) : x ∈ X, ε > 0} is a base for a T0 topology τd on X. If d is T1, then τd is T1. We
say that (X, d) is a Hausdorff quasi-metric space if τd is a Hausdorff (or T2) topology.

It is interesting to underline that a sequence (xn)n∈ω in X is τd-convergent to x ∈ X if and only if
d(x, xn)→ 0 as n→∞.

In our context, a quasi-metric space (X, d) is complete provided every Cauchy sequence in the metric
space (X, ds) is τd-convergent.

We finish this section by reminding a fundamental example of a complete quasi-metric space.

Example 1.1. Let d be the quasi-metric on R given by d(x, y) = max{x−y, 0} for all x, y ∈ R. Then (R, d)
is a complete (non-T1) quasi-metric space (observe that ds is the Euclidean metric on R).

2. The results

As we indicated in Section 1, Ćirić proved, in Theorem 1 of [4], a celebrated fixed point theorem which
we state as follows:

Theorem 2.1. ([4]) Let T be a self map of a complete metric space (X, d). If there is a constant α ∈ (0, 1)
such that

d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (C)

for all x, y ∈ X, then T has a unique point z ∈ X and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.

In the old articles [8, 9, 19] it was explored the problem of extending Ćirić’s theorem to quasi-metric
spaces. The absence of symmetry in the quasi-metric framework makes it difficult to obtain a suitable
contraction condition that coincides with condition (C) when we have a metric space. Thus, in an initial
attempt it seems reasonable to repeat verbatim condition (C). However, the following easy example shows
that the value d(x, y) is not an appropriate candidate to appear in a suitable contraction condition of type
(C).

Example 2.2. Let d be the quasi-metric on N given by d(n, n) = 0 for all n ∈ N and d(n,m) = 1/m
otherwise. Clearly (N, d) is a complete T1 quasi-metric space (observe that the non-eventually constant
Cauchy sequences are τd-convergent to any n ∈ N).

Now let T be the self map of N defined as Tn = 2n for all n ∈ N. Then, for n 6= m, we get d(Tn, Tm) =
1/2m = d(n,m)/2. However T is free of fixed points.
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In addition, it was presented in [19] an example of a self map T of a compact Hausdorff quasi-metric
space (X, d) satisfying d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx)}, for all x, y ∈ X, with α = 9/10, and such that
T has no fixed points.

Related to the preceding examples, Jachymski proved in [9] that a self map T of a complete T1 quasi-
metric space (X, d) has a unique fixed point provided there is a constant α ∈ (0, 1) satisfying the following
contraction condition for all x, y ∈ X:

d(Tx, Ty) ≤ αmax{d(y, x), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (C ′)

On the other hand, Kumam, Dung and Sitytithakerngkiet obtained in [13, Theorem 3.1] the following
nice improvement of Ćirić’s theorem.

Theorem 2.3. ([13]) Let T be a self map of a complete metric space (X, d). If there is a constant α ∈ (0, 1)
such that

d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(Tx, T 2x), d(x, T 2y), d(T 2x, Ty)}, (KDS)

for all x, y ∈ X, then T has a unique point z ∈ X and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.

In order to obtain a suitable quasi-metric generalization of Theorem 2.3 we change the values d(x, y) and
d(Ty, T 2x) with d(y, x) and d(T 2x, Ty), respectively, in condition (KDS). In fact, we shall consider the
next more general contraction condition, where α ∈ (0, 1):

d(Tx, Ty) ≤ αmax{d(y, x), ds(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
ds(x, T 2x), ds(Tx, T 2x), d(x, T 2y), d(T 2x, Ty)}. (KDS′)

In the sequel, by a (KDS′)-contraction on a quasi-metric space (X, d) we mean a self map T of X
satisfying condition (KDS′) for all x, y ∈ X.

If T satisfies

d(Tx, Ty) ≤ αmax{d(y, x), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(Tx, T 2x), d(x, T 2y), d(T 2x, Ty)}, (KDS′′)

for all x, y ∈ X, we say that T is a (KDS′′)-contraction on (X, d).

It is evident that every (KDS′′)-contraction is a (KDS′)-contraction. In Example 2.7 we present a
(KDS′)-contraction which is not a (KDS′′)-contraction.

We now get the following results.

Lemma 2.4. Let T be a (KDS′)-contraction on quasi-metric space (X, d). Then, the sequence (Tnx0)n∈ω
is a Cauchy sequence for all x0 ∈ X.

Proof. It is almost obvious that if T satisfies condition (KDS′), then it satisfies condition (KDS) on the
metric space (X, ds). Fix x0 ∈ X. The first part of the proof of [13, Theorem 3.1] shows that (Tnx0)n∈ω is a
Cauchy sequence in (X, ds), so it is a Cauchy sequence in (X, d).

Theorem 2.5. Let T be a (KDS′)-contraction on a complete quasi-metric space (X, d). Then, there is z ∈ X
such that d(z, Tz) = 0, and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.
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Proof. Let α ∈ (0, 1) for which T condition (KDS′) holds. Fix x0 ∈ X. For each n ∈ ω put xn := Tnx0. By
Lemma 2.4, (xn)n∈ω is a Cauchy sequence, so there is z ∈ X such that d(z, xn)→ 0 as n→∞.

We shall show that d(xn, T z)→ 0 as n→∞.
Choose an arbitrary ε > 0. Then, there is nε ∈ N such that d(z, xn) < r and ds(xn, xm) < r for all

n,m ≥ nε, where r = (1− α)ε/2α.
By mathematical induction we shall prove that

d(xn+k, T z) < rα(
k∑

j=1

αj−1) + αk−1d(xn, T z), (2.1)

for all n ≥ nε and k ∈ N.
Indeed, by the contraction condition (KDS′), for each n ≥ nε we get

d(xn+1, T z) < αmax{r, d(z, Tz), d(xn, T z), d(xn+2, T z)}. (2.2)

From the triangle inequality it follows

d(z, Tz) < r + d(xn, T z) and d(xn+2, T z) < r + d(xn, T z), (2.3)

for all n ≥ nε.
Combining (2.2) and (2.3) we obtain

d(xn+1, T z) < α(r + d(xn, T z)), (2.4)

for all n ≥ nε.
Since, by (2.2), d(xn+2, T z) < α(r + d(xn+1, T z)) we deduce

d(xn+2, T z) < rα(1 + α) + αd(xn, T z).

Now assume that d(xn+k, T z) < rα(
∑k

j=1 α
j−1) + αk−1d(xn, T z), with n ≥ nε and k ∈ N.

Then, by applying (2.4), we obtain

d(xn+k+1, T z) < α(r + d(xn+k, T z)) < rα(

k+1∑
j=1

αj−1) + αkd(xn, T z),

and thus the inequality (2.1) remains proved.

Choose k0 such that αk0−1d(xnε , T z) < ε/2. For each n > nε + k0 there is k ∈ N such that n = nε + k,
so k > k0. Hence, by applying (2.1), we deduce

d(xn, T z) < rα
1

1− α
+ αk−1d(xnε , T z) <

ε

2
+
ε

2
,

for all n > nε + k0.

Therefore d(Tnx0, z)→ 0 as n→∞. Since d(z, Tnx0)→ 0 as n→∞, we conclude that d(z, Tz) = 0.

Corollary 2.6. Let T be a (KDS′′)-contraction on a complete quasi-metric space (X, d). Then, there is
z ∈ X such that d(z, Tz) = 0, and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.

The next modification of [13, Example 2.5] provides an instance where we can apply Theorem 2.5 but
not Corollary 2.6.
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Example 2.7. Let X = {0, 1, 2, 3, 4} and let d : X ×X → R+ defined as:
d(x, x) = 0 for all x ∈ X;

d(0, 1) = d(0, 2) = 0, d(0, 3) = d(0, 4) = 2;

d(1, 0) = d(1, 2) = 1, d(1, 3) = d(1, 4) = 2;

d(2, 0) = d(2, 1) = 1, d(2, 3) = d(2, 4) = 2;

and
d(x, y) = 1 in the rest of cases.
It is routine to check that d is a quasi-metric on X. Notice also that the Cauchy sequences in (X, ds) are

those that are eventually constant, so (X, d) is complete.
Now let T : X → X defined as T0 = T1 = T2 = 0, T3 = 1 and T4 = 2.

We have

• d(Tx, Ty) = d(0, 0) = 0 if x, y ∈ {0, 1, 2}.

• d(Tx, T3) = d(0, 1) = 0 if x ∈ {0, 1, 2}.

• d(Tx, T4) = d(0, 2) = 0 if x ∈ {0, 1, 2}.

• d(T3, Ty) = d(1, 0) = 1 if y ∈ {0, 1, 2}.

Since ds(3, T3) = ds(3, 1) = d(1, 3) = 2, we get

d(T3, T y) =
1

2
ds(3, T3),

whenever y ∈ {1, 2, 3}.

• d(T4, Ty) = d(2, 0) = 1 if y ∈ {0, 1, 2}.

Since ds(4, T4) = ds(4, 2) = d(2, 4) = 2, we get

d(T4, T y) =
1

2
ds(4, T4),

whenever y ∈ {1, 2, 3}.

• d(T3, T4) = d(1, 2) = 1 = ds(3, T3)/2.

• d(T4, T3) = d(2, 1) = 1 = ds(4, T4)/2.

We deduce that, for α = 1/2 and x, y ∈ X,

d(Tx, Ty) ≤ αmax{d(y, x), ds(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
ds(x, T 2x), ds(Tx, T 2x), d(x, T 2y), d(T 2x, Ty)}.

This implies that all conditions of Theorem 2.5 are satisfied, and hence, there is z ∈ X such that
d(z, Tz) = 0. In this case z = 0, and, in addition, it is the unique fixed point of T.

Finally, we shall see that T is not a (KDS′′)-contraction on (X, d). To reach it is suffices to observe that
d(T3, T4) = d(1, 2) = 1, and

max{d(4, 3), d(3, T3), d(4, T4), d(3, T4), d(4, T3), d(3, T 23), d(T3, T 23), d(4, T 23), d(T 23, T4)} = 1.
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As a consequence of the preceding corollary we have that deleting the values d(y, x) and d(T 2x, Ty), it
is possible to show the existence and uniqueness of fixed point. To this end, we introduce the notion of a
(KDS′′′)-contraction as follows:

A self map T of a quasi-metric space (X, d) is called a (KDS′′′)-contraction on (X, d) if there is a
constant α ∈ (0, 1) such that

d(Tx, Ty) ≤ αmax{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(x, T 2x), d(Tx, T 2x), d(y, T 2x)}, (2.5)

for all x, y ∈ X.

Corollary 2.8. Let T be a (KDS′′′)-contraction on a complete quasi-metric space (X, d). Then, there is
z ∈ X such that d(z, Tz) = 0 and Tz is the unique fixed point of T.

Proof. As every (KDS′′′)-contraction is a (KDS′′)-contraction, we deduce from Corollary 2.6 that there is
z ∈ X such that d(z, Tz) = 0.

We first show that d(Tz, T 2z) = 0.

Indeed, by the contraction condition (2.5) we obtain

d(Tz, T 2z) ≤ αmax{d(z, Tz), d(Tz, T 2z), d(z, T 2z), d(Tz, Tz)}.

Since d(z, T 2z) ≤ d(z, Tz) + d(Tz, T 2z) = d(Tz, T 2z), we deduce that

d(Tz, T 2z) ≤ αd(Tz, T 2z).

Hence d(Tz, T 2z) = 0.

Next we show that d(T 2z, Tz) = 0.

Indeed, as d(z, Tz) = d(Tz, T 2z) = 0, we have d(z, T 2z) = 0, and, by (2.5),

d(T 2z, Tz) ≤ αmax{d(T 2z, T 3z), d(Tz, T 3z)}. (2.6)

Since, by (2.5),

d(T 2z, T 3z) ≤ αmax{d(T 2z, T 3z), d(Tz, T 3z)},

and, on the other hand,

d(Tz, T 3z) ≤ d(Tz, T 2z) + d(T 2z, T 3z) = d(T 2z, T 3z),

we get d(T 2z, T 3z) ≤ αd(T 2z, T 3z), which implies d(T 2z, T 3z) = 0. From the triangle inequality it follows
that d(Tz, T 3z) = 0. By (2.6), we deduce that d(T 2z, Tz) = 0. Hence Tz = T 2z.

Finally, suppose that u ∈ X is another fixed point of T . Then

d(u, z) = d(Tu, Tz) ≤ αmax{d(u, z), d(z, u)} ≤ α d(z, u).

Similarly d(z, u) ≤ α d(u, z). Hence d(u, z) ≤ α d(u, z), so d(u, z) = 0.
Analogously we prove that d(z, u) = 0. Consequently u = z.

Remark 2.9. Regarding Corollary 2.8, note that its proof shows that for each z ∈ X such that d(z, Tz) = 0,
one has that Tz is the unique fixed point of T .

In the next corollary we show that under the hypotheses of Theorem 2.5, if (X, d) is a T1 quasi-metric
space, then T has a unique fixed point.

Corollary 2.10. Let T be a self map of a complete T1 quasi-metric space (X, d). If there is a constant
α ∈ (0, 1) such that the contraction condition (KDS′) is satisfied by all x, y ∈ X, then T has a unique fixed
point z ∈ X and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.
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Proof. By Theorem 2.5 there is z ∈ X such that d(z, Tz) = 0 and d(z, Tnx0)→ 0 as n→∞, for all x0 ∈ X.
As (X, d) is T1, we have z = Tz.

Suppose that u ∈ X is another fixed point of T. By (DKS′) we deduce

d(z, u) = d(Tz, Tu) ≤ αmax{d(u, z), d(z, u)} = α ds(u, z),

and

d(u, z) = d(Tu, Tz) ≤ αmax{d(z, u), d(u, z)} = α ds(u, z).

Hence ds(u, z) ≤ αds(u, z), so u = z.

The following is an easy example of a self map T of a complete (non-T1) quasi-metric space (X, d)
fulfilling for all x, y ∈ X and any α ∈ (0, 1), d(Tx, Ty) ≤ αD(x, y), where D(x, y) is any of the seven
values that appear on the right side of the contraction condition (KDS′′′). Hence T has a unique fixed point.
Furthermore, there is z ∈ X such that d(z, Tz) = 0 but z is not a fixed point of T.

Example 2.11. Let X = {0, 1} and let d be the quasi-metric on X given by d(0, 0) = d(1, 1) = d(0, 1) = 0,
and d(1, 0) = 1. Clearly (X, d) is complete. Define T : X → X as T0 = T1 = 1. Then d(T0, T1) =
d(T1, T0) = d(1, 1) = 0. By Corollary 2.8, T has a unique fixed point. In fact, 1 is the unique fixed point of
T. Note also that d(0, T0) = 0 but 0 is not a fixed point of T (compare Theorem 2.5).

The next example illustrates Corollary 2.8.

Example 2.12. Let (R, d) be the complete quasi-metric space of Example 1.1.
Let T : R→ R defined as Tx = 0 for all x ≤ 1, and Tx = x/3 otherwise.
For each x, y ∈ R we have

• If x ≤ 1, d(Tx, Ty) = d(0, 0) = 0.

• If y ≤ 1 < x, d(Tx, Ty) = d(x/3, 0) = x/3. Hence

d(Tx, Ty) =
1

3
d(x, Ty) =

3

8
d(x, T 2x) =

1

2
d(x, Tx).

• If x > y > 1, d(Tx, Ty) = (x− y)/3. Hence

d(Tx, Ty) ≤ 1

3
d(x, Ty) and d(Tx, Ty) <

1

2
d(x, Tx) <

1

2
d(x, T 2x).

• If y > x > 1, d(Tx, Ty) = 0.

Therefore for each x, y ∈ R we get

d(Tx, Ty) ≤ 1

3
d(x, Ty) and d(Tx, Ty) ≤ 1

2
d(x, Tx) ≤ 1

2
d(x, T 2x).

So T more than meets the conditions of Corollary 2.8 (see also Remark 2.13 below).

We conclude the paper with a characterization of complete quasi-metric spaces that involves Theorem
2.5 and Corollary 2.8.

Let us recall (see e.g. [18]) that a self map T of a quasi-metric space (X, d) is said to be
(a) a Kannan contraction on (X, d) if there is a constant α ∈ (0, 1/2) such that

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty))
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for all x, y ∈ X.
(b) a Chatterjea contraction on (X, d) if there is a constant α ∈ (0, 1/2) such that

d(Tx, Ty) ≤ α(d(x, Ty) + d(y, Tx))

for all x, y ∈ X.

Remark 2.13. Although the self map T of Example 2.12 is loosely a (KDS′′′)-contraction, we shall show
that it is not a Kannan contraction. Indeed, let x > 1 and y = 0. Then

d(Tx, Ty) =
x

3
=

1

2
(d(x, Tx) + d(y, Ty)).

Theorem 2.14. For a quasi-metric space (X, d) the following assertions are equivalent:
(A) (X, d) is complete.
(B) For each (KDS′)-contraction T on (X, d) there is z ∈ X such that d(z, Tz) = 0.

(C) Each (KDS′′′)-contraction on (X, d) has a fixed point.
(D) Each Kannan contraction on (X, d) has a fixed point.
(E) Each Chatterjea contraction on (X, d) has a fixed point.

Proof. (A) =⇒ (B) Theorem 2.5.
(B) =⇒ (C) Let T be a (KDS′′′)-contraction on (X, d). Then T is a (KDS′)-contraction on (X, d), so,

by our assumption, there is z ∈ X such that d(z, Tz) = 0. It follows from Corollary 2.8 and Remark 2.9 that
Tz is the unique fixed point of T.

(C) =⇒ (D) and (C) =⇒ (E) are obvious because both a Kannan contraction and a Chatterjea
contraction is a (KDS′′′)-contraction.

(D) =⇒ (A) [18, Theorem 3.5].
(E) =⇒ (A) [18, Theorem 3.5].
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