
.

Linear-Optical Feynman Paths (LOFP): code for strong simulation of Fock-state
boson sampling

W. F. Balthazar1, 2, ∗ and E. F. Galvão1, 3, †

1International Iberian Nanotechnology Laboratory (INL),
Av. Mestre José Veiga, 4715-330 Braga, Portugal.

2Instituto Federal do Rio de Janeiro, 27213-100, Volta Redonda, Rio de Janeiro, Brazil
3Instituto de F́ısica, Universidade Federal Fluminense,

Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, Rio de Janeiro, Brazil
(Dated: February 27, 2023)

Linear-Optical Feynman Paths (LOFP) is a C++ package for the strong simulation, that is,
the exact calculation of probability amplitudes, of Fock-state boson sampling experiments on pla-
nar multimode interferometers. LOFP uses a Feynman path sum approach, together with tensor
contraction. LOFP also includes routines with implementations of general-purpose permanent cal-
culation algorithms for benchmarking purposes and examples. The code has better performance
than general algorithms for permanent calculation in some cases, in particular for constant-depth
circuits, and high density of photons per mode.

I. INTRODUCTION

This document provides brief documentation on code
to simulate Fock-state boson sampling [1, 2] using Feyn-
man’s path sum formalism ([3]). The main idea is to sum
the probability amplitudes over all possible paths to find
the amplitude associated with a fixed choice of input and
output states, and multi-mode interferometer parame-
ters. Our code simulates a local-connectivity, planar de-
sign for multimode interferometers, in particular, depth-
shortened versions of the universal design by Clements et
al. [4]. The code is written in C++ and is available at the
Github link https://github.com/wagnerbalthazar/
Linear_Optics_Feynman_Path under an open-source
Creative Commons Attribution 4.0 Internacional License.
A paper with a complete description of the simulation al-
gorithm will be available soon [5].

II. AVAILABLE ROUTINES

In this section, we have presented a brief description
of the routines available in the package. The main rou-
tine implements an algorithm based on Feynman path
sums for strong simulation of Fock-state boson sampling
in local-connectivity planar interferometer designs. The
additional routines available include code to evaluate am-
plitudes by calculating the permanents of matrices, using
Ryser and Glynn’s formulas. We also provide code with
examples used in the benchmark section to illustrate how
one may use the code.

∗ wagner.balthazar@inl.int
† ernesto.galvao@inl.int

A. Main routine

• Probability Feynman – This package contains a
source file with all functions to calculate the prob-
ability of a Fock-state boson sampling experiment
for chosen input/output states, and a given inter-
ferometer made out of a finite number of locally-
connected beam-splitter layers.

B. Additional routines

• Probability Ryser – This source file calculates the
probability of observing an input mode |s⟩ go
through a multi-mode planar interferometer built
out of some number of locally-connected beam-
splitter layers, represented by the unitary U , and
observing the output state |t⟩. The matrix U is de-
fined by setting up the beam-splitters parameters
with the function ”bs parameters” and using the
function ”mat unitary circuit”. After, we need
to find the submatrix Ust of U , which is defined
by repeating ti times the ith columns of U to ob-
tain Us, and repeating sj times the jth row of Us

to obtain Ust. After, the code calls the function
perm ryser, based on Ryser’s formula, to calcu-
late the permanent of the matrix Ust. Finally, the
probability Ryser function is used to obtain the bo-
son sampling probabilities [2].

• Probability Glynn – This source file does the
same process described for Ryser’s code. The
difference is the permanent is calculated using
Glynn’s formula [6] Therefore, perm glynn and
probability Glynn functions must be called.

• Example 1 – The code Example 1 correctness.cpp
is used to verify the correctness of the code by com-

https://github.com/wagnerbalthazar/Linear_Optics_Feynman_Path
https://github.com/wagnerbalthazar/Linear_Optics_Feynman_Path
mailto:wagner.balthazar@inl.int
mailto:ernesto.galvao@inl.int

2

paring Feynman, Glynn, and Ryser. This is com-
pletely described in section V.A.

• Example 2 – The code
Example 2 increase modes photons.cpp is used to
verify, for random interferometers with different
depths, the code runtime as the number of modes
increases, always with 1 photon per mode. This is
completely described in section V.B.

• Example 3 – The code
Example 3 increase depth.cpp is used to study the
runtime and memory as we increase the number of
layers, keeping the number of modes constant and
equal to 8. This is completely described in section
V.C.

• Example 4 – The code in the file
Example 4 Higher input.cpp is used to study
the runtime and memory increasing the photon
density, i.e. the number of photons per mode.
This is completely described in section V.D.

• Example 5 – The code
Example 5 read csv bs parameters.cpp illus-
trates how one may input arbitrary beam-splitter
parameters from a local file. This example uploads
information on a six-mode, depth-5 interferometer,
stored in two CSV files (one for transmissivity pa-
rameters θ, the other for phase shifter parameters
ϕ - see Fig. 2).

III. BASIC CONCEPTS

We simulate Fock-state boson sampling in multimode
interferometers. The interferometers are built by locally
connecting layers of beam-splitters (BS’s) as in Fig. 1. If
the number of layers is the same number of modes, this
reproduces a universal design for linear optics, proposed
by Clements et al. [4].

i
n
p
u
t

s
t
a
t
e
s

layer 1

o
u
t
p
u
t

s
t
a
t
e
s

layer n

x1

x2

xn

y1

y2

yn

FIG. 1. Planar interferometer design consisting in n layers of
locally-connected beam-splitters.

The input (output) states are defined by |xm⟩ =
|x1, ..., xn⟩ (|ym⟩ = |y1, ..., yn⟩), where m is the number of

modes and integer x(y) is the photon occupation num-
ber in the respective mode. Each layer of the circuit
consists of a column of beam-splitters, highlighted with
a blue rectangle in Fig 1. The number of layers defines
the depth of the circuit. For our simulation, we can pick
any number of even modes m ≥ 2, and any depth ≥ 2.
Any multi-mode photonic interferometer can be de-

composed in fundamental building blocks, which are
beam-splitters (in Fig. 2, these are black, X-shaped
waveguide structures) with transmissivity t and reflec-
tivity r, with amplitudes defined by parameter θ, and by
a ϕ parameter that corresponds to the phase shift of one
output mode with respect to the other. The amplitudes
are given by t = cos θ and r = eiϕ sin θ. Fig. 2 shows the
beam splitter and its corresponding phase shifter, even
though the phase shifters are omitted in Fig. 1.

x1

x2

y1

y2
θ

φ

FIG. 2. Beam-splitter parameters θ (defining transmissivity)
and ϕ (phase shift).

This beam splitter implements a general SU(2) unitary
transformation on creation operators, represented by the
following 2 x 2 matrix:

BS(θ, ϕ) =

[
cos(θ) −e−iϕ sin(θ)

eiϕ sin(θ) cos(θ)

]
,

where θ ∈ [0, π/2] and ϕ ∈ [0, π].
Fig. 1 also shows a coloring of the waveguides connect-

ing pairs of beam-splitters. This coloring is important
for our goals. In Feynman’s approach to the description
of general quantum dynamics, we need to sum over all
possible transition amplitudes to obtain the total event
amplitude. For fixed values of the input and output pho-
ton occupation numbers (x1, x2, y1, y2), we can calculate
the transition probability for this single beam splitter in
a runtime that scales linearly with the total number of
photons (as described in [5]).
The next task is to find all possible Feynman paths

for fixed inputs and outputs of an interferometer with
the structure shown in Fig. 1. In our context, a Feyn-
man path consists of a choice for occupation numbers
for all green and red waveguides in the figure; there are
all waveguides interconnecting different BS in the linear-
optical network. This can be done in two steps. First,
we find bounds on the maximum photon occupation num-
bers in each green waveguide. This can be done by look-
ing at the past and future light-cones of the waveguide in
question, as shown in Fig. 3. The green waveguide high-
lighted here is constrained to have occupation numbers
compatible with these two light cones, which connect it to
its past (the fixed input) and its future (the fixed output).
A little thought shows that the photon number occupa-
tion in red waveguides is constrained by the fixed input

3

and output, and by fixed values for the green waveguide
occupations numbers, due to photon number conserva-
tion at each beam-splitter. So looping over all paths,
or waveguide photon occupation numbers, corresponds
to looping over all possible occupation numbers for the
green waveguides only, and setting the corresponding oc-
cupation numbers for red waveguides.

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

PAST
CONE

FUTURE
CONE

[min(x,y),0]

[0,min(x,y)]

1 2 3

4

5

6

7

8

9

10

11

12

13

FIG. 3. Considering the past and future light cones of each
green-colored waveguide, to constrain its possible photon oc-
cupation numbers. The beam-splitters are numbered in the
order used for the input file of beam-splitter parameters.

We then see that the amplitude for each path is the
product of the amplitudes associated with all BS in the
network. The sum of the calculated amplitudes of each
configuration is the probability amplitude we want to cal-
culate, for fixed input and output, and for a particular
choice of interferometer parameters. It can be expressed
as follows:

⟨y|U |x⟩ =
∑
x,y

N∏
i=1

⟨x1i, x2i|UBS(θ,ϕ)i |y1i, y2i⟩ , (1)

where N is the total number of beam-splitters,
⟨x1i, y1i, y2i| and |y1i, y2i⟩ corresponds to the input and
output of each beam splitter, and UBS(θ,ϕ)i is the uni-
tary specifying the beam splitter action. Each BS ampli-
tude can be computed in a time that scales linearly with
the number of photons going through it [5]; the overall
complexity comes from the sums over all possible photon
occupation numbers that need to be considered. While
in principle the memory scaling is polynomial with the
number of photons, modes, and depth, in our implemen-
tation we use a tensor contraction method that incurs in
memory scaling exponentially with depth, with the ben-
efit of a faster runtime, as will be illustrated in the next
section.

IV. RUNNING THE CODE

A. Probability Feynman

To run the source code called prob feynman.cpp, you
need to define the initial conditions in the main function:
the input state, the output state, the number of modes,

and the depth of the circuit following the description be-
low:

1. the input state – a vector of non-negative integers
specifying the input Fock occupation number at
each input mode. For example, in an interferome-
ter with 8 modes and 1 photon per mode, the input
is written as follows:

const vector<int> input = { 1,1,1,1,1,1,1,1 };

2. the output state – vector specifying the Fock-state
occupation numbers of the output. For example, in
an interferometer with 8 modes, one possible out-
put of 8 photons could be written as follows:

const vector<int> output = { 2,0,0,3,0,1,1,1 };

3. the (even) number of modes, which is defined by
the length of the input or output vector, as follows:

const int modes = input.size();

4. the depth of the circuit, that is, the number of BS
layers ≥ 2, as follows:

int depth = 5.

After these definitions, it is necessary to specify all
parameters describing the beam-splitters that comprise
the interferometer. This can be done in three different
ways:

5. Choosing all beam-splitters to be balanced, 50/50
beam-splitters – in this case, the option false
must be chosen as a parameter of the function
bs parameters.

vector<vector<vector<complex<double>>>>
beam splits = bs parameters(false , modes,
depth);

6. Picking uniformly random parameters for all beam-
splitters – in this case, the option truemust be cho-
sen as a parameter of the function bs parameters.

vector<vector<vector<complex<double>>>>
beam splits = bs parameters(true, modes, depth);

7. Defining the parameters of each beam-splitter
by hand – in this case, the function parame-
ters t 1 and t 2 must be typed, and the func-
tion bs parameters 2 must be chosen. Considering
depth = 5 and 8 modes, we have 18 beam-splitters
to be configured, so we need two vectors with 18
elements each. Note that t 1 corresponds to the
θ parameter of the beam-splitter, and t 2 corre-
sponds to the ϕ parameter of each beam splitter,
see Eq. III and Fig. 2.

vector<double> t1 =
{0.4595912, 0.85014466, 0.05414373, 0.56944304,
0.34649183, 0.26516494, 0.75055521, 1.50788223,
1.29585152, 0.26597035, 0.5081206, 1.50363248,

4

0.27852718, 0.13658876, 0.89655676, 1.49307613,
0.45337888, 0.03398879}
vector<double> t2 =

{0.93827935, 2.46627691, 1.59271753, 0.10410264,
0.9995343, 2.48067184, 0.62522083, 3.09866259,
1.90669285, 2.8284845, 2.00854026, 0.55957266,
0.38713007, 0.90334558, 1.99934321, 3.00567887,
0.00134568, 1.13459999};

vector<vector<vector<complex<double>>>>
beam splits = bs parameters 2(t 1, t 2, modes,
depth);

8. Alternatively, the parameters t1 and t2 of
all beam-splitters can be uploaded from two
CSV files provided by the user. We illus-
trate the procedure with the code in file
Example 5 read csv bs parameters.cpp, which
simulates a depth-5 interferometer with six modes.
We also offered two CSV files (θ and ϕ parameters)
to illustrate how to upload parameters from
user-defined files.

The phases θ and ϕ must be specified in the order de-
scribed in Fig. 3, where we have the example of a multi-
mode interferometer with depth 5. The beam-splitters
on the top are numbered in increasing order from left
to right. After those, we continue the numbering by the
second beam splitter in the first layer, then the next un-
numbered one to the right of it, following this order from
left to right. The same process continues with the third
beam-splitter in the first layer, and so on until we have
numbered all beam-splitters.

After defining the inputs, the probability can be cal-
culated using the LOFP algorithm:

9. cout << ”Probability Feynman = ” <<
probability Feynman(input, output, depth,
beam splits) << endl;

Fig. 4 shows the screen with the same example used
above for the case with random beam-splitters in the
main function. The only difference is the chrono library
which we use to get the code runtime.

FIG. 4. Example of the main function with random beam-
splitters.

B. Probability Ryser

To run the code probability Ryser presented in Sec-
tion II.B, the first step is to set up the initial condi-
tions of the multi-mode interferometer following the same
steps described above for Probability Feynman. This in-
volves defining: the input and output states, the number
of modes, the depth, and the parameters describing all
beam-splitters.

After this, we can find the unitary matrix U describing
the interferometer we have just specified as follows:

1. vector<vector<complex<double>>>
unitary circuit = mat unitary circuit(beam splits,
depth, modes).

The next step is to use the unitary matrix U and the
input and output states already defined to find the matrix
Ust. It is done by writing the function:

2. vector<vector<complex<double>>> unitary st =
Unitary ST(unitary circuit, input, output);

After, the code calls the function ”perm ryser”, based
on Ryser’s formula, to calculate the permanent of the
matrix Ust. Finally, the ”probability Ryser” as follows:

3. cout << ”Probability Ryser = ” <<
probability Ryser(unitary st, input, output,
depth) << endl;

Fig. 5 shows the main function to run the code and
find a probability.

FIG. 5. Example of the main function to calculate the proba-
bility of boson sampling for one amplitude using Ryser’s for-
mula.

Additionally, this same code can be used to calculate
the permanent of an arbitrary matrix with complex en-
tries using Ryser’s formula. In this case, we just need to
input the matrix as follows:

4. complex <double> permanent = complex
<double> perm ryser(matrix);

5

C. Probability Glynn

Here, we are doing the same step-by-step procedure
described for Ryser, with one difference, using Glynn’s
formula [6] to evaluate the permanent. In this sense,
only need to change the name of functions that con-
tain Ryser to Glynn. So, we use the same functions
used before and the new ones: perm glynn(parameters)
and probability Glynn(parameters). Note that the
parameters are the same used in Ryser’s case.

V. BENCHMARK - COMPARING LOFP WITH
RYSER’S AND GLYNN’S FORMULAS

In this section, we have used LOFP and the well-known
Ryser and Glynn’s formula to benchmark LOFP’s perfor-
mance. The Ryser and Glynn codes were based on the
description in [6].

All calculations were done using a laptop computer
with the following specifications: Processor – Intel(R)
Core(TM) i7-8565U, CPU @ 1.80GHzb – 1.99 GHz; In-
stalled RAM: 16.0 GB (15.8 GB usable); System type:
64-bit operating system, x64-based processor.

A. Verifying correctness

To test the reliability of the Feynman code, we choose
an input and compute the probability associated with all
possible outputs. These probabilities must then add up
to 1. This test was done using the Feynman algorithm,
as well as Ryser’s. We also calculated the total variation
distance between pairs of distributions calculated using
different methods:

δ(p, q) =
1

2

∑
i

|pi − qi|, (2)

where pi (qi) are the probabilities obtained with Feyn-
man’s method (Ryser). We consider a randomly picked
six-mode interferometer, for different depths of 3 to 6.
Fig. 6 shows the total variation distance obtained by
finding the whole output distribution for two different in-
puts: input1 = {1, 1, 1, 1, 1, 1}; input2 = {2, 0, 0, 2, 0, 2}.
As we can see, the code is very accurate, obtaining the

distributions with an error compatible with the round-off
error of the numerical accuracy, of the order of 10−13.

B. Increasing the number of photons and modes
for different depths

In this simulation, we run the code increasing the num-
ber of modes from 4 to 22 in steps of two, always with 1
photon per mode. We do this for circuit depths 3, 4, 5, 6.

FIG. 6. Total variation distance between complete output dis-
tributions calculated with LOFP code and Ryser’s algorithm,
for two different inputs.

FIG. 7. Run-time for three-layer interferometers, one photon
per mode at input and output, as the number of photons =
number of modes increases. Comparison between calculation
time using Feynman paths, Glynn’s formula, and Ryser’s al-
gorithm.

FIG. 8. Run-time for four-layer interferometers, one photon
per mode at input and output, as the number of photons =
number of modes increases. Comparison between calculation
time using Feynman paths, Glynn’s formula, and Ryser’s al-
gorithm.

Figs. 7 - 10 show the runtime as the number of modes
increases.

As we can see, Ryser’s algorithm and Glynn’s formula
are faster than Feynman’s approach when we have a small
number of modes (photons), but Feynman’s path sum

6

FIG. 9. Run-time for five-layer interferometers, one photon
per mode at input and output, as the number of photons =
number of modes increases. Comparison between calculation
time using Feynman paths, Glynn’s formula, and Ryser’s al-
gorithm.

FIG. 10. Run-time for six-layer interferometers, one photon
per mode at input and output, as the number of photons =
number of modes increases. Comparison between calculation
time using Feynman paths, Glynn’s formula, and Ryser’s al-
gorithm.

shows an advantage as we increase the number of modes,
at least for small depth circuits. Even in Fig. 10, we can
see that from 22 photons Feynman code starts to beat
Ryser’s algorithm and Glynn’s formula. This happens
because both Ryser’s and Glynn’s formulas have runtime
that increases exponentially with the number of photons,
which is independent of the interferometer depth. With
LOFP the number of photons can be much larger, but the
simulation runtime grows exponentially with the depth.

Another advantage of Feynman’s path sum is that the
time increases linearly with the number of modes, due to
a tensor contraction that is performed as part of the rou-
tine [5]. Fig. 11 shows the Feynman path sum runtime
for different circuit depths.

C. Increasing the depth of the optical circuit

In this subsection, we simulate a multi-mode interfer-
ometer with 8 input modes and with 1 photon per mode.
The depth varies from 3 to 7. Figs. 12 and 13 show in
a log-log plot that time and memory grow exponentially

FIG. 11. Run-time for a single amplitude calculation on ran-
dom interferometers with varying depth, and an increasing
number of modes. We pick one mode per photon at the input
and output.

with the depth, but the same does not occur with the
number of modes/photons.

FIG. 12. Runtime scaling for Feynman path sum calculation
of a single amplitude for an 8-mode interferometer, with 1
photon per mode at the input and output, as a function of
the depth.

FIG. 13. Memory use scaling for Feynman path sum calcula-
tion of a single amplitude for an 8-mode interferometer, with
1 photon per mode at the input and output, as a function of
the depth.

The Feynman path sum algorithm with tensor con-
traction uses memory that increases exponentially with
the depth, but not with the number of modes. For the
limited depth interferometers we simulate here, the total
memory use of only the order of a few kilobytes.

7

D. Higher input photon occupation numbers,
depth 3 and 4

In this subsection, we increase the number of input
photons from 1 to 20 per mode, considering a circuit
with 6 modes, and depths 3 and 4. The total number
of photons is then between 6 and 120. Figs. 14 and 15
show plots of runtime and memory, as a function of the
number of photons per mode.

FIG. 14. Runtime as a function of the number of photons per
mode, for a 6-mode interferometer and depths 3, 4.

FIG. 15. Memory use for the Feynman path sum simulator,
as a function of the number of photons per mode, for a 6-
mode interferometer and depths 3, 4.

These last two plots show computational evidence that
the runtime and memory use of the Feynman path sum
algorithm increases linearly with the number of photons,
for these limited-depth interferometers. The memory
used is small, on the order of a few kilobytes. The run-
time dependence on the number of photons is in stark
contrast with both Ryser’s algorithm and Glynn’s for-
mula, whose runtimes scale exponentially with the total
number of photons.

VI. CONCLUSIONS

We introduce LOFP code that simulates Fock-state bo-
son sampling experiments using Feynman’s path sums
and tensor contraction. We illustrated some situations
where our code presents some advantages when compared
with Ryser’s algorithm and Glynn’s formula. We can
highlight the results for high photon density per mode
and small depth, where the Feynman path sum code is
faster than the alternatives. The results indicate that
for those cases, runtime and memory use increase lin-
early with the number of modes/photons. A detailed
description of the tensor-network contraction and other
variations of the Feynman path sum concept for the sim-
ulation of linear optics will appear elsewhere [5].

ACKNOWLEDGMENTS

We would like to thank Filipa Peres for helpful discus-
sions. We acknowledge the financial support of H2020-
FETOPEN Grant PHOQUSING (GA no.: 899544).

[1] S. Aaronson and A. Arkhipov, arXiv:quant-
ph/1011.3245v1 (2011).

[2] D. J. Brod, E. F. Galvão, A. Crespi, R. Osellame, N. Spag-
nolo, and F. Sciarrino, Advanced Photonics 1, 034001
(2019).

[3] S. Aaronson and L. Chen, arXiv preprint
arXiv:1612.05903 (2016).

[4] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S.
Kolthammer, and I. A. Walmsley, Optica 3, 1460 (2016).

[5] Q. Palmer, J. Bulmer, A. Jones, and E. F. Galvão,
manuscript in preparation (2023).

[6] D. G. Glynn, European Journal of Combina-
torics 31, 1887 (2010), ISSN 0195-6698, URL
https://www.sciencedirect.com/science/article/

pii/S0195669810000211.

https://www.sciencedirect.com/science/article/pii/S0195669810000211
https://www.sciencedirect.com/science/article/pii/S0195669810000211

	Linear-Optical Feynman Paths (LOFP): code for strong simulation of Fock-state boson sampling
	Abstract
	Introduction
	Available routines
	 Main routine
	 Additional routines

	 Basic concepts
	Running the code
	Probability_Feynman
	Probability_Ryser
	Probability_Glynn

	Benchmark - Comparing LOFP with Ryser's and Glynn's formulas
	Verifying correctness
	Increasing the number of photons and modes for different depths
	Increasing the depth of the optical circuit
	Higher input photon occupation numbers, depth 3 and 4

	Conclusions
	Acknowledgments
	References

