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Abstract 

This article presents a mathematical model for predicting the entry of pollutants into lakes interconnected through 
channels. Modeling the dynamics of pollutant dispersion in lakes was performed using three different input functions. 
The resulting model was solved by the Bulirsch-Stoer method, implemented to solve the system of ordinary differential 
equations that describe the problem, and the results were compared with data available in the literature. Practically, no 
differences were found between the model results and the reference data, in the simulations carried out under the same 
conditions. Therefore, the Bulirsch-Stoer Method can be safely used to solve this type of problem, as long as the initial 
conditions and the size of the integration step are adequate. 
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1. Introduction

Protecting the environment and keeping water pollution-free is a global responsibility. Although several wastewater 
treatment plants are established to deal with water pollution, most wastewater is discharged directly into rivers or 
lakes. Therefore, it is important to understand the mechanism of a natural purification system to develop predictive 
models to represent the system and predict the rate of change in the amount of pollutants discharged into this system 
[1]. 

Pollution of water sources occurs through contamination by physical, chemical and biological elements, which can be 
harmful to organisms, plants and human activity, and is a very serious problem, as water is essential for life, food 
production, energy and industries of various types [2]. 

More than 3/4 of the Earth's surface is covered with water, but approximately 97.3% of this water is found in the oceans 
and therefore cannot be used for the aforementioned tasks. There remains, then, 2.7% of fresh water, of which 2.4% are 
located in places of difficult access, in underground regions and in glaciers, leaving only 0.3% of the planet's water for 
use. Brazil holds 13% of the available freshwater in the world, with approximately 73% located in the Amazon basin 
[2]. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://gjeta.com/
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A worrying factor related to water pollution is that groundwater, lakes, rivers, seas and oceans are the final destination 
of any and all water-soluble pollutants released into the air or soil. Thus, in addition to the pollutants that are released 
directly into the reservoirs, the water networks still receive pollution from the atmosphere and the lithosphere. 

The largest group of lakes in terms of total area and the second largest in the world by volume of water is located in 
North America, between the United States and Canada, east of North America, whose names are: Superior, Michigan, 
Huron, Erie and Ontario. This group of lakes occupies a surface of 244,106 km² and contains 21% of the freshwater on 
Earth, with a volume of 22,671 km3, forming the largest connected area of freshwater on the planet [3]. 

Due to the importance and peculiar characteristics of these lakes, this system has been the target of several pollution 
dynamics studies, whose results can be adapted for application in other systems. Among the various methods found in 
the literature to solve this problem, the Differential Transformation Method is frequently cited, having been tested with 
some modifications by several authors. The method is based on the flow balance between interconnected lakes [8, 10, 
12, 18], resulting in a system of ordinary differential equations. 

The solutions presented by several authors, using the different mentioned methods, involve complex mathematical 
development and, in addition to providing the same results, require advanced computer programming skills. For this 
reason, in this work the flow balance principle is used to develop the mathematical model, but the solution is performed 
numerically using the Bulirsch-Stoer method [4, 5, 6]. 

Therefore, the objective of this work is to discuss the dynamics of pollution flows in a system of lakes interconnected by 
channels, to present a solution of the model using the Bulirsch-Stoer numerical technique, and to compare the results 
with data available in the literature. 

2. Material and methods 

2.1 Model of pollution dynamics in lakes 

Mixing problems refer to a variety of different problems where two or more substances are mixed at various rates. The 
mixtures problems cover from mixing chemicals in a tank to diffusing cigarette smoke through the air in a room. In this 
article, the modeling of the mixture of pollutants in lakes is presented [7]. 

2.1.1 The mixing equation 

The rate of change of the polluting mixture is the difference between the amount of polluting mixture entering the 
system and the amount leaving it, defined by the following equation: 

𝑑𝑀

𝑑𝑡
= 𝐶𝑖𝑛(𝑡) ∙ 𝑄𝑖𝑛(𝑡) − 𝐶𝑜𝑢𝑡(𝑡) ∙ 𝑄𝑜𝑢𝑡(𝑡) (1) 

2.1.2 Pollutant generation rate and the dynamics of pollution in the lake 

Pollutants have various chemical properties and some of them are non-polar and do not react with water. So this 
pollutant can only leave the system through the outflow. Some pollutants are polar and react with water, which can 
generate more or less pollutants. The variable 𝑘(𝑡) represents the pollutant generation rate and can be defined as: 

{
k(t) = 0;  No reaction.

k(t) > 0;  No contaminat generation
 (2) 

The variable 𝑘(𝑡) is also used in chemistry and determines the order of the reaction (in this case, reactions of order 0 
or 1). Then, another term is added to the model of Equation (1): 

𝑑𝑀

𝑑𝑡
= [𝐶𝑖𝑛(𝑡) ∙ 𝑄𝑖𝑛(𝑡) − 𝐶𝑜𝑢𝑡(𝑡) ∙ 𝑄𝑜𝑢𝑡(𝑡)] − 𝑘(𝑡) ∙ 𝐶(𝑡) ∙ 𝑉(𝑡) (3) 

2.1.3. Modified model 

To make the model easier to apply, without significantly affecting its accuracy, the following assumptions were made: 
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(1) The volume of the lake remains constant; 
(2) The flow rate remains constant; 
(3) The reaction rate remains constant; 
(4) The water and the pollutant in the lake are well mixed. 

The volume of lakes generally does not fluctuate in a short period, so the first assumption seems plausible. Assuming 
that the volume is constant, the flow rate must also remain constant. Therefore, the second assumption is also plausible. 
The third assumption is made to make the model easier to use, but it is limited to zero-order and first-order reactions. 
Assuming that the lake is well mixed means that the concentration of the pollutant inside the lake is equal to the 
concentration of the outflow. This assumption makes the model easier to manage and is also of limited use. Using 
premises 1 to 4, the model expressed by Equation (3) is rewritten as: 

𝑑𝑀

𝑑𝑡
= 𝑄 ∙ 𝐶𝑖𝑛(𝑡) − 𝑄 ∙ 𝐶(𝑡) − 𝑘 ∙ 𝐶(𝑡) ∙ 𝑉 (4) 

Multiplying and, at the same time, dividing Equation (4) by the volume, it is obtained the following robust equation: 

𝑑𝐶(𝑡)

𝑑𝑡
=
𝑄

𝑉
∙ 𝐶𝑖𝑛(𝑡) −

𝑄

𝑉
∙ 𝐶(𝑡) − 𝑘 ∙ 𝐶(𝑡) (5) 

The time it would take to fill the lake if there were no outflow, and how long it would take to drain the lake if there were 
only outflow, can be determined by rewriting Equation (5), defining the residence time of the pollutant in the lake as 
𝑄/𝑉 = 𝜃𝑟 to obtain: 

𝑑𝐶(𝑡)

𝑑𝑡
=
1

𝜃𝑟
∙ 𝐶𝑖𝑛(𝑡) −

1

𝜃𝑟
∙ 𝐶(𝑡) − 𝑘 ∙ 𝐶(𝑡) (6) 

2.2 Pollutant input models 

Three types of models were used to simulate the entry of pollutants into lakes and to predict the rate of change in the 
concentration of these pollutants in lakes. These input models are: impulse, step, and sine functions. 

2.2.1 Impulse input model 

The impulse model is used for pollutants that are released into the lake immediately. Impulse input functions have a 
peak, and at all other points the function is zero. 

𝐶(𝑡) = {
 𝐶𝑖𝑛, 𝑡 ≥ 0
 0, 𝑡 < 0

 (7) 

2.2.2 Step input model 

The step model is used for pollutants that enter the lake at constant concentration and constant rate, and continue in 
the same way indefinitely. The pollutant enters the system at time zero and the concentration before this time is zero. 

𝐶(𝑡) = {
 0, 𝑡 ≤ 0
 𝐶𝑖𝑛, 𝑡 > 0

 (8) 

2.2.3. Sinusoidal input model 

The sinusoidal model is used for pollutants that are introduced into the lake periodically. Pollution enters the system at 
an average concentration and periodically varies around this average. The sinusoidal input changes the input 
concentration making the model more useful. 

𝐶𝑖𝑛(𝑡) = 𝐶𝑚 [1 + 𝑎 ∙ 𝑠𝑒𝑛 (
2𝜋

𝑇
∙ 𝑡)] (9) 
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2.3 Pollution dispersion model in lakes 

The model of pollutant dynamics in interconnected lakes discussed here is well supported in the literature by several 
authors and has been solved using several methods. The system used as a reference in this work is represented by a set 
of three lakes, interconnected by channels, through which pollutants flow [8, 11,. 18], as illustrated in Figure 1 

 

Figure 1 System of lakes with interconnecting channels 

2.3.1 Mathematical formulation 

The modeling was developed considering the lake system represented in Figure 1, each of them considered a large 
compartment, and the interconnection channels considered as tubes between the compartments [8, 9]. The arrows in 
Figure 1 indicate the direction of flow in the channels or pipes. A pollutant is introduced into the first lake at a rate 𝑝(𝑡), 
which can be constant or variable with time. 

The level of pollution of each lake at any time can be determined by defining 𝑥𝑖(𝑡) as the amount of pollution in lake 𝑖, 
at any time, 𝑡 ≥ 0, where 𝑖 = 1, 2, 3, assuming that the pollutant in each lake must be evenly distributed across the lake 
by some mixing process, and the volume of water 𝑉𝑖  in lake 𝑖 remains constant for each of the lakes. Furthermore, it is 
assumed that the pollutant is of the persistent type and does not degrade to other forms. Therefore, the concentration 
of the pollutant in lake 𝑖 is given by: 

𝑐𝑖(𝑡) =
𝑥𝑖(𝑡)

𝑉𝑖
 (10) 

Each lake is initially considered free of any contaminant, so 𝑥𝑖(0) = 0 for each of them, 𝑖 = 1, 2, 3. The dynamic behavior 
of the lake system can be modeled by defining the constant 𝐹𝑗𝑖  to represent the flow rate from lake 𝑖 to lake 𝑗. Therefore, 

the pollutant flow from lake 𝑖 to lake 𝑗 at any instant is defined by 𝑟𝑗𝑖(𝑡): 

𝑟𝑗𝑖(𝑡) = 𝐹𝑗𝑖  𝑐𝑖(𝑡) =
𝐹𝑗𝑖

𝑉𝑖
𝑥𝑖(𝑡) (11) 

The rate of change in the concentration of pollutants in lake 𝑖 , 𝑟𝑗𝑖(𝑡), flowing into lake 𝑗 at time 𝑡  is defined by the 

difference between the rate in and the rate out: 

𝑟𝑗𝑖(𝑡) = 𝑟𝑗𝑖
𝑖𝑛(𝑡) − 𝑟𝑗𝑖

𝑜𝑢𝑡(𝑡) (12) 

The flow rate in each lake must balance the outflow from the lake, so that the volume of each lake remains constant. 
Then, according to Figure 1, we have the following balances: 
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𝐹𝑜𝑟 𝐿𝑎𝑘𝑒 1: 𝐹13 = 𝐹21 + 𝐹31 

𝐹𝑜𝑟 𝐿𝑎𝑘𝑒 2: 𝐹21 = 𝐹32  

𝐹𝑜𝑟 𝐿𝑎𝑘𝑒 3: 𝐹31 = 𝐹32 + 𝐹13 

(13) 

(14) 

(15) 

Applying the principle expressed by Equation (12) for each lake, combined with Equations (13), (14) and (15), results 
in the following system of first-order ordinary differential equations that describe the flow rates of pollutants in the 
system of lakes represented in Figure 1: 

{
  
 

  
 

 

𝑑𝑥1
𝑑𝑡

= − [(
𝐹31
𝑉1
) + (

𝐹21
𝑉1
) ] ∙ 𝑥1(𝑡) + (

𝐹13
𝑉3
) ∙ 𝑥3(𝑡) + 𝑝(𝑡)

𝑑𝑥2
𝑑𝑡

= (
𝐹21
𝑉1
) ∙ 𝑥1(𝑡) − (

𝐹32
𝑉2
) ∙ 𝑥2(𝑡)  

 
𝑑𝑥3
𝑑𝑡

= (
𝐹31
𝑉1
) ∙ 𝑥1(𝑡) + (

𝐹32
𝑉2
) ∙ 𝑥2(𝑡) − (

𝐹13
𝑉3
) ∙ 𝑥3(𝑡) 

  (16) 

2.3.2 Model Solution 

Solutions of the system of Equations (16) using various methods can be found in the literature, for example, differential 
transformation techniques [8, 10, 12, 18], method of variational iteration [13], revised Adomian decomposition method 
[9], and analytical methods [14, 15, 16]. 

In this work, the solution of the system of Equations (16) was performed by the Bulirsch-Stoer method [4, 5, 6]. This 
method was chosen due to its proven efficiency [17], ease of implementation in any programming language according 
to the researcher's choice, and for being an open source and public domain algorithm. 

The results of lake pollution simulations were compared with literature data under the same conditions [8, 18], but any 
other conditions can be used to predict the dynamics of pollutants in lakes. The data referring to the volume of water in 
the lakes and the flows between them used in Equations (16) are organized in Table 1. 

Table 1 Volume of water in the lakes, and flows between them, used to test the pollution model [8] 

Lakes 
Water volume in the lakes 

[𝐦𝐢𝟑] [𝐤𝐦𝟑] [ 𝐦𝟑] 

1 1200 5002 5.002 × 1012 

2 1050 4377 4.377 × 1012 

3 850 3543 3.543 × 1012 

Flows 𝐅𝐣𝐢 
Pollutant flows between lakes 

[𝐦𝐢𝟑 𝐝𝐚𝐲⁄ ] [𝐤𝐦𝟑 𝐝𝐚𝐲⁄ ] [𝐦𝟑 𝐝𝐚𝐲⁄ ] 

𝐹21 68 283.44 2.834 × 1011 

𝐹31 105 437.66 4.377 × 1011 

𝐹13 85 354.30 3.543 × 1011 

𝐹32 96 400.15 4.001 × 1011 

 

3. Results 

3.1 Validation of the lake pollution model 

In the validation of the model described by the system of Equations (16), the lake system presented in Figure 1, and the 
conditions in Table 1 [8], were used with an impulse-type input function of pollutant, with a constant load of 100 
kg/year. The results for the three lakes are shown in Tables 2, 3 and 4, respectively. 
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Results of Biazar and Rahimi [8] were obtained by solving the model by the differential transformation method for a 
short period of time (36.5 days). The three types of pollutant input functions discussed earlier were tested. In this work, 
the model was solved by the Bulirsch-Stoer method using these same contaminant entry models and the same 
conditions used by Biazar and Rahimi [8]. 

It can be seen in Tables 2, 3 and 4 that the results of the two methods, with impulse input function, are practically 
identical, with a maximum relative error of approximately 0.03526 %, in absolute value, for lake 3. The initial input rate 
of pollutant was a pulse of 100 kg/year, and therefore, after 0.1 year (36.5 days) approximately 10 kg of pollutants will 
be dispersed in Lake 1. 

The pollutant dispersion dynamics in Lakes 2 and 3 depends on the interaction between the lakes through the flows 
between them, since they do not receive pollutants directly. Although the reference results used in the model validation 
were for a short period, they are sufficient to validate the model solution by the Bulirsch-Stoer method. 

The step and sinusoidal pollutant input models were also tested but, when compared with the results from Biazar and 
Rahimi [8], no differences were observed. Therefore, the results were practically identical for the three input models 
tested, and the model solution by the Bulirsch-Stoer method was considered validated. 

Table 2 Simulated results using the impulse pollutant input model compared with data obtained from Biazar and 
Rahimi [8] for Lake 1 

Step 
Time Amount of Pollutant in Lake 1 [𝐤𝐠] 

[𝐲𝐞𝐚𝐫] [𝐝𝐚𝐲] This Work Biazar and Rahimi [8] Error [%] 

0 0.00 0.00 0 0 0 

1 0.01 3.65 0.999934489 0.999934489 0.000000000 

2 0.02 7.30 1.999737984 1.999737984 0.000000000 

3 0.03 10.95 2.999410522 2.999410522 0.000000000 

4 0.04 14.60 3.998952144 3.998952144 0.000000000 

5 0.05 18.25 4.998362889 4.998362889 0.000000000 

6 0.06 21.90 5.997642796 5.997642796 0.000000000 

7 0.07 25.55 6.996791905 6.996791905 0.000000000 

8 0.08 29.20 7.995810255 7.995810255 0.000000000 

9 0.09 32.85 8.994697884 8.994697885 -0.000000011 

10 0.10 36.50 9.993454834 9.993454834 0.000000000 

 

Table 3 Simulated results using the impulse pollutant input model compared with data obtained from Biazar and 
Rahimi [8] for Lake 2 

Step 
Time Amount of Pollutant in Lake 2 [𝐤𝐠] 

[𝐲𝐞𝐚𝐫] [𝐝𝐚𝐲] This Work Biazar and Rahimi [8] Error [%] 

0 0.00 0.00 0 0 0 

1 0.01 3.65 0.000031031 0.000031031 0.000031031 

2 0.02 7.30 0.000124110 0.000124110 0.000000000 

3 0.03 10.95 0.000279215 0.000279215 0.000000000 

4 0.04 14.60 0.000496325 0.000496325 0.000000000 

5 0.05 18.25 0.000775419 0.000775419 0.000000000 
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6 0.06 21.90 0.001116476 0.001116476 0.000000000 

7 0.07 25.55 0.001519474 0.001519474 0.000000000 

8 0.08 29.20 0.001984392 0.001984392 0.000000000 

9 0.09 32.85 0.002511210 0.002511210 0.000000000 

10 0.10 36.50 0.003099905 0.003099905 0.000000000 

 

Table 4 Simulated results using the impulse pollutant input model compared with data obtained from Biazar and 
Rahimi [8] for Lake 3 

Step 
Time Amount of Pollutant in Lake 3 [𝐤𝐠] 

[𝐲𝐞𝐚𝐫] [𝐝𝐚𝐲] This Work Biazar and Rahimi [8] Error [%] 

0 0.00 0.00 0 0 0 

1 0.01 3.65 0.000034478 0.000034480 0.001450179 

2 0.02 7.30 0.000137897 0.000137907 -0.007251264 

3 0.03 10.95 0.000310231 0.000310263 -0.010313831 

4 0.04 14.60 0.000551453 0.000551531 -0.014142451 

5 0.05 18.25 0.000861540 0.000861692 -0.017639713 

6 0.06 21.90 0.001240465 0.001240728 -0.021197233 

7 0.07 25.55 0.001688204 0.001688621 -0.024694707 

8 0.08 29.20 0.002204730 0.002205353 -0.028249446 

9 0.09 32.85 0.002790019 0.002790905 -0.031745975 

10 0.10 36.50 0.003444046 0.003445261 -0.035265833 

 

3.2 Numerical application 

In addition to Biazar and Rahimi [8], several researchers have solved this same problem using different methods, 
including Biazar and Zarei [18], who used the fractional differential transformation method. Most of these methods are 
complicated and difficult to solve, in addition to not providing an improvement in the solution of the problem discussed 
in this work, when compared to the Bulirsch-Stoer method. Examples of applications are presented below, using data 
from Biazar and Zarei [18] as a reference. 

3.2.1 Application 1 - Impulse-type pollutant input function 

Simulated results using an input impulse p(t) = 10−3 kg/day for a period equal to 120 days, and integration step equal 
0.01 day for Bulirsch-Stoer method (Figure 2a), compared to the results from Biazar and Zarei [18] using the fractional 
differential transformation method (Figure 2b). 
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(a) Present work (b) Biazar and Zarei [18] 

Figure 2 Simulated amount of pollutant in Lakes 1, 2, and 3, with an impulse input rate of 10−3 kg/day for a period of 
120 days: (a) Bulirsch-Stoer method, and (b) Biazar and Zarei [18] 100 terms polynomial 

 
3.2.2 Application 2 – Time-dependent pollutant input function 

Simulated results using an input function p(t) = 10−3 ∙ t kg/day for a period equal to 120 days, and integration step 
equal 0.01 day for Bulirsch-Stoer method (Figure 3). 

  

(a) Present work (b) Biazar and Zarei [18] 

Figure 3 Simulated amount of pollutant in Lakes 1, 2, and 3, with an input rate of 10−3 ∙ t kg/day for a period of 120 
days: (a) Bulirsch-Stoer method, and (b) Biazar and Zarei [18] 100 terms polynomial 

3.2.3 Application 3 – Sinusoidal pollutant input function 

Simulated results using an input function p(t) = 10−3 ∙ (1 + sin(t)) kg/day  for a period equal to 20 days , and 

integration step equal 0.01 day for Bulirsch-Stoer method (Figure 4). 
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(a) Present work (b) Biazar and Zarei [18] 

Figure 4 Simulated amount of pollutant in Lakes 1, 2, and 3, with an input rate of 10−3 ∙ (1 + sin(t)) kg/day for a 

period of 20 days: (a) Bulirsch-Stoer method, and (b) Biazar and Zarei [18] 100 terms polynomial 

3.2.4 Application 4 - Industrial waste 

An example of a factory that dumps waste into the lake is presented, producing more during the day than at night due 
to operating hours, characterizing a periodic entry of contaminants. The pollutant concentration in the lake eventually 
converges to the average inlet concentration of the contaminant. In this case, an input model p(t) = 1 + sin(t) kg/day 
and the parameter values presented in Table 1 were assumed (Figure 5). 

  

(a) (b) 

Figure 5 Simulated amount of pollutant in Lakes 1, 2, and 3, with input function p(t) = 1 + sin(t), for (a) 180 days, 
and (b) 360 days periods 

4. Discussion 

The modeling of a system of three lakes with interconnecting channels was performed by a system of three coupled 
ordinary differential equations. The Bulirsch-Stoer method was tested, using as a reference results obtained in the 
literature [8], and applied to solve four application examples [18]. There are no differences between the results of this 
work and those presented by these researchers. However, it is important to point out that the Bulirsch-Stoer method is 
easier to implement. 
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In Application 1, pollution starts at the first lake at a constant rate. It is observed that the amount of pollutant in lake 1, 
𝑥1(𝑡), increases with the input model at the instant when the pollutant load enters the lake, but when the pollutant 
enters other lakes through interconnected channels, the pollution in lake 2, 𝑥2(𝑡), and in lake 3, 𝑥3(𝑡), increases. Then 
the pollutant enters the first lake again and this fact prevents the decrease in the amount of pollution in the first lake. 

In Application 2, pollution starts in the first lake at any time, but when the pollutant enters the second and third lakes, 
the pollutant enters the first lake again, so the amount of pollutant in lake 1, 𝑥1(𝑡), increases further than usual. 

In Application 3, pollution starts from the first lake with the sinusoidal inlet model. In this input model, when the 
pollutant release reaches its peak, the amount of pollutant in lake 1, 𝑥1(𝑡), increases, and when the pollution release 
reaches its minimum, 𝑥1(𝑡) decreases. 

In Application 4, the analysis is similar to that of Application 3, but there are no fluctuations in the amount of pollutant 
in lakes 2 and 3, possibly because there has been enough time for the pollutant dispersion rate to converge to the mean, 
due to the longer simulated residence time. 

Nomenclature 

Symbol Description** Unit 

𝑀 Mass of contaminant 𝑘𝑔 

𝐶𝑖𝑛 Input concentration of contaminant 𝑘𝑔 𝑚−3 

𝐶𝑜𝑢𝑡  Output concentration of contaminant 𝑘𝑔 𝑚−3 

𝑄𝑖𝑛 Volumetric flow into the lake 𝑚3 𝑠−1 

𝑄𝑜𝑢𝑡  Volumetric flow out of the lake 𝑚3 𝑠−1 

𝑡 Time 𝑠 

𝜃𝑟 Residence time 𝑠 

𝑘 Pollutant generation rate 𝑠−1 

𝑉 Water volume in the lake 𝑚3 

𝑎 Normalized amplitude of sine function − 

𝑇 Period of fluctuations in concentration 𝑠 

𝑐𝑖(𝑡) Average pollutant concentration in lake 𝑖 at time 𝑡 𝑘𝑔 𝑚−3 

𝑥𝑖(𝑡) Amount of pollutant in lake 𝑖 at time t 𝑘𝑔 

𝑉𝑖  Volume of lake 𝑖 at time t 𝑚3 

 𝑟𝑗𝑖(𝑡) Pollutant flow from lake 𝑖 to lake 𝑗, at time t 𝑘𝑔 𝑠−1 

𝐹𝑗𝑖  Liquid flow from lake 𝑖 to lake 𝑗, at time t 𝑚3 𝑠−1 
** Units are given in SI, and converted appropriately whenever necessary. 

5. Conclusion 

The solutions of the pollution dispersion problem in lakes, using the Bulirsch-Stoer method, did not show differences in 
relation to the Adomian Differential Decomposition Method, nor to the Fractional Differential Transformation method 
under the same conditions. However, it was not possible to compare the computational efficiency among the methods, 
because computational times were not available. On the other hand, it can be said that the Bulirsch-Stoer method is 
efficient in solving initial value problems described by ordinary differential equations. 

The pollution problem in lakes was solved by assuming that they are not being depolluted (or drained), which allows 
monitoring the level of pollution over time. It is important to emphasize that the control of the pollution levels in the 
water sources allows minimizing its harmful effects to the life. Therefore, studies to model the dynamics of depollution 
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in lakes and other sources are recommended, in order to implement measures to control the level of pollution and 
establish strategies to maintain the sustainability of these vital natural resources. 
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