
Energy-efficient cooperative inference via adaptive
deep neural network splitting at the edge

Ibtissam Labriji, Mattia Merluzzi†, Fatima Ezzahra Airod†, Emilio Calvanese Strinati†
† CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France

email: ibtissam.labriji@gmail.com,{mattia.merluzzi, fatima-ezzahra.airod, emilio.calvanese-strinati}@cea.fr.

Abstract—Learning and inference at the edge is all about
distilling, exchanging, and processing data in a cooperative
and distributed way, to achieve challenging trade-offs involving
energy, delay, and accuracy. This calls for a joint orchestration of
radio and computing resources. We propose an online adaptive
resource allocation algorithm to choose where to compute, and
how to offload computations, exploiting the concept of Deep
Neural Network (DNN) splitting. The latter allows a device
to locally execute part of an inference related processing, and
delegate the other portion to a nearby Mobile Edge Host (MEH),
which receives intermediate results from the device via a time
varying wireless communication channel. Our method deals with
dynamic parameters involving wireless channels, data arrivals,
and MEH’s CPU availability, by taking online control actions
including the best splitting point, and the uplink data rate
to transfer raw data or intermediate results (e.g., extracted
features). The decision is taken only based on instantaneous
observations of context parameters, to minimize the long-term
device energy consumption, while guaranteeing the end-to-end
delay not to exceed a predefined threshold, on average and
probabilistic sense. Besides a theoretical analysis, numerical
simulations show the effectiveness of our adaptive method in
selecting the best partial offloading decision (DNN splitting)
under different network conditions. Differently from previous
works on edge inference, we exploit recently developed empirical
models for the energy consumption of NVIDIA® edge boards,
to evaluate the performance of DNN splitting at the edge, when
exploring the typical offloading trade-off between energy and
delay, both entailing communication and computing.

Keywords—Multi-access Edge Computing (MEC), Edge AI,
DNN splitting, energy efficiency, edge inference

I. INTRODUCTION

Today, as part of the race to 6G, wireless networks are
requested to evolve from pure communication infrastructures
connecting people and things, to efficient platforms con-
necting heterogeneous intelligent agents, to enable complex
cooperative tasks. However, analyzing the myriads of data
continuously generated by sensors, machines, robots, etc.,
through complex Machine Learning (ML) models, needs a
tremendous amount of computation resources, which is not
feasible for end devices with limited hardware resources,
memory size, and battery lifetime. In this regard, Multi-access
Edge Computing (MEC) [1] is a promising framework to
remedy this issue, as it provides access to shared pools of
computing and storage resources, in close proximity to the
end service consumers, e.g., within the radio access network.
Such a computing paradigm, coupled with ML, can more
intelligently assist end devices and reduce end-to-end (E2E)
latency and energy consumption. Computation offloading [2]

The work of M. Merluzzi has been partly funded by the European Commis-
sion through the H2020 project Hexa-X (Grant Agreement no. 101015956).

can be affected by user preferences, privacy, radio and back-
haul connection quality, on-board processing capabilities, and
MEC availability. Indeed, computing resources can be limited
and volatile in MEC scenarios, compared to central cloud
processing settings. Computation offloading can be exploited
to transfer (part of) the execution of an ML model (e.g., a Deep
neural Network - DNN), to perform real-time inference at the
edge of wireless networks [3]. There are three options for DNN
inference at the edge [4]: i) perform all computations at the
device side, which can be referred to as full local inference,
ii) offload the entire DNN, referred to as full offloading, and
iii) partition the DNN and offload only a part of it to the MEC
network, referred to as partial offloading. Full local inference
can be computationally demanding for the end device, while
full offloading requires a significant amount of raw data to be
transferred to a Mobile Edge Host (MEH), through the wireless
connection with an Access Point (AP). This is not ideal from
privacy and latency perspectives. Additionally, full offloading
shifts the whole model inference, which is highly dependent on
(unpredictable) server availability, typical of edge resources.
Partial offloading for edge inference involves a cooperative
inference between the end device and the MEH, by splitting
the DNN into two parts, with some layers executed locally and
the others offloaded. Of course, this assumes both sides to be
equipped with the DNN model, but it can reduce the latency
and energy consumption, if the splitting is optimized. This
work proposes an adaptive algorithm to select the best splitting
point (SP) and wireless resources, to minimize the device
energy consumption under E2E delay constraints, entailing
(local and remote) computation and communication.
Related Works. Previous works in the literature address DNN
splitting problems for edge inference [5]–[11]. To overcome
the excessive E2E latency experienced with full offloading,
[6] proposes a compression technique to reduce the size of
the transmit data. Partial offloading requires a co-inference
between the end-user and the MEH. In [7], the authors propose
a strategy to partition the DNN under different network
conditions to minimize the overall processing delay. Also, [8]
minimizes the energy consumption on the client-side by par-
titioning Convolutional Neural Network (CNN) computations
between the client and the cloud. Mao et al. partition the DNN
always after the first convolutional layer to minimize the cost
of mobile devices and use the differentially private mechanism
to preserve the privacy [9]. None of these works jointly opti-
mizes energy consumption and E2E delay, in a dynamic and
adaptive fashion. Indeed, the splitting point is chosen in a static
way, ignoring time-varying unreliable channel conditions and
MEH’s resource availability. Also, empirical models of real
NVIDIA® edge boards energy consumption for Convolutional
Neural Networks (CNNs) based inference have been recently
developed [12], but no previous works have exploited them.



Our contribution. We propose an algorithm that dynamically
optimizes SP selection and communication resources, to min-
imize the average energy consumption at the end device while
meeting a deadline set for the overall delay, under uncertain
availability of resources at the MEH. Also, for the numerical
evaluation, we exploit a recently developed empirical model
for the energy consumption of CNNs on real NVIDIA® edge
boards, proposed in [12]. To the best of our knowledge, this
has never been done before in the literature.

II. SYSTEM MODEL

In this work, focusing on edge inference, an end device ex-
ecutes part of a CNN model locally and offloads the remaining
part to an MEH. The system under investigation is dynamic,
and the following parameters can vary across time according
to a priori unknown distributions: i) wireless channels; ii)
data arrivals (number of input images to classify); iii) CPU
availability at the MEH. To handle the system dynamics
through observations and control actions, we organize time
in instants t = 1, 2, 3, . . ., at the beginning of which a
resource orchestrator observes the current system state, and
accordingly optimizes, jointly, radio resources and splitting
point selection. In the sequel, for a variable X , we denote
X = limT→∞

1
T

∑T−1
t=0 E{X(t)}.

A. Inference performance on NVIDIA® Edge boards
A convolutional layer can be represented as a multidimen-

sional matrix of input values, with size w × h × di, and a
set of Kernel functions, which are square matrices of size
K × K × di. Then, denoting by w = h the input feature
map size, by di the number of input feature maps, by do
the number of output feature maps, by K the Kernel size
parameter, and by s the stride parameter [12], the total number
of Multiply–accumulate (MAC) operations [13], needed to
process an input at convolutional layer c is approximated as

Mc =
(
(wc −Kc)s

−1
c + 1

)2 × di,c ×K2
c × do,c (1)

Then, given Mc, the average energy consumed to process over
a convolutional layer c reads as follows [12]:

Ec = Mc

(
ad−1

o,c + b
)
, (2)

where a and b are specific parameters that depend on the edge
board. Specific values, available in [12, Table III], will be
reported in Section IV. Also, since the MAC and the number of
FLOPs Wc are linked through a linear relation, i.e. Wc = 2Mc,
we can write the computing latency of convolutional layer c:

Dc =
Wc

fx
=

2
(
(wc −Kc)s

−1
c + 1

)2 × di,c ×K2
c × do,c

fx
,

(3)
with fx the performance of the edge board x in terms of
FLOPs/s. Similarly, denoting by ui and uo the input and output
size of a fully connected layer u, respectively, the energy
consumption can be written as follows:

Eu = Mu × a′, (4)

where Mu is the number of MAC operations, computed as

Mu = ui × uo, (5)

and a′ is an hardware dependent parameter, specified in [12,
Table III]. Also, the computing latency can be simply written
as Du = Wu

fx
= 2Mu

fx
. In the sequel, we will use Wc(u) (i.e.,

the number of FLOPs) to measure the computing load.

B. Communication parameters

To complement the computing performance and param-
eters, it is important to characterize the output size of a
layer, which represents the amount of data to be transmitted
when part of the computation is transferred to an MEH. In
particular, denoting by Pc the padding value, the output size
of a convolutional layer can be written as follows:

Lc = do,c
(
(wc −Kc + 2Pc)s

−1
c

)2
. (6)

C. Computation model

Considering the described model, we denote by J =
{0, 1, . . . , J} the set of all splitting points, with j = 0 the
full offloading case, and j = J the full local inference.
Local computation delay: let us assume that, at time t, the
end device generates N(t) new input images to be classified,
as part of a random process whose statistics are unknown in
advance. Also, let us suppose that, at time t, the user selects
a generic SP k, i.e., it performs computations up to splitting
point k and offloads the remaining part (i.e., from SP k+1 up
to SP J) to the MEH. Then, assuming a local CPU processing
performance fl, and denoting by W0→k the number of FLOPs
needed to perform processing from the input up to SP k, the
local computing delay reads as follows:

Dl(t) =
W0→k ·N(t)

fl
, (7)

where, obviously, W0→0 = 0.
Local computation energy consumption: recalling the energy
consumption of each layer of a CNN ((2), (4)), we denote by
Ej the energy spent for processing between SP j − 1 and SP
j (E−1 = 0 for consistency, and E0 = 0). Then, if a generic
SP k is selected at time t, the end device spends

El(t) =
∑k

j=0
Ej . (8)

Remote computation delay: in this paper, we assume that
remote computation resources are provided by the MEH if
available, with a priori unknown statistics of such availability,
due to, e.g., higher priotity traffic. Then, denoting by fr the
MEH’s FLOP frequency, and assuming that a generic SP k is
selected at time t, the remote computation delay is

Dr(t) =
Wk+1→J ·N(t)

αr(t)fr
, (9)

where Wk+1→J denotes the number of FLOPs to be performed
to process from SP k up to SP J (i.e., the output of the archi-
tecture), and αr(t) ∈ (0, 1] is a random variable denoting the
availability of the remote CPU processing power. Obviously,
WJ+1→J = 0 for consistency.
D. Communication Model

Let us denote by R(t) the uplink data rate (in bits/s) at time
t, used to upload data (either raw data or intermediate output



feature maps). The latter depends on the bandwidth, the noise
power spectral density, and the time-varying wireless channel.
Then, denoting by Lk the output feature map size (in bits)
of a generic layer k at which the splitting is performed, the
wireless communication delay can be written as follows:

Dtx(t) =
Lk(t) ·N(t)

R(t)
. (10)

At the same time, by inverting the well known Shannon
formula, we can write the device energy consumption as:

Etx(t) =
N0B(t)

h(t)

(
exp

(
R(t) ln(2)

B(t)

)
− 1

)
Dtx(t), (11)

where B(t) is the available bandwidth at time t, N0 is the
noise power spectral density, and h(t) is the instantaneous
realization of the channel power gain, whose statistics are
assumed to be unknown in advance. Finally, recalling (7), (9),
and (10), we can write the total inference time, which entails
local computation, communication, and remote computation
phases, as Dtot(t) = Dl(t) +Dtx(t) +Dr(t). Also, recalling
(8) and (11), the total energy spent by the device for (partial)
local processing and transmission is Etot(t) = El(t) +Etx(t).

III.PROBLEM FORMULATION

As already mentioned, our aim is to guarantee inference
service continuity with the minimum cost in terms of device
energy consumption. As such, we consider two performance:
i) the average end-to-end delay, and ii) the outage probability.
The latter is defined as the probability that Dtot exceeds
a predefined threshold Dmax, and can be formally written
as Pr {Dtot(t) > Dmax} = u{Dtot(t)−Dmax}, where u{·}
denotes the unitary step function, and the equality holds due to
the fact that the RHS represents the expectation of a Bernoulli
random variable, i.e. the probability of the event. In particular,
we require the average end-to-end delay to not exceed a
predefined threshold Davg, and the outage probability to not
exceed a threshold ϵ, formulating the following problem:

min
{k(t),R(t)}t

Etot(t) (12)

subject to (a) Dtot(t) ≤ Davg; (b) u{Dtot(t)−Dmax} ≤ ϵ;

(c) Rmin(t) ≤ R(t) ≤ Rmax(t), ∀t; (d) k(t) ∈ J , ∀t,
where the expectation is taken with respect to random wireless
channels, data arrivals, and MEH’s computing availability,
assumed to be time-varying according to non-controllable
exogenous events (e.g., higher priority traffic - cf. (9)). Con-
straint (a) imposes the average E2E delay not to exceed
Davg; (b) imposes the outage not to exceed ϵ; whereas, the
instantaneous constraints (c)-(d) have the following meaning:
(c) the instantaneous data rate is selected between a minimum
and a maximum value, both depending on the instantaneous
realization of the wireless channel, and the minimum and max-
imum transmit power, also set a priori; (d) the SP is selected
among the set of possible SPs of the CNN architecture.

A. Proposed solution

Problem (12) is challenging due to the unknown statistics
of context parameters, which make the objective function and

constraints (a)-(b) generally unknown. To solve it effectively,
we first apply the tools of Lyapunov stochastic optimization
to transform (12) into a pure stability problem to be solved in
a per slot fashion. In particular, following [14], for constraint
(a), we can define a virtual queue Z(t), which evolves as
follows across subsequent time instants:

Z(t+ 1) = max (0, Z(t) +Dtot(t)−Davg) . (13)

As defined in the above equation, this virtual queue increases
at all time instants in which Dtot(t) exceeds the predefined
average threshold, and decreases otherwise, i.e., it keeps track
of the system’s constraint violations. Similarly, we can define
a virtual queue for constraint (b):

H(t+ 1) = max (0, H(t) + u{Dtot(t)−Dmax} − ϵ) . (14)

The aim is to drive the network towards low virtual queue
backlog states (congestion), while minimizing the objective
function of the original problem (i.e., the energy). More specif-
ically, the mean-rate stability of the virtual queues1, guarantees
constraint (a)-(b) to be met. To this end, we define a Lyapunov
function (LF) capturing the virtual queue congestion state as
L(Q(t)) = 1

2 (Z
2(t) + H2(t)), with Q(t) = [Z(t), H(t)].

Furthermore, from the LF, we can define the drift-plus-penalty
(DPP) function, which is the conditional expected change of
the LF over successive slots, with an additional term weighting
the objective function of (12), i.e., the energy consumption
[14]. The DPP reads as follows [14]:

∆p(t) = E {L(Q(t+ 1))− L(Q(t)) + V Etot(t)|Q(t)} ,
(15)

where V denotes the trade-off parameter weighting the energy
consumption. The higher is V , the more importance is devoted
to the objective function but less to the virtual queues’ backlog.
Intuitively, a higher V leads to lower energy consumption
but also higher queue backlogs and thus convergence time.
Due to the unknown statistics of context parameters, we
proceed by defining a suitable upper bound of the DPP that
is then opportunistically minimized in a per-slot fashion, thus
removing the expectation, following the theoretical arguments
in [14]. Exploiting [14, Eqn. (4.47)], the upper bound reads
as follows in our case:

∆p(t) ≤ S + E{Z(t)(Dtot(t)−Davg)

+H(t)(u{Dtot(t)−Dmax} − ϵ) + V Etot(t)|Q(t)}, (16)

where S =
(D′

max−Davg)
2+(1−ϵ)2

2 , with D′
max a maximum de-

lay, which is finite due to constraint (c) of (12). Now, hinging
on the concept of opportunistically minimizing expectations,
we formulate the following per-slot deterministic problem by
removing the expectation from (16):

min
k(t),R(t)

Z(t)Dtot(t) +H(t)u{Dtot(t)−Dmax}+ V Etot(t)

subject to (c)-(d) of problem (12) (17)

where Dtot(t) is defined through (7), (9), and (10), while Etot is
defined through (8) and (11). Under feasibility assumption of
(12), and i.i.d. assumption of context parameters realizations
across different time instants, by optimally solving (17), the
mean rate stability of the virtual queues is ensured [14] and,

1defined as limT→∞ E{G(T )}/T = 0 for a generic virtual queue G



as a consequence, constraints (a)-(b) are guaranteed. Also, as
V increases, the distance between the global optimal solution
of (12) and the one obtained through (17) reduces at the
cost of increased virtual queues backlog, i.e., convergence
time. Despite the strong complexity reduction induced by the
above stochastic optimization framework, problem (17) is a
mixed integer non-convex problem. However, let us notice
that the set J is generally of low cardinality, as typical CNN
architectures do not include a large number of possible SPs.
Therefore, from the point of view of the SP choice k, it is
feasible to perform an exhaustive search in each time slot.
More specifically, at time t, it is sufficient to solve the problem
with respect to R, and finally compare the obtained solutions
for all possible choices of SP k(t), to select the one (i.e.,
involving k, and R) that minimizes the objective function in
(17). Now, the last task is to solve (17) for a fixed k, with
respect to R. To efficiently perform this step, we hinge on the
upper bound u{Dtot −Dmax} ≤ Dtot/Dmax, which holds on
the feasible set (Dtot(t) > 0,∀t). This approximation hinges
on the concept of a C-additive approximation, which allows
inexact solutions of the per-slot problem without preventing
convergence, provided that such approximations are within a
finite constant C from the optimal one. Of course, this is paid
by the need of a higher value of V to asymptotically approach
the minimum, and thus with a longer convergence time.
Nevertheless, numerical results will show the effectiveness of
the above approximation, which in turn dramatically simplifies
the solution of the per slot problem. Given this approximation,
the objective function in (17) is replaced by its surrogate
(Z(t) +H(t)/Dmax)Dtot(t) + V Etot. Interestingly, once k is
fixed, it is easy to prove that, with this approximation, (17)
reduces to a convex problem with respect to the data rate R,
and thus it can be optimally solved. In particular, considering
only the terms that depend on R(t) in (17), the optimal
solution can be found in closed-form through the Karush-
Kuhn-Tucker (KKT) conditions [15], which in this case reduce
to finding a stationary point of the objective function, and
bounding the result according to the linear constraint (c) in
(12). In particular, defining Ω(t) = Z(t) + H(t)/Dmax, let
G be the derivative of the surrogate objective function with
respect to R (we omit the temporal index t to ease the
notation):

G :=− Lk′N

R2

[
V
N0B

h

(
exp

(
R ln(2)

B

)
− 1

)
+Ω

]
+

Lk′NVN0 ln(2)

Rh
exp

(
R ln(2)

B

)
= 0. (18)

Due to the fact that R ≥ Rmin > 0, by multiplying both sides

of (18) by
R2h

Lk′NVN0B
, we have (e = exp(1)):

1− Ωh

V N0B
+

(
ln(2)R

B
− 1

)
exp

(
R ln(2)

B
− 1

)
e = 0,

where we multiplied the second term by e/e, to obtain a
convenient structure of the function, exploited to derive the
solution in closed form, as clarified here below. This leads to:(

ln(2)R

B
− 1

)
exp

(
ln(2)R

B
− 1

)
=

1

e

(
Ωh

V N0B
− 1

)
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Splitting point no.

107

108

N
u
m

b
er

o
f
M

A
C

o
p
er

a
ti
o
n
s
(c

u
m

u
la

ti
v
e

su
m

)

105

106

107

O
u
tp

u
t
fe
a
tu

re
m

a
p

si
ze

(b
it
s)

Full o0oading (raw data)
Full local computation

Fig. 1: Number of MAC operations and output feature map size

Exploiting the principal branch of the Lambert function W{·}
[16], we have:

R∗ =

[
B

ln(2)

(
W

{
Ωh

V N0Be
− 1

e

}
+ 1

)]Rmax

Rmin

. (19)

Finally, denoting by R∗ the vector of optimal rates for each
SP, the optimal SP is found as follows:

argmink Z(t)Dtot(t) +H(t)u{Dtot(t)−Dmax}+ VEtot(t),

where Dtot(t) and Etot(t) are the vectors containing delay and
energy consumption for each k, respectively, given R∗. in (19).

IV.NUMERICAL RESULTS

In this section, we provide a numerical assessment of
the proposed method, considering the NVIDIA® edge boards
characteristics reported in [12, Tables I, II, III].
Computing model: we assume the device to be equipped with
the NVIDIA board Jetson TX2®, with fl = 1.3 TFLOPs (cf.
(7)), and the MEH with the NVIDIA board Jetson Xavier NX®,
with fr = 21 TFLOPs (cf. (9)). The parameters in (2) and (4)
are taken from [12, Table III], and are a = 2.6727 × 10−8,
b = 1.21334 × 10−10, and a′ = 6.2454 × 10−9. The
available CPU FLOPs are computed, across time slots as
fr,a(t) = αr(t)fr, where αr is assumed to be uniformly
distributed in (0, αr,max], with different values of αr,max ≤ 1,
as specified in the respective figures.
Inference Model - MobileNetv2: although the method pro-
posed in this paper is independent from the CNN architecture,
in this paper we assume that both the device and the MEH
are equipped with MobileNetv2 [17], one of the most popular
lightweight models for computer vision tasks. MobileNetv2 is
a CNN with 53 convolutional layers, and the pretrained version
is trained on more than a million images from the ImageNet
dataset [18]. In this paper, we assume 20 splitting points,
including j = 0, i.e. the offloading of the whole computation
task through the transmission of raw data. In Fig.1, we show
the number of MAC operations to be executed locally (cf.
(1), (5)), and the intermediate data size (cf. (6)), that needs
to be transmitted to the MEH to catch up the processing



60 70 80 90 99.3522
Average energy saving w.r.t. full local inference (%)

40

60

80

100

120
A
v
er
a
g
e
en
d
-t
o
-e
n
d
d
el
ay

(m
s)

Average delay bound Davg

,r;max = 1
,r;max = 0:25
,r;max = 0:1

Full o0oading, -xed max power (,r;max = 0:1)

Full o0oading, -xed max power (,r;max = 0:25)

Full o0oading, -xed max power (,r;max = 1)

(a) Average E2E delay vs. energy saving w.r.t. full local inference

0 20 40 60 80 100

end-to-end delay (ms)

10!2

10!1

100

C
C
D
F
of
en
d
-t
o-
en
d
d
el
ay

Outage probability target 0

,r;max = 1
,r;max = 0:25
,r;max = 0:1

Maximum delay bound Dmax

Full o0oading, -xed max power

(b) CCDF of end-to-end delay

Fig. 2: Energy-delay trade-off and SP selection

remotely for each SP (in logarithmic scale), for the Imagenet
data set, assuming 32 bits encoding each element of the output
feature maps. More specifically, the blue curve represents
the number of MAC operations to be executed locally, for
each SP choice (i.e., the cumulative sum, up to the SPs in
the abscissa), computed using (1) and (5). The heaviest local
workload is obviously reached for the full local inference case,
with around 3 × 108 MAC operations2. Indeed, SP 0 and 19
represent the extreme cases, namely the full offloading case,
and the full local inference, respectively. For j = 0, no MAC
operations are needed locally, while for j = 19, no data need
to be transmitted. Note that, for some of the convolutional
layers, MobileNetv2 makes use of depthwise convolution, a
computationally efficient variant, whose number of operations
can be found in [13, Eqn. (4)]. Notably, the output feature map
size strongly depends on the splitting point choice.
Wireless communication model: we consider an end device

2https://towardsdatascience.com/review-mobilenetv2-light-weight-model-
image-classification-8febb490e61c

10!4 10!3 10!2 10!1 100

,r;max

-5

0

5

10

15

20

25

A
v
er

a
g
e

S
P

ch
o
ic
e

(w
it
h

st
a
n
d
a
rd

d
ev

ia
ti
o
n
)

- = 3
- = 4
- = 4:7

Fig. 3: Average SP selection vs. MEH’s availability

placed at distance d = 50 m from the AP, operating at a carrier
frequency fc = 3.5 GHz, with B = 200 MHz bandwidth. The
noise power spectral density is set to N0 = −174 dBm/Hz,
and an exponent β = 3 is assumed to generate the path loss.
Also, Rayleigh fading with unit variance is considered. The
minimum and maximum transmit powers are set to pmin = 10
mW and pmax = 100 mW, respectively. Also, at each slot t,
the end device generates N(t) new inferencing requests, from
a Poisson process with parameter λ = 10.

As a first result, in Fig. 2a, we show the trade-off between
the average end-to-end delay, and the average energy saving,
with respect to the case in which the end device runs the entire
inference task locally, i.e., the case in which no computation is
offloaded to the MEH. Therefore, the results intrinsically show
the comparison between our proposed solution, and a full local
computation setting. We consider an average delay threshold
Davg = 50 ms, a maximum delay threshold Davg = 100
ms, and a target outage probability below ϵ = 10−2. The
trade-off is obtained by increasing the parameter V (cf. (15))
from left to right, and the simulation is run 2 × 105 slots
(the first 104 are not considered when averaging to avoid
any transient interval). Besides the full local inference case,
the proposed method is compared with a non optimized full
offloading case, with fixed transmission rate R(t) = Rmax(t),
i.e., with fixed maximum transmit power pmax,∀t, whose
resulting delays are represented by the pentagrams, and whose
energy saving is 99.35%. Also, results are obtained for three
different conditions of MEH’s CPU availability αr,max (as
shown in the figure). First, let us notice how the full offloading
case achieves the best performance in terms of energy saving
(99.35%), however without guaranteeing the end-to-end delay,
represented by the horizontal black dashed line, in any of the
cases. Obviously, as the MEH’s CPU availability decreases, the
delay of this benchmark solution increases without control, and
gets further from the predefined threshold, due to the absence
of a delay-aware SP selection and transmit power optimization.
Also, as visible from Fig. 2b, the benchmark strategy does not
guarantee the outage delay, incurring in outages more than
10 times higher than the requirement, differently from the
proposed method. On the other hand, our method achieves



lower but large energy savings, without the cost of violating
the delay constraints, a fundamental aspect of edge inference
services. This is thanks to its capability of selecting the
best SP, i.e., moving more computations locally whenever
the MEH’s CPU suffers from sever drops in terms of FLOP
frequency. Obviously, a very severe drop also deteriorates
the performance of the energy-aware splitting decision and
transmit power optimization, due to the unavailability of the
needed resources. For example, even with αr,max = 0.1, the
maximum energy saving is around 85% in the proposed system
setup. Nevertheless, the delay constraint is always guaranteed
and never sacrificed, both in average and probabilistic sense
(see Fig. 2b). Then, our method is able to find the lowest
energy solution that guarantees the constraints. This is due to
the fact that, as the MEH’s CPU availability decreases, more
computations are pushed locally, in a dynamic and adaptive
way. The latter conjecture is numerically proven in Fig. 3,
in which we show, for the same simulation, the average SP
decision, as a function of the MEH’s CPU availability, for the
highest value of V , i.e., the one corresponding to the rightest
points of Fig. 2a. The latter can be interpreted as the average
depth of local computations, directly relating to the number of
layers executed locally. This is shown for different path loss
exponents β. As expected, the method autonomously increases
the number of locally executed layers, as the MEH’s CPU
availability decreases, at the cost of lower energy savings (see
Fig. 2a). Obviously, the higher is β, the higher the number
of local computation is, even in the case of high availability
of computing resources. Interestingly, for β = 3 (i.e., the best
path loss conditions), the standard deviation shows different
behaviors. Namely, for low availability, full local inference
is preferred most of the time (high average and low standard
deviation). Then, increasing MEH’s computing availability, the
mean decreases (i.e., more computations are pushed remotely
on average), while the standard deviation increases, as the
method has more degrees of freedom in selecting the best
SP, based on current connect-compute resources. By further
increasing the MEH’s availability, the mean and the standard
deviation decrease again, due to the fact that full offloading de-
cisions become more frequent and mostly preferred, although
not always possible due to channel fluctuations. For worse
channel conditions (i.e., β = 4 and β = 4.7), the mean reaches
larger values even in the case of high MEH’s availability, with
lower standard deviation for β = 4.7, since the method has
less freedom to offload due to bad channel conditions.

Overall, the simulations show the inherent coupling be-
tween wireless and computing resources. First, partial offload-
ing based on adaptive DNN splitting is the most promising
solution for edge inference, thanks to its higher degrees
of freedom in choosing the offloaded workload, based on
current connect-compute network conditions. Also, as the
MEH’s CPU availability decreases, more computations are
automatically pushed locally at the device, incurring in lower
energy savings. This is even more noticed in case of severe
propagation conditions at the wireless access.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a method to dynamically and jointly select
the best SP of a CNN model, and communication resources, to
perform low energy edge inference with controlled E2E delay.
We exploited tools from Lyapunov stochastic optimization to
devise our solution. Numerical results on empirical models

for the energy consumption show that our proposed solution
outperforms two benchmarks (full offloading and full local
inference) by effectively reducing energy consumption while
guaranteeing delay constraints. Future works include multi-
user scenarios, the investigation of energy fluctuations of the
edge boards, and the impact of wireless errors on the SP
selection, towards goal-oriented cooperative edge inference.

REFERENCES

[1] S. Kekki et al., “ETSI White Paper: MEC in 5G networks,” The
European Telecommunications Standards Institute (ETSI), Tech. Rep.
ETSI White Paper No. 28, 2018.

[2] M. Merluzzi, P. Di Lorenzo, S. Barbarossa, and V. Frascolla, “Dynamic
Computation Offloading in Multi-Access Edge Computing via Ultra-
Reliable and Low-Latency Communications,” IEEE Transactions on
Signal and Information Processing over Networks, pp. 1–1, 2020.

[3] M. Merluzzi, P. Di Lorenzo, and S. Barbarossa, “Wireless Edge
Machine Learning: Resource Allocation and Trade-Offs,” IEEE Access,
vol. 9, pp. 45 377–45 398, 2021.

[4] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and
early exiting for deep learning applications: Survey and research
challenges,” ACM Comput. Surv., mar 2022, just Accepted. [Online].
Available: https://doi.org/10.1145/3527155

[5] J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Communications Magazine,
vol. 58, no. 12, pp. 20–26, 2020.

[6] M. Nakahara et al., “Retransmission edge computing system conducting
adaptive image compression based on image recognition accuracy,”
in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall).
IEEE, 2021, pp. 1–5.

[7] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery for
inference acceleration on the edge,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 1423–1431.

[8] S. D. Manasi, F. S. Snigdha, and S. S. Sapatnekar, “Neupart: Using
analytical models to drive energy-efficient partitioning of cnn compu-
tations on cloud-connected mobile clients,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 28, no. 8, pp. 1844–1857, 2020.

[9] Y. Mao et al., “A privacy-preserving deep learning approach for face
recognition with edge computing,” in Proc. USENIX Workshop Hot
Topics Edge Comput.(HotEdge), 2018, pp. 1–6.

[10] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep
learning architecture for intelligent mobile cloud computing services,”
in 2019 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2019, pp. 1–6.

[11] A. Banitalebi-Dehkordi et al., “Auto-Split: A General
Framework of Collaborative Edge-Cloud AI,” Available online:
https://arxiv.org/abs/2108.13041, 2021.

[12] S. Lahmer, A. Khoshsirat, M. Rossi, and A. Zanella, “Energy consump-
tion of neural networks on nvidia edge boards: an empirical model,” in
2022 20th International Symposium on Modeling and Optimization in
Mobile, Ad hoc, and Wireless Networks (WiOpt), 2022, pp. 365–371.

[13] Y. Huang, C. Qiu, X. Wang, S. Wang, and K. Yuan, “A compact
convolutional neural network for surface defect inspection,” Sensors,
vol. 20, no. 7, 2020. [Online]. Available: https://www.mdpi.com/
1424-8220/20/7/1974

[14] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Com-
munication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[16] P. Brito, F. Fabião, and A. Staubyn, “Euler, Lambert, and the Lambert
W-function today,” The Mathematical Scientist, vol. 33, January 2008.

[17] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255.


