

Getting started with GloBI to create networks

Daily, millions of species are interacting. When species occurences and their interactions
are reported by the wider public, a valuable treasure of data is created which helps to
understand how ecosystems are functioning worldwide. In the light of global change, it is
important to not only study species extinctions but also extinctions of interactions due to
unbalanced range shifting of interacting species (Valiente-Banuet et al., 2014). Moreover,
the impact of invasive species on biodiversity can be estimated by their interaction
network.

An interaction network consists of species (circles or nodes) which are connected by lines
representing an interaction (e.g. preys on, pollinates, etc.). Within a network, species can be
either directly or indirectly linked. In this blogpost, I wrote out a workflow to create the
interaction network of Vespa velutina in Belgium, containing both direct and indirect
interactions, based on data available on GloBI and the Belgian species cube.

GloBI indexes species interaction data. It also offers the possibility to visualise species
interactions. However, if you want to dive into the world of GloBI to explore its data for
research, it is worth the effort to learn how to work with the complete GloBI database. Here,
I offer a starting guide (set up with the help of Jorrit Poelen) on how to access the complete
GloBI database to create networks. The flow presented below is largely based on
interactIAS, a Jupyter notebook created by Quentin Groom. This work was supported by
Action CA17122 Increasing understanding of alien species through citizen science (Alien-
CSI), supported by COST (European Cooperation in Science and Technology www.cost.eu)
through a virtual short term scientific mission.

https://alien-csi.eu/news-and-media/blogs/ecological-interactions-workshop-ecological-interactions-networks
https://alien-csi.eu/news-and-media/blogs/ecological-interactions-workshop-ecological-interactions-networks
https://doi.org/10.1111/1365-2435.12356
https://www.globalbioticinteractions.org/
https://zenodo.org/record/7389450#.Y9aB33bMJPZ
https://www.globalbioticinteractions.org/data
https://github.com/AgentschapPlantentuinMeise/interactias/blob/master/notebook/interactias.ipynb

Install & setup WSL

The fastest way to perform data wrangling on large datafiles is using the Linux command
line. If you have a Windows laptop (like me) the best way to get started is by installing WSL
(Windows subsystem for Linux) following this instruction guide. I choose to install Ubuntu
as Linux distribution.

After installation, open the Linux distribution by the start Menu: a Linux terminal will
appear. The first time you open this terminal you will be asked to create a Linux username
and password.

Update and upgrade your repository

sudo apt update
sudo apt upgrade

Now, use the pwd command to find out your current working directory.

pwd

You can create a new folder by:

mkdir /home/username/newfolder

Define this new folder as your working directory:

cd /home/username/newfolder

Data filtering from entire GloBi database

Now, go to the GloBI website and download latest stable version of the entire GloBI
database. The database of GloBI is available in many formats. For the following, you are
advised to download a stable (citable) version of the database in tsv format. Place the
download into the working directory after downloading.

Check the content of this file by printing the first line:

cat interactions.tsv.gz | gunzip | head -n 1

In this example, we are interested in creating a network for Vespa velutina, containing both
direct and indirect interactions.

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/install
https://zenodo.org/record/7348355/files/interactions.tsv.gz
https://zenodo.org/record/7348355/files/interactions.tsv.gz
https://www.globalbioticinteractions.org/data

Getting direct interactions from GloBI

To obtain the direct interactions, we now search the database for all lines containing Vespa
velutina. This outcome is saved into a the file vespa_velutina_interactions.tsv by:

zgrep "Vespa velutina" interactions.tsv.gz > vespa_velutina_interactions.tsv

Herein, zgrep allows searching within zipped files. As such, a file does not not need to be
unpacked beforehand. In this example, we are lucky as Vespa velutina has no synonyms. In
case your species of interest has multiple synonyms, the above code should be adapted to
filter interactions.tsv.gz for all synonyms.

Explore the file vespa_velutina_interactions.tsv by printing the first 10 lines of the
dataframe within the terminal:

cat vespa_velutina_interactions.tsv | head

Check the number of lines within vespa_velutina_interactions.tsv by:

cat vespa_velutina_interactions.tsv | wc -l

The file vespa_velutina_interactions.tsv contains all direct interactions of Vespa velutina
within the GloBI database. We clean this final file before importing in R by only saving the
following columns and deleting any duplicate rows:

• column 2: taxonids of the source species

• column 3: taxon name

• column 4: taxonomic level of source species

• column 8: mapped source species name

• column 20: phylum name source species

• column 22: kingdom name source species

• column 39: interaction type

• column 42: taxonids of the target species

• column 43: taxon name

• column 44: taxonomic level of target species

• column 48: mapped target species name

• column 60: phylum name target species

• column 62: kingdom name target species

cat vespa_velutina_interactions.tsv| cut -f2,3,4,8,20,22,39,42,43,44,48,60,62
| sort | uniq -c | sort -nr > vespa_velutina_interactions-light.tsv

Getting indirect interactions from GloBI

Before we continue with filtering the indirect interactions of Vespa velutina from GloBI, it is
important to highlight that an interaction always consists out of a source species, an
interaction type and a target species. In the file vespa_velutina_interactions.tsv, Vespa
velutina might occur both as source or target species. Now, we want to list all unique source
and target species with which Vespa velutina is interacting. To do this, we filter all unique
species names from column 8 and 48 within the file vespa_velutina_interactions.tsv. Both
columns refer to the mapped species name of the source species and target species,
respectively.

cat vespa_velutina_interactions.tsv| cut -f8 | sort | uniq > vespa_velutina_s
ources.tsv
cat vespa_velutina_interactions.tsv| cut -f48 | sort | uniq > vespa_velutina_
targets.tsv

It is important to manually remove the first row of the files in case it represents an empty
line.

The indirect interactions of Vespa velutina are selected from GloBI by looping over each of
these species within both files and writing out all interactions containing these species into
an output file (secundary_interactions_sources.tsv and secundary_interactions_targets.tsv,
respectively)

https://www.globalbioticinteractions.org/process

while read line; do zgrep "$line" interactions.tsv.gz >> secondary_interactio
ns_sources.tsv; done <vespa_velutina_sources.tsv
while read line; do zgrep "$line" interactions.tsv.gz >> secondary_interactio
ns_targets.tsv; done <vespa_velutina_targets.tsv

Again, we clean up both output files by only selecting particular columns (see above) and
deleting duplicate rows.

cat secondary_interactions_sources.tsv| cut -f2,3,4,8,20,22,39,42,43,44,48,60
,62 | sort | uniq -c | sort -nr > secondary_interactions_sources_light.tsv
cat secondary_interactions_targets.tsv| cut -f2,3,4,8,20,22,39,42,43,44,48,60
,62 | sort | uniq -c | sort -nr > secondary_interactions_targets_light.tsv

For completeness, I mention that there is a list of refuted interactions available on GloBI.
Interactions within this list contain errors and should therefore be excluded from your
network. This is not illustrated here.

© Gilles San Martin

Fine-tuning of network within R

Now, we will fine-tune these interactions into a network in R.

First, load all necessary libraries.

https://zenodo.org/record/7348355/files/refuted-interactions.tsv.gz

library(dplyr)
library(stringr)
library(tidyr)
library(rglobi)
library(tidyverse)
library(purrr)

Read in all three files containing interactions (primary interactions and secondary
interactions of sources and targets) and bind these together in one dataframe.

header <- c('sourceTaxonIDs',
 'sourceTaxonName',
 'sourceTaxonLevel',
 'sourceSpeciesName',
 'sourcePhylum',
 'sourceKingdom',
 'interactionType',
 'targetTaxonIDs',
 'targetTaxonName',
 'targetTaxonLevel',
 'targetSpeciesName',
 'targetPhylum',
 'targetKingdom')

#reading in GLOBI output
interactions_sources <- read.csv("secondary_interactions_sources_light.tsv",
 sep = "\t",
 quote="",
 header=FALSE,
 col.names=header)

interactions_targets <- read.csv("secondary_interactions_targets_light.tsv",
 sep = "\t",
 quote="",
 header=FALSE,
 col.names=header)

primary_interactions <- read.csv("vespa_velutina_interactions_light.tsv",
 sep = "\t",
 quote="",
 header=FALSE,
 col.names=header)

raw_interactions <- rbind(interactions_sources,
 interactions_targets,
 primary_interactions)

Check the type of interactions occuring in your dataset.

unique(raw_interactions$interactionType)

Define the interactions that are of interest.

interactions_to_include <- c("hasHost",
 "eats",
 "pathogenOf",
 "interactsWith",
 "parasiteOf",
 "endoparasiteOf",
 "ectoparasiteOf",
 "visitsFlowersOf",
 "preysOn",
 "visits",
 "endoparasitoidOf",
 "mutualistOf",
 "pollinates",
 "parasitoidOf",
 "guestOf",
 "kills",
 "ectoParasitoid")

Now, further process the dataframe by: - selecting interactions that are of interest -
selecting rows in which species name of source and target are defined (notice we hereby
only include taxons at species level in the network) - selecting particular columns -
replacing any interaction type or kingdom with a terminology of choice - removing any
duplicate rows

interactionsCleaned <- raw_interactions %>%
 filter(interactionType %in% interactions_to_include)%>%
 filter(sourceSpeciesName!="")%>%
 filter(targetSpeciesName!="")%>%
 select(sourceSpeciesName,
 sourcePhylum,
 sourceKingdom,
 interactionType,
 targetSpeciesName,
 targetPhylum,
 targetKingdom)%>%
 mutate(interactionType = str_replace(interactionType, "kills", "preyson"))%>
%
 mutate(sourceKingdom=str_replace(sourceKingdom, 'Metazoa', 'Animalia'))%>%
 mutate(targetKingdom=str_replace(targetKingdom, 'Metazoa', 'Animalia'))%>%
 distinct()

Which species occur in this network? Export these within the file all_species_network.csv.

all_species <- sort(
 unique(
 c(interactionsCleaned$sourceSpeciesName,
 interactionsCleaned$targetSpeciesName)
)
)

 write.table(all_species,
 'all_species_network.csv',
 row.names=FALSE,
 col.names=FALSE,
 quote=FALSE)

Intermezzo: taxonomic alignment with nomer

In order to create the Belgian network of Vespa velutina, we will only incorporate species
that have been observed in Belgium since 2000 according to GBIF. To do this, we use nomer
to obtain the GBIF speciesKey of each species and then link this to the speciesKeys
mentioned within the Belgian occurence cube. There are multiple ways to obtain the GBIF
taxonKey of a list of species (such as the function name_backbone from rgbif) but for
increased speed I here demonstrate how to apply nomer.

Nomer is available as a linux package. So we return to the Linux command line to perform
the following steps. First update and upgrade the repository before you install nomer:

sudo apt update
sudo apt upgrade

Install curl if not yet installed. This package allows you to download nomer from github.

sudo apt install curl

Download Nomer locally. Check for the most recent versions of nomer here and adapt url-
link below.:

https://github.com/globalbioticinteractions/nomer
https://zenodo.org/record/7389450#.Y7c0QHbMJPY
https://cran.r-project.org/web/packages/rgbif/index.html
https://github.com/globalbioticinteractions/nomer/releases

curl -L https://github.com/globalbioticinteractions/nomer/releases/download/0
.4.8/nomer.deb > nomer.deb

Install Nomer and its dependencies:

sudo apt install ./nomer.deb

Download taxonomic backbone of GBIF for nomer locally. Check for the most recent
versions of nomer here and adapt url-link below.

curl -L https://github.com/globalbioticinteractions/nomer/releases/download/0
.4.7/gbif_mapdb.zip > ~/.cache/nomer/gbif_mapdb.zip

Now, copy the file all_species_network.csv into your working repository (see explanation
above on how to define your working repository in Linux). Add a tab in front of each species
name, a necessity for running nomer, and lookup the GBIF taxonomic backbone for each
species. Save outcome in all_species_network_gbif.tsv.

cat all_species_network.csv |sed "s/^/\t/g" | nomer append gbif> all_species_
network_gbif.tsv

Finalizing network

Now we open the output from Nomer in R:

headerNames <- c('V1','speciesName','relation','taxonKey', 'GBIFspeciesName',
'author','taxonLevel','V8','taxonomy','GBIFtaxonomy','taxonomyTaxonlevel', 'V
12', 'url')

all_species_network_gbif <- read.csv("all_species_network_gbif.tsv",
 sep = "\t",
 quote="",
 header=FALSE,
 col.names = headerNames)

It is important to list the names that are not found by Nomer and check for possible errors.

https://github.com/globalbioticinteractions/nomer/releases

not_found_nomer <- all_species_network_gbif %>% filter(relation=='NONE')
write.csv(not_found_nomer, 'not_found_nomer.csv')

To create the network, we are only interested in the taxonKeys per species returned by
Nomer. We separate the column taxonKey into two new columns: taxonomy and taxonKey
based on the separator ‘:’. As such the value ‘GBIF:1311477’ is separated into ‘GBIF’ and
‘1311477’. We only maintain distinct rows and delete all names that are not recognized by
Nomer.

speciesNetwork <- all_species_network_gbif %>%
 select(speciesName, taxonKey)%>%
 separate(taxonKey, c('taxonomy', 'taxonKey'),sep=":")%>%
 distinct%>%
 filter(!is.na(taxonKey))

Import the species cube for Belgium after downloading it into your R working directory.
Also, we define the year from which observations in the cube are considered relevant.

year <- 2000

cube_BE <- read_csv('be_species_cube.csv')%>%
 filter(year>=2000)

Which species from the network occur in the Belgian species cube?

speciesNetworkCubeBE <- speciesNetwork %>% filter(
 taxonKey%in%cube_BE$speciesKey)

What are the primary interactions of Vespa velutina? To answer this question we look up all
interactions having Vespa velutina as source and a species within the Belgian cube as target
(PartI), and all interactions having a species within the cube as source and Vespa velutina as
target (PartII). Together, these represent the primary interactions of Vespa velutina in
Belgium, according to GloBI and the Belgian species cube.

primaryInteractionsPartI <- interactionsCleaned %>%
 filter(sourceSpeciesName == "Vespa velutina")%>%
 filter(targetSpeciesName%in%speciesNetworkCubeBE$speciesName)

primaryInteractionsPartII<- interactionsCleaned %>%
 filter(sourceSpeciesName%in%speciesNetworkCubeBE$speciesName)%>%
 filter(targetSpeciesName == "Vespa velutina")

What are the primary species?

primary_species<- unique(c(primaryInteractionsPartI$targetSpeciesName,
 primaryInteractionsPartII$sourceSpeciesName))

What are the secondary interactions of Vespa velutina? To answer this question we look up
all interactions having a primary species as source and a species within the Belgian cube as
target (PartI), and all interactions having a species within the cube as source and a primary

https://zenodo.org/record/7389450#.Y7c0QHbMJPY

species as target (PartII). Together, these represent the secondary interactions of Vespa
velutina in Belgium, according to GloBI and the Belgian species cube.

secondaryInteractionsPartI <- interactionsCleaned %>%
 filter(sourceSpeciesName%in%primary_species)%>%
 filter(targetSpeciesName%in%speciesNetworkCubeBE$speciesName)

secondaryInteractionsPartII<- interactionsCleaned %>%
 filter(sourceSpeciesName%in%speciesNetworkCubeBE$speciesName)%>%
 filter(targetSpeciesName%in%primary_species)

What are the secondary species? Note that species can be primary and secondary, therefore
primary species are deleted from this list.

secondary_species<- unique(c(secondaryInteractionsPartI$targetSpeciesName,
 secondaryInteractionsPartII$sourceSpeciesName))

secondary_species <- secondary_species[!(secondary_species%in%primary_species
)]

Bind all interactions together and export your network.

PrimSecInteractions <- rbind(primaryInteractionsPartI,
 primaryInteractionsPartII,
 secondaryInteractionsPartI,
 secondaryInteractionsPartII)%>%
 select(sourceSpeciesName, interactionType, targetSpeciesName)%>%
 rename(source=sourceSpeciesName,
 interaction=interactionType,
 target=targetSpeciesName)%>%
 distinct()

 write.csv(PrimSecInteractions, 'edges.csv', row.names=FALSE)

Network visualisation in Gephi

There are many options to visualise your network but Gephi is certainly a good candidate.
You can find more information on how to create networks in Gephi here. When we visualise
the network obtained above we get the following figure:

https://gephi.org/users/tutorial-visualization/

How and what to cite when creating networks?

Do not forget to refer to the original datasets and sources of the interactions in your
network. Their info is described in columns 87 to 91 in the file interactions.tsv.gz.

For instance, the original datasets of the primary interactions described in the file
vespa_velutina_interactions.tsv can be found by:

cat vespa-velutina-interactions.tsv | cut -f88,89,90,91 | uniq

As an example, the reference of each individual interaction in the file
vespa_velutina_interactions.tsv can be found by:

cat vespa-velutina-interactions.tsv | cut -f87 | uniq

Do also cite the version of GloBI that you downloaded: An overview is available here.

The sources of nomer can be found by:

nomer properties| grep preston

https://zenodo.org/record/7348355#.Y9O0OnbMJPY

The version of the GBIF taxonomic backbone that is applied by nomer can be found by:

nomer properties| grep gbif

Refer to this blogpost by https://doi.org/10.5281/zenodo.7576207.

Jasmijn Hillaert (Research Institute for Nature and Forest, Belgium).

Any comments or issues can be posted here or send by email. Any updates of the presented
code are available at https://doi.org/10.5281/zenodo.7576207.

https://github.com/jrhillae/AlienCSI_VM_JH/issues
jasmijn.hillaert@inbo.be

