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Abstract 

Bridge infrastructure has great economic, social and cultural value. Nevertheless, many of the 

infrastructural assets are in poor condition as has been recently evidenced by the collapse of 

several bridges. The objective of this systematic review is to collect and synthesise state-of-

the-art knowledge and information about how bridge information modelling, finite elements, 

and bridge health monitoring are combined and used in the creation of digital twins (DT) of 

bridges, and how these models could generate damage scenarios to be used by anomaly 

detection algorithms for damage detection on bridges, especially in those bridges with cultural 

heritage. A total of 76 relevant studies from 2017 up to 2022 are included in this review. The 

synthesis results show a general consensus towards the future adoption of DT for bridge 

design, management and operation among the scientific community and bridge practitioners. 

The main gaps identified are related to the lack of software interoperability, the required 

improvement of the performance of anomaly-detection algorithms and the approach definition 

to be adopted for the integration of DT at the macro scale. Other potential developments are 

related to the implementation of Industry 5.0 concepts and ideas within DT frameworks. 

Keywords 

Bridges, Digital Twins, Anomaly Detection Algorithms, Finite Element Method, Cultural 

Heritage Conservation, Bridge Information Modelling, Bridge Health Monitoring  

1 Introduction 

In 2018 the Morandi bridge collapsed in Genova, Italy, killing 43 people, forcing the 

displacement of 200 families living below the bridge, causing damages of EUR 422 million and 

yearly losses of EUR 784 million to the industry sector in the region (Xuequan, 2018). During 

the last 2 decades, the collapse of more than 120 bridges worldwide has caused economic 

losses and casualties (Wang et al., 2022). A total of 9 661 structures representing the 12.4% 

of all bridges and tunnels in Canada are reported to be in poor/very poor condition 

(Infrastructure, 2019), whereas 46 154 bridges, equivalent to the 7.5% of this kind of asset in 

the United States are considered structurally deficient (ASCE, 2021). In comparison, the 

percentages of deficient bridges in European countries such as France, Germany and the 

United Kingdom are even higher, 39, 30 and 37% respectively (Commission et al., 2019). 

Besides, many old bridges are considered to have a Cultural Heritage (CH) value and some 

of them are even inscribed on the UNESCO World Heritage List (World Heritage Centre, 2023) 

thanks to their outstanding universal cultural value. In addition to human and economic losses, 

the damage or collapse of a historical bridge also entails the painful loss of a cultural asset. 

Because of the large number of existing bridges and the limited availability of human and 

economic resources (PIARC, 2023), it is not feasible to continuously inspect and assess the 

structural condition of every bridge using conventional methods. In the current practice, bridge 

inspections are performed on a code-prescriptive fixed-scheduled periodic basis varying 

between two to six years (EuroStruct, 2020). However, those periodic revisions have proven 

to be ineffective, as damage could appear after a periodic inspection and not be detected until 

the next one, leading to further deterioration of the bridge and increased cost of its eventual 

repair or replacement, if not to its collapse. In addition to the particular condition of a bridge, 

other factors can be considered in scheduling and performing bridge inspections. Most 

approaches consider the current and future usage of the bridge, its role in the transportation 

network, as well as other environmental, political and social factors. It is of paramount 
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importance to integrate CH values with bridge management methodologies, in agreement with 

international principles of conservation (Petzet, 2004), otherwise irreplaceable parts of our built 

environment may be lost forever. 

A theoretical way to tackle the issue of insufficient resources at a network level, while 

adequately considering the CH value of a bridge, is to adopt a novel Digital Twin (DT) 

paradigm. A DT contains a virtual replica of a real-world bridge and a connectivity module that 

allows both the physical and virtual assets to be synchronized along the life cycle stages of the 

bridge. The 3D geometry of the bridge can be created through a Bridge Information Modelling 

(BrIM) approach, whereas a mechanical twin can be constructed in Finite Element (FE) 

software. Sensors installed during a Bridge Health Monitoring (BHM) process can provide data 

about the environmental conditions, loads and response of the structure to those loads, either 

at local-element or global bridge scale. A series of damage and decay scenarios can be 

simulated on the virtual asset, which will reproduce the structural response of its physical 

counterpart through a series of FE models. This digital approach allows testing the bridge and 

generating the required data under several “normal” and “damaged” scenarios necessary for 

training Artificial Intelligence (AI) data-driven models such as anomaly detection algorithms 

(ADAs) capable to detect damage in quasi-real time. The bridge management stakeholder 

uses the generated information to make an informed decision, thus optimising the resources it 

has at its disposal. Therefore, a DT methodology leads to improved bridge performance and 

CH conservation, an increase in the bridge service life and an eventual reduction of the 

maintenance and operation costs of the bridge network. 

The aim of this systematic review is to collect and synthesise state-of-the-art knowledge and 

information about how BrIM, FE and BHM are combined and used in the creation of DTs of 

bridges and how these models could generate damage scenarios to be used by AI ADAs for 

damage detection on bridges (especially in those bridges with CH value). To this end, the 

proposed systematic review answers the following questions; (a) what are the most efficient 

ways to build bridge DTs based on BrIM, FEs and BHM?, and (b) what are the best ADAs that 

could be used on the damage detection of conventional and CH bridges? 

The value of this paper lies in the need of having a comprehensive perspective of the current 

state of the art as the keystone for further research and development. The rest of this paper is 

organized as follows: Section 2 presents the methodology applied for the search strategy, 

bibliometric analysis and synthesis of the found information, Section 3 contains the bibliometric 

results and Section 4, the narrative synthesis. Finally, in Section 5 some conclusions are 

drawn, highlighting the gaps and further research suggestions derived from the systematic 

review work. 

2 Methodology 

The PRISMA 2020 methodology (Page et al., 2021a), although mainly developed and used in 

the medical and clinical sciences, can also be applied in engineering, as it provides 

methodology guidance to identify, select, appraise and synthesize the available literature. 

Thus, this systematic review has followed the checklist provided by PRISMA and a protocol 

was developed in accordance to the guidelines of the PRISMA-P Explanation and Elaboration 

(Page et al., 2021b). In accordance with the guidelines, our systematic review protocol was 

registered in the Open Science Framework (OSF) Registries with registration number sh9b2 

(Jimenez Rios et al., 2023b). The protocol of this systematic review can be consulted in 

Jimenez Rios et al. (2023c) 
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2.1 Search strategy 

Quality of systematic reviews heavily relies on the search strategy implemented for the 

information retrieval process. Nevertheless, search strategies are commonly not adequately 

reported. This systematic review has adopted a search strategy methodology based on the 

PRISMA-S checklist (Rethlefsen et al., 2021). 

The search strategy implemented in this systematic review was performed in Scopus because 

of its wide coverage of the literature, its high-quality content and its advanced data extraction 

capabilities (Elsevier, 2023). Initially, seven main keywords of interest were selected, namely, 

“bridge”, “digital twin”, “bridge information modelling”, “finite element methods”, “bridge health 

monitoring”, “anomaly detection algorithms” and “cultural heritage”). These keywords (and 

similar terms such as “bridge” and “bridges”) were combined to obtain six search queries in 

which every search combined a keyword with the “bridge” keyword. Thus, the queries obtained 

were: 

• bridge* AND “digital twin*” 

• bridge* AND (BrIM OR “bridge information model*”) 

• bridge* AND (FEM OR FEA OR “finite element method*” OR ”finite element analy*”) 

• bridge* AND (“bridge health monitoring” OR ”structural health monitoring”) 

• bridge* AND (ADA OR “anomaly detection algorithm*”) 

• bridge* AND (“cultural heritage” OR “monument* bridge*” OR “old bridge*” OR “ancient 

bridge*” OR “historic* bridge*”) 

where * represents the wild character, AND and OR are Boolean operators, “·” are used to 

group individual words into multi-word keywords and (·) are used to group several similar 

terms. The six searches were limited to journal articles, conference papers, reviews and book 

chapters written in English that were published after 2017 on the subject of Engineering. The 

searches were performed within the fields of title, abstract and keywords. Table 1 presents the 

full queries used in the search, which was performed on 10/12/2022, and the respective 

number of records found for each one of them. 

Table 1. Full queries used for the search and the respective number of records found. 

Query # of 
records 
found 

TITLE-ABS-KEY ( bridge* AND ”digital twin*” ) AND ( LIMIT- 
TO ( PUBYEAR , 2022 ) OR LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR 
LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 
) ) AND ( LIMIT-TO ( SUBJAREA , ”ENGI” ) ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) ) AND ( 
LIMIT-TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( DOCTYPE , ”cp” ) OR LIMIT-TO ( DOCTYPE , ”re” ) 
OR LIMIT-TO ( DOCTYPE , ”ch” ) ) 

178 

TITLE-ABS-KEY ( bridge* AND ( brim OR ”bridge information model*” ) ) AND ( LIMIT-TO ( 
SUBJAREA , ”ENGI” ) ) AND ( LIMIT-TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( DOCTYPE , ”cp” ) OR 
LIMIT-TO ( DOCTYPE , ”re” ) OR LIMIT-TO ( DOCTYPE , ”ch” ) ) AND ( LIMIT-TO ( PUBYEAR , 
2022 ) OR LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( 
PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 ) ) AND ( 
LIMIT-TO ( LANGUAGE , ”English” ) ) 

56 

TITLE-ABS-KEY ( bridge* AND ( fem OR fea OR ”finite element method*” OR ”finite element analy*” 
) ) AND ( LIMIT-TO ( SUBJAREA , ”ENGI” ) ) AND ( LIMIT-TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( 
DOCTYPE , ”cp” ) OR LIMIT-TO ( DOCTYPE , ”re” ) OR LIMIT-TO ( DOCTYPE , ”ch” ) ) AND ( 
LIMIT-TO ( PUBYEAR , 2022 ) OR LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 
) OR LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 
2017 ) ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) ) 

5137 

TITLE-ABS-KEY ( bridge* AND ( ”bridge health monitoring” OR ”structural health monitoring” ) ) AND 
( LIMIT-TO ( SUBJAREA , ”ENGI” ) ) AND ( LIMIT-TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( DOCTYPE 
, ”cp” ) OR LIMIT-TO ( DOCTYPE , ”re” ) OR LIMIT-TO ( DOCTYPE , ”ch” ) ) AND ( LIMIT-TO ( 
PUBYEAR , 2022 ) OR LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR 

2941 
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LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 
) ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) ) 

TITLE-ABS-KEY ( bridge* AND ( ada OR ”anomaly detection algorithm*” ) ) AND ( LIMIT-TO ( 
SUBJAREA , ”ENGI” ) ) AND ( LIMIT-TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( DOCTYPE , ”cp” ) OR 
LIMIT-TO ( DOCTYPE , ”re” ) OR LIMIT-TO ( DOCTYPE , ”ch” ) ) AND ( LIMIT-TO ( PUBYEAR , 
2022 ) OR LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( 
PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 ) ) AND ( 
LIMIT-TO ( LANGUAGE , ”English” ) ) 

10 

TITLE-ABS-KEY ( bridge* AND ( ”cultural heritage” OR ”monument* bridge*” OR ”old bridge*” OR 
”ancient bridge*” OR ”historic* bridge*” ) ) AND ( LIMIT-TO ( SUBJAREA , ”ENGI” ) ) AND ( LIMIT-
TO ( DOCTYPE , ”ar” ) OR LIMIT-TO ( DOCTYPE , ”cp” ) OR LIMIT-TO ( DOCTYPE , ”re” ) OR 
LIMIT-TO ( DOCTYPE , ”ch” ) ) AND ( LIMIT-TO ( PUBYEAR , 2022 ) OR LIMIT-TO ( PUBYEAR , 
2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( 
PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 ) ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) 
) 

351 

 

A total of 8 673 records were found. Bibliometric information about all those records was 

downloaded from Scopus both in .ris and .csv format and it is available in the open-source 

database Jimenez Rios et al. (2023a). Deduplication, filtering, screening and eligibility 

assessment of all those records was carried out in accordance with PRISMA flow chart Page 

et al. (2021a) (see Figure 1). 

 

Figure 1. PRISMA flow diagram. 

All duplicated records (based on the DOI number) and those records without a DOI number 

were removed. In total, 1 838 records were discarded after this first filtering. As a second filter, 

a search combination was performed. The initial six searches were combined with each other 

using the AND operator (resulting in 15 new searches) in order to obtain relevant records 

dealing with at least three of the initially selected keywords (as the “bridge” keyword was used 

in all original six searches). Thus, 6 446 records were excluded and only 389 records remained, 
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including the top-ten most cited papers from each one of the original searches (60 papers in 

total). The most cited papers were deemed to be of paramount importance to the state-of-the-

art of the field due to their major impact on all related publications. 

The title and abstract of the remaining 389 records were manually screened. Based on the 

authors’ criteria and previous knowledge of the field. Those records that did not fully fit within 

the scope of the review were excluded. Thus, 108 works remained and were subjected to full 

paper examination to assess their eligibility. From this list of 108 works, 2 were removed as 

they were duplicates, 2 more were excluded as they only dealt with the construction of new 

bridges, 12 more were not considered as they did not deal with DTs, and lastly, 16 papers 

were rejected as they were not related to bridges. A total of 76 studies were finally included in 

this systematic review. 

2.2 Bibliometric methodology 

A bibliometric analysis represents a quantitative methodology by which meaningful insights 

can be obtained from large quantities of data (Broadus, 1987). The main outcomes of a 

bibliometric analysis are the identification of emerging research trends in a field, collaboration 

and publication patterns, and exploration of literature structure. The approaches of a 

bibliometric analysis could be categorized into two main groups: performance analysis and 

science mapping (Solorzano and Plevris, 2022). 

In this systematic review the performance analysis was carried out by querying, filtering and 

sorting the bibliographic database obtained from the search strategy, whereas the science 

mapping was performed using the VOSviewer version 1.6.18 software 

(https://www.vosviewer.com/). Performance analysis is presented in terms of publications per 

year, most cited authors, most cited records, documents per country, keyword occurrence and 

most used source for publication. On the other hand, the science mapping focuses on 

analysing the co-authorship relationships in terms of authors and countries, as well as the co-

occurrence relationships between keywords (both author and index keywords). Keywords 

mapping allows visualizing the interconnections of core concepts and topics within a certain 

research area. For further insights into how the maps are created interested readers can 

consult van Eck and Waltman (2014) and the software manual van Eck and Waltman (2022). 

2.3 Synthesis methodology 

The information of the studies included in this systematic review has been qualitatively 

summarized in a narrative synthesis as the findings are characterized by heterogeneity. Data 

has been analyzed and classified within 6 major themes, namely, DTs; BrIM and FE modelling; 

BHM and AI; ADAs; Unmanned Aerial Vehicles (UAVs), satellite monitoring and other 

emerging technologies; and historical and CH bridges. Based on this classification, the findings 

of the systematic review are presented, the strengths and limitations of the studies are 

highlighted, their influence on practice and research is discussed, and future research 

recommendations are suggested. 

3 Bibliometric Results 

3.1 Performance analysis 

Regarding the number of publications per year, Figure 2 shows that over 1 000 papers 

containing the keywords of interest of this systematic review were constantly published yearly 

between 2017 and 2020. The trend though shows an increase in the number of publications 
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from the last two years, with 25 and 50% increments on the number of yearly publications for 

years 2021 and 2022 respectively. 

 

Figure 2. Publications per year. 

Table 2 presents the top 20 most cited works. The paper with the most citations is “Shaping 

the DT for design and production engineering” (Schleich et al., 2017) with a total of 644 

citations. Nevertheless, after the filtering process shown in Figure 1, this paper was not 

included in this systematic review as it is not directly related to bridges. The paper included in 

this systematic review with more citations is “Structural Health Monitoring Using Wireless 

Sensor Networks: A Comprehensive Survey” (Noel et al., 2017) with a total number of 273 

citations. 

Table 2. Most cited records. 

Title Reference # Citations 

Shaping the digital twin for design and production engineering Schleich et al. (2017) 644 

Structural Health Monitoring Using Wireless Sensor Networks: A 
Comprehensive Survey 

Noel et al. (2017) 273 

A Digital Twin-Based Approach for Designing and Multi-Objective 
Optimization of Hollow Glass Production Line 

Zhang et al. (2017) 266 

Computer vision and deep learning–based data anomaly detection 
method for structural health monitoring 

Bao et al. (2019b) 228 

Building Information Modeling (BIM) for transportation infrastructure – 
Literature review, applications, challenges, and recommendations 

Costin et al. (2018) 216 

Digital twin-driven rapid individualised designing of automated flow-
shop manufacturing system 

Lin et al. (2019) 193 

Experimental validation of cost-effective vision-based structural health 
monitoring 

Feng and Feng 
(2017) 

190 

The State of the Art of Data Science and Engineering in Structural 
Health Monitoring 

Bao et al. (2019a) 173 

A review of the piezoelectric electromechanical impedance based 
structural health monitoring technique for engineering structures 

Na and Baek (2018) 170 

Review of Bridge Structural Health Monitoring Aided by Big Data and 
Artificial Intelligence: From Condition Assessment to Damage 
Detection 

Sun et al. (2020) 170 

Autonomous UAVs for Structural Health Monitoring Using Deep 
Learning and an Ultrasonic Beacon System with Geo-Tagging 

Kang and Cha (2018) 156 

Convolutional neural network-based data anomaly detection method 
using multiple information for structural health monitoring 

Tang et al. (2019) 154 

Environmental effects on natural frequencies of the San Pietro bell 
tower in Perugia, Italy, and their removal for structural performance 
assessment 

Ubertini et al. (2017) 135 
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Digital twin in smart manufacturing Li et al. (2022) 128 

A review on deep learning-based structural health monitoring of civil 
infrastructures 

Ye et al. (2019) 128 

Structural Displacement Measurement Using an Unmanned Aerial 
System 

Yoon et al. (2018) 126 

A state of the art review of modal-based damage detection in bridges: 
Development, challenges, and solutions 

Moughty and Casas 
(2017) 

125 

Structural health monitoring of bridges: a model-free ANN-based 
approach to damage detection 

Neves et al. (2017) 124 

Investigation of dynamic properties of long-span cable-stayed bridges 
based on one-year monitoring data under normal operating condition 

Mao et al. (2018) 118 

Recent progress and future trends on damage identification methods 
for bridge structures 

An et al. (2019) 114 

 

Another interesting metric related to citations is one of most cited authors. This parameter 

considers the accumulated number of citations for all papers of an author. Thus, Wang, H., Li, 

H. and Bao, Y. are the most cited authors with 1308, 1276 and 1222 citations respectively (see 

Figure 3). 

 

Figure 3. Most cited authors. 

Without disregarding the important role of the European Union in supporting research and 

science, research is normally fostered at a national level by the National Research Council of 

each country. This is important to understand where most of the work is done in a specific field 

(as this may be accompanied of Geo-political implications). Thus, in Figure 4 the countries with 

at least 100 publications in the field over the past 6 years are shown. China is the country with 

the most publications (2599) followed by the United States and the United Kingdom with 1282 

and 420 publications, respectively. The last country on the list is Turkey, with a number of 105 



 

8 
 

publications. Note that the number of publications per country is based on the country of the 

authors’ affiliations, not on their nationality. 

 

Figure 4. Documents per country. 

In terms of keywords occurrence, it is not surprising to find out that “bridges”, “FEM” and “SHM” 

are among the most recurrent keywords (based on the graphical information presented in 

Figure 5) as they were explicitly included in the search queries. On the other hand, the absence 

of terms such as “digital twins” and “bridge information modeling” may be explained by their 

relatively new adoption in the field, whereas the absence of keywords related to “cultural 

heritage” or “conservation” is directly tracked to the generalized lack of attention towards this 

topics by the research engineering community. 
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Figure 5. Keyword occurrence. 

Most of the research found in this systematic review has been published in three main scientific 

journals, namely, Engineering Structures, Journal of Bridge Engineering and Lecture Notes in 

Civil Engineering, 445, 254 and 182 works in each one respectively (see Figure 6). The total 

number of works concentrated in only these three main sources of publication represents 

12.9% of the total number of records after deduplication found from the initial searches of this 

systematic review 
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Figure 6. Most used sources for publication. 

3.2 Science mapping 

Co-author relationships are qualitatively analysed using a network visualization map. Each 

circle in Figure 7 represents one of the top 100 authors with more publications, as found after 

performing the search strategy previously discussed. The size of each individual circle depicts 

its strength or weight within the network (larger circles belong to authors with a larger number 

of publications). Moreover, the lines that are observed in this figure represent co-authorship 

links, in other words, who works with who. Analogously to the size of the items, the thickness 

of the links depicts their strength, i.e., the strength of the co-authorship links of a given 

researcher with other researchers. 

 
(a) 
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(b) 

Figure 7. Co-authorship relationships in terms of authors: (a) Authors clusters and (b) Most recent average 
publication author, Zhang Y. 

The items in Figure 7 (a) are colour-coded into nine different clusters based on network 

connectivity. Furthermore, Figure 7 (b) shows an overlay visualization of the co-author 

relationships colour-coded in terms of average publication year based on the scores assigned 

to each individual item of the network. It can be observed in Figure 7 (a) that Liu Y. (green, 

121 publications), Li J. (orange, 100 publications), Li Y. (red, 90 publications), Zhang Y. (pink, 

90 publications) and Wang H. (yellow, 88 publications) are the centroids of the five more 

prominent clusters identified in the network. From these five networks, it can be seen in Figure 

7 (b) that the research group spear-headed by Zhang Y. is the one with the more recent 

average year of publication (2020.3). 

Another interesting co-authorship relationship, now in terms of countries, is showcased in 

Figure 8. In this instance, three main clusters can be observed from Figure 8 (a) whose 

strongest items are; China (pink, 2599 publications), United States (red, 1282 publications) 

and United Kingdom-Italy (green, 420 and 415 publications respectively). Being Italy among 

them, the country with the most recent average publication year (2020.09, see Figure 8 (b)). 

 
(a) 
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(b) 

Figure 8. Co-authorship relationships in terms of countries: (a) Countries clusters and (b) country with the most 
recent average publication, Italy. 

The co-occurrence relationships between keywords have similarly been analyzed through 

network and overlay visualization maps as displayed in Figure 9. The “bridges” keyword plays 

a predominant role in this network, which is not surprising because it is the main topic of interest 

in this systematic review. It is closely related to “SHM” and “Damage detection” as they belong 

to the same cluster (red) and have thick link lines (see Figure 9 (a)). Regardless of its relatively 

small strength, “AI” has one of the more recent average publication years (2020.36), which 

shows its relatively new adoption in the field of bridge engineering (see Figure 9 (b)). 

 
(a) 
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(b) 

Figure 9. Co-occurrence relationships between keywords: (a) Keywords clusters and (b) AI links. 

4 Narrative Synthesis 

4.1 Digital twins 

The life-cycle stages of a bridge include (i) Planning and design, (ii) Construction, (iii) 

Inspection and maintenance, (iv) Rehabilitation or replacement and (v) Demolition or 

decommissioning. Accounting for the entire life-cycle of a bridge within the DT paradigm 

requires the parallel evolution of both the digital and physical assets from the planning and 

design phase (inspection and maintenance for existing bridges) until the final demolition or 

decommissioning of the structure. For such purposes, deterioration models that can predict 

the progressive decay of structural performance of the physical asset are of paramount 

importance (Cervenka et al., 2020; Jiang et al., 2021). Thus, Giorgadze et al. (2022) suggested 

an ontological modelling approach that includes not only components related to the structural 

elements of the bridge itself but also resources, processes and risks related to the 

management and operation activities along the life of a bridge. 

In terms of maturity, Shim et al. (2019) group DTs into three progressive categories based on 

their Level of Detail (LOD); partial DT (LOD 200-300, used during conceptual and detailed 

design/analysis), clone DT (LOD 400, which provides construction information) and 

augmented DT (LOD 500, capable of assisting during operation and management stages). 

Analogously, Kang et al. (2021) classify DT maturity into three progressive levels of complexity: 

functional, connected and intelligent. Yet another classification based on the DT features and 

scopes has been identified by Saback de Freitas Bello et al. (2022). On this threefold 

classification, a digital model replicates a physical asset but lacks data connectivity between 

the two, a digital shadow possesses automated one-way data connectivity between the 

physical and digital counterparts, and finally, in a digital twin the real-time data connectivity is 

granted in both directions and the digital asset evolves along with the physical one through its 

service life. 

The multi-scale nature of DTs is explored in the work presented by Lu et al. (2020), where they 

developed a hierarchical architecture to build a DT at both city and building levels. According 

to these authors’ vision, the DT of a bridge could as well be integrated within the DT of a city, 

and this city DT would eventually form part of a DT at a national level. Although this vision 

makes sense for urban bridges, the integration of most bridges as part of transportation 
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networks in rural or natural areas would perhaps be more appropriate if a DT is created at the 

transportation network level (including DTs of roads, tunnels, etc.) which could additionally be 

benefited from traffic data sharing tools as explored by Dan et al. (2022). This suggests that 

the direction for the creation of macro-DTs that integrate DT of individual infrastructure assets 

is still not clearly defined and it needs to be determined whether a geographical, systemic, or 

another kind of ontological integration approach would be more favourable for grouping of 

bridge DTs into the macro-DT of an entire transportation network, country or continent. 

A key component for the successful implementation of the DT paradigm in bridge monitoring 

is the integration of Cloud Computing (CC) within the adopted framework. Jeong et al. (2019) 

build on top of the OpenBrIM schema proposed by Jeong et al. (2017) and develop an 

Infrastructure as a Service (IaaS)/Platform as a Service (PaaS) CC environment in the 

Microsoft Azure cloud platform where an open-source distributed NoSQL database (Apache 

Cassandra) was employed to ensure scalability, flexibility, fault-tolerance and high-performing 

data management. IaaS was offered in the form of virtual machines (VMs) that can be scaled 

either vertically (increasing the computational capabilities of the VM) or horizontally (by adding 

extra VMs). Furthermore, Software as a Service (SaaS) is provided through an online platform 

from where the user can query the information of interest and download the model that can be 

regenerated in structural engineering software such as CSIBridge. 

To further improve the performance of a DT, Dang et al. (2022) propose the implementation of 

an intermediate level defined as Fog Computing (FC, computing done in the data generation 

device itself), which is capable of filtering the great amount of data generated by BHM systems 

before transferring only the relevant data to the CC layer. They also recognize the need for 

having several sub-models as part of the digital replica of a DT, each suitable for particular 

tasks, namely, analytical models based on mechanics and probability theory capable of 

providing exact and fast results in terms of structural response, reliability and safety for 

relatively simple idealized structures, physics-based numerical models (i.e., FE) which can 

replicate the structural response of complex systems for undamaged/damaged scenarios, be 

used for prognosis purposes and to generate synthetically augmented data. This data, along 

with the one collected from the BHM of the physical asset, can be exploited by a third type of 

data-driven models, capable of performing real-time damage detection. 

Along with FC intermediate data filtering, the implementation of enhanced data acquisition 

techniques such as compressive sampling, suitable for sparse data signals (Bao et al., 2019a), 

can drastically reduce the amount of data that would be stored and analysed in the DT. In 

terms of visual acquisition data, the amount of information required for processing could be 

reduced if appropriate compression techniques and image quality percentages are adequately 

determined as done for example by Ri et al. (2020). By using a BrIM model in combination with 

Genetic Algorithms (GA) and Discrete Event Simulation (DES), Nili et al. (2021) propose a 

simulation-based framework to optimize bridge intervention (maintenance, rehabilitation and 

replacement) considering crew limitations. The framework is developed using Microsoft Visual 

Studio environment, Microsoft Access for the data management and data query, Autodesk 

Navisworks Manage as the BrIM application software, GA engine for the planning and 

sequencing modules, and a DES engine of Simphony core service, with a customized .Net 

programming language code. Nevertheless, this framework lacks consideration for CH 

conservation philosophy and methodologies when applied to bridges with CH value. 

4.2 BrIM and FE modelling 

The concept of BrIM is the adaptation of Building Information Modeling (BIM) methodologies 

applied to bridges (McKenna et al., 2017), whereas that historical BIM (HBIM) has been 

developed having CH buildings in mind (Pepe et al., 2020). Based on the life-cycle stage of 
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the bridge in which the BrIM model is built, it could be classified as either as-designed, if the 

model is produced since the planning and design stage, or as-built, if it is created after the 

construction phase, or as-is, if the model has been effectively interconnected with the physical 

asset and is capable of updating its status along the further life-cycle stages of the structure 

(Hosamo and Hosamo, 2022). 

Therefore, by following a multi-level and multi-modal approach as suggested by Xiao et al. 

(2017), an augmented as-is historical bridge information modeling (AI-HBrIM), would be the 

adequate tool to implement BIM methodology for existing historical bridges within the context 

of the DT paradigm. It is estimated that the adoption of this approach could result into up to 

30% reduction on traffic-related costs and a 10% reduction on the overall management and 

operation activities along the entire life of a bridge (Saju et al., 2022). 

A suitable methodology to keep AI-HBrIM digital models interconnected to the physical asset 

is through FE model updating. FE model updating is informed by the actual measured data 

coming from the physical asset (Yu et al., 2022). Ramancha et al. (2020) implement an 

advanced Bayesian inference approach using Sequential Monte Carlo (SMC) simulations to 

update the material and damping model parameters of a full-scale reinforced-concrete column 

under dynamic loading based on the heterogeneous data collected by accelerometers, strain 

gauges, GPS displacements and potentiometers. Similarly, by applying a Bayesian inference 

approach, Ghahari et al. (2022) successfully update an FE model including soil-structure 

interaction effects. This was possible thanks to the motion identification at foundation level 

based on the acceleration measurement data obtained from the BHM. 

While nowadays there are several data formats (specific protocols for data storing and 

retrieving) and schema (organization and structure such as XML, STEP, etc.) proposed for 

achieving AI-HBrIM interoperability, the OpenBrIM Platform (ope, 2023) seems to be the most 

up-to-date option, whereas Industry Foundation Classes (IFC) (ifc, 2023) development team 

is currently preparing a new standard (IFC5) including data definitions required for both 

buildings and bridges over their life cycle. Both OpenBrim and IFC are XML schema-based. 

On this regards, Jeong et al. (2017) have expanded the OpenBrIM standard by enriching it 

with libraries for structural elements (e.g., mesh, constraints and coordinate systems), load 

and analysis conditions (e.g., vehicle loads, modal, static and multi-step) and sensors (e.g., 

accelerometers, strain gauges and thermistors). The input data is organized and stored in a 

NoSQL database and Python is used to create the interface between the database and the 

analysis software (CSI Bridge) by parsing the XML objects. On the other hand, Park et al. 

(2018) propose to use the functional meaning of bridge components (i.e., column, beam, etc.) 

to improve the usability of IFC applied to bridges by exploiting IFC basic modular structure and 

its framework for the sharing of information between various areas of the construction industry. 

Another practicality that has received attention by researchers is the initial geometry modeling 

process of the AI-HBrIM model. Lu and Brilakis (2019) propose an automatic geometry 

modeling method to advance on the creation of HBrIM models characterized by a slicing-based 

object fitting approach. They recreated the geometry of an existing concrete bridge using 3D 

solid elements in IFC format based on a pre-processed labelled point cluster, work previously 

presented by the same authors in Lu et al. (2019). Although their work was limited to a LOD 

level of 250 and to only four general bridge elements, namely, slab, pier cap, pier and girder, 

they achieved an impressive time reduction in comparison with manual geometric modelling 

techniques currently in practice. 

Also in this subject, McKenna et al. (2017) present a case study where 3D laser scanning was 

undertaken to capture as-is geometry and condition data using a Leica P20 pulse-based 

Terrestrial Laser Scanner (TLS). Scans are coloured using imagery obtained from a Nikon 
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D200 camera mounted on a Nodal Ninja bracket to create high-resolution 360◦ panoramic 

images and then processed using Leica Cyclone proprietary software to create a 3D solid 

Autocad model of the structure. Two approaches are followed to transform the CAD model into 

a HBrIM one. Leica CloudWorx for Revit is used first and then Autodesk ReCap software. Most 

of the modeling work is done manually, though. 

As an alternative to conventional geometry data capture of existing bridges necessary to build 

a DT, Rashidi and Karan (2018) propose a low cost, automatic, videogrammetry methodology. 

It consists on videotaping the bridge from several views and directions to reduce occlusions, 

transforming the 2D images captured into a 3D points cloud through the use of a patch-based 

multi-view stereo algorithm (PMVS), applying computer vision algorithms to identify the bridge 

components and exporting those elements to an XML format compatible with major BrIM 

software (RM Bridge, LEAP Bridge Enterprise, AutoCAD Civil 3D, Revit Structure, and Tekla 

Structures). 

Although limited to presenting the applications, challenges and recommendations of BIM on 

transportation infrastructure (without integration within the DT methodology), Costin et al. 

(2018) present a comprehensive review about BIM. They highlight the lack of interoperability 

within the different tools and methodologies currently in practice (Del Rio et al., 2020; Polania 

et al., 2022; Bouzas et al., 2022) as one of the main needs to be addressed to facilitate the 

implementation of BIM on the field of transportation infrastructure. Other significant challenges 

are the assurance of data quality, methodology cost reduction, inherent limitations, and 

institutional barriers as well as resistance to change by the industry agents. 

4.3 BHM and AI 

BHM aims to improve asset performance by measuring and learning from in-service structural 

behaviour (Ye et al., 2022). Moreover, in earthquake-prone countries, BHM supports 

emergency management actions (Limongelli et al., 2019) and it can even be used to provide 

real-time traffic information (Burrello et al., 2020). BHM systems are usually designed based 

on the structural response observed on an a-priori FE model (Ye et al., 2020). Although model-

based BHM approaches (Gonen and Soyoz, 2021; Gonen et al., 2023) have shown to be 

accurate and useful for the prediction of future structural response of bridges under idealized 

load scenarios, due to the high computational resources and the relatively long simulation 

periods required, their use results unfeasible for real-time damage detection applications. With 

the rapid surge and adoption of AI, a new BHM and damage detection paradigm has recently 

gain importance: the model-free, also known as data-driven, paradigm. Data-driven 

methodologies can provide quasi-real-time results when damage occurs, on the other hand, 

they require of large data to be trained and it is difficult to assign a physical meaning to the 

detected damage. Moreover, databases containing information from real damaged bridges are 

scarce, as highlighted by Kim et al. (2021). 

Neves et al. (2017) present a data-driven damage detection approach based on Machine 

Learning (ML). They test their methodology and overcome the lack of large data by creating a 

synthetic database with the help of an FE model. The data set consists on accelerations from 

300 simulations of healthy and two damage scenarios of a bridge, of which 150 are used for 

training of an unsupervised Artificial Neural Network (ANN) and the remaining 150 for 

validation and verification purposes. Even though their approach is effective, the authors list a 

series of necessary improvements before it could actually be put into practice, such as 

considering the effect of environmental and operational conditions, including multiple damage 

scenarios, extending it for damage location and dealing with factors such as minimum reliability 

levels (the CH value of the bridge must as well be considered) for the determination of the 

threshold value. In that regard, Kostic and G  ül (2017) try to include environmental and 
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operational effects into their proposed ANN damage detection methodology by implementing 

a time series analysis, which allows the successful detection of damage under low levels of 

temperature induced noise (< 3%). 

By leveraging the mutual advantages of model-based and data-driven approaches, Zhang and 

Sun (2021) develop a physics-guided ML monitoring strategy. Their methodology consists in 

training an ANN using a baseline undamaged condition from observations of a bridge and 

enriched with damage scenarios data synthetically generated through a FE model. To detect 

damage, it uses the Normalized frequency Change Ratios (NFCR) and the change of the first 

several mode shapes of the bridge, combined in a novel cross-entropy loss function. According 

to the authors, this mixed approach is not only capable of detecting damage, but also of 

locating and quantifying it. 

While some authors have focused on the development of damage-detection data-driven 

methodologies, others have tried to improve the BHM, which is traditionally based on bridge 

instrumentation and results economically unfeasible for short and medium-span bridges. 

Sreevallabhan et al. (2017) present a comprehensive literature review of Structural Health 

Monitoring (SHM) using Wireless Sensor Networks (WSNs), which are a low-cost alternative 

of the wired sensor networks commonly used nowadays. Wang et al. (2022) explore the 

installation and operation of novel piezoelectric transducers, which use a Coda Wave 

Interferometry (CWI) technique, to asses the condition of existing concrete bridges based on 

waves generated by the passing vehicles. 

On the other hand, OBrien et al. (2017) propose an indirect bridge monitoring approach based 

on the instrumentation of the vehicles driving through the bridge. This so called drive-by 

monitoring, provides acceleration data that can be decomposed into three main components; 

vehicle frequency, bridge natural frequency and pseudo frequency associated with vehicle 

speed. These three components are obtained through the means of Empirical Mode 

Decomposition (EMD). Drive-by monitoring approaches have proved effective not only on 

damage detection, but also on damage location. A research gap identified by them that need 

to be address to improve the effectiveness of drive-by monitoring is the effect that road 

roughness has on indirect monitoring. More recently, Locke et al. (2020) present a drive-by 

monitoring approach capable of not only considering road roughness, which is modeled based 

on power spectral density functions (for Standardization, 2016), but also variable 

environmental and operational conditions.  

Another alternative proposed for BHM cost reduction consists on the use of non-contact vision-

based displacement sensors to measure bridge displacements, which is a parameter directly 

related to the stiffness of the structure. These approaches exploit a series of available template 

matching/registration techniques such as Up-sampled Cross Correlation (UCC), pattern 

matching, edge detection, Orientation Code Matching (OCM), Digital Image Correlation (DIC), 

Hough transforms and RANSAC (Feng and Feng, 2017). More recently, Shao et al. (2020, 

2021) propose a holographic visual sensor coupled with computer-vision-based algorithms in 

a non-contact displacement and vibration measurement system, capable of capturing bridge 

full-field displacement and vibrations. Nevertheless, vision-based displacement sensors 

efficiency highly relies on image quality, which is commonly affected by illumination variation, 

partial target occlusion, partial shading, and background disturbance, factors usually present 

on normal bridge operational conditions. On this regard, Shao et al. (2020) suggest the use of 

denoising and contractive auto encoders to reduce low image-quality errors and improve 

visual-based monitoring effectiveness. 
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4.4 ADAs 

The problem of damage detection in bridge monitoring may seem like a simple classification 

problem, i.e., identifying whether there is or there is not any damage in the bridge. However, 

the individual and highly complex nature of bridges may result in different dynamic responses 

and thus add to the complexity of this task. Conventional classification approaches are rarely 

successful due to the important imbalance between normal and anomalous cases, resulting in 

too many false negatives. An excessive number of false negatives may hinder the detection of 

actual damages or substantial decay, ultimately affecting the performance of a bridge and, in 

critical cases, leading to its collapse. Conversely, a large number of false positives would lead 

to unnecessary spending of resources. By contrast, an acceptable number of false positives 

may be even desirable for damage detection on CH bridges, which could be obtained with the 

application of a fine-tuned ADA. Table 3 presents a compilation of the diverse ADAs 

methodologies found on this systematic review. 

Table 3. Various ADAs found on the works included in this systematic review. 

Reference Description Type 

Lu et al. (2020) Cumulative Sum Charts (CUSUM) to automatically detect vibration 
deviations on a pump. 

Vibration-based 

Shim et al. (2019) Edge detection algorithms combined with fuzzy logic to 
automatically analyse images captured via UVAs. 

Visual-based 

Perry et al. (2020) Black Hat Transform and Canny Edge Detector damage detection 
algorithm in conjunction with a module to automatically track the 
change of a defect over time based on an Affine Transform. 
Damage mapping technique to relate the defects on 2D images to 
the 3D point-cloud by applying camera, intrinsic and extrinsic matrix 
multiplications. 

Visual-based 

Neves et al. (2017) ANN to predict the expected accelerations of a bridge based on 
accelerations at previous instant in time. 

Vibration-based 

Obrien et al. (2017) Implementation of Intrinsic Mode Functions (IMFs) and pseudo 
frequency component obtained from indirect drive-by monitoring of a 
bridge. 

Vibration-based 

Kang and Cha 
(2018) 

Deep Convolutional Neural Network (CNN) to analyze the images 
captured by an UAV and effectively detect concrete cracks. 

Visual-based 

Bao et al. (2019b) 
and Tang et al. 
(2019) 

Two-steps computer vision and deep learning-based data-driven 
damage detection method: Transformed registries of time series 
signals into gray-scale image vectors which were subsequently 
labeled and used to train a deep neural network (DNN) capable of 
classifying data pattern anomalies. 

Mixed-visual-
vibration-based 

Garcia Macias and 
Ubertini (2020) 

Automated ADA based upon the pruned exact linear time (PELT) 
method. 

Vibration-based 

Al Ghalib (2022) Pipe-lined methodology combining Principal Component Analysis 
(PCA) and Linear Discriminant Analysis (LDA). 

Vibration-based 

Meixedo et al. 
(2022b) 

PCA combined with autoregressive exogenous input (ARX) and 
clustering algorithms. 

Vibration-based 

Meixedo et al. 
(2022a) 

Continuous Wavelet Transform (CWT) combined with ARX and 
clustering algorithms. 

Vibration-based 

Febrianto et al. 
(2022) 

Statistical FE modeling and confidence intervals. Strain-based 

Weinstein et al. 
(2018) 

Bootstrapping scheme for the training of an ANN. Strain-based 

Soman et al. (2018) Multi-metric data fusion combined with a flexibility index approach. Mixed-strain-
vibration-based* 

Dohler et al. (2018) Subspace-based residual function and a χ2-test for a hypothesis 
testing. 

Vibration-based 

*The use of heterogeneous data fusion particularly in combination with denoising techniques has resulted in 
better data quality obtained from BHM, as reported by Ravizza et al. (2020), from which the different proposed 
damage detection techniques could benefit. 
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A comprehensive review of supervised learning, unsupervised learning, novelty detection and 

deep neural network methodologies used for generalized damage detection is provided by Sun 

et al. (2020). Furthermore, Ye et al. (2019) list a series of deep learning techniques specifically 

used for crack detection, damage detection, loosened bolt detection and damage state 

classification of bridges. Finally, a comprehensive list of damage detection methods classified 

either as model-based (FE model updating) or data-driven (ML and statistical methods) can 

be found in Vagnoli et al. (2018). 

4.5 UAVs, satellite monitoring and other emerging technologies 

One recurrent topic found on this systematic review is the use of UAVs both to capture bridge 

geometry and generate HBrIM models, and to automatically detect damage and decay 

mechanisms based on visual computing techniques (Mongelli et al., 2017; Roselli et al., 2018). 

Over the past few years, the use of UAVs has increased thanks to the reduction of their costs, 

improvement of stability and maneuverability, as well as the development of more efficient 

visual computing techniques. They provide more advantages than manual inspections in terms 

of time, accuracy, safety, and costs (Albeaino et al., 2019). Furthermore, the GPS signal lost 

suffered by UAVs below bridge decks during inspections, has been overcome by the 

implementation of an array of navigation sensors such as optical, infrared and ultrasonic 

sensors as proved by Kang and Cha (2018). The ongoing development of automatizing UAV 

flights would further boost the use of UAVs for bridge monitoring as it would result into 

operational time reductions and path re-usability. 

For example, Perry et al. (2020) report UAVs as a key element of an automatic streamlined 

bridge inspection system capable of identifying and locating bridge surface defects, and 

generating as-built BrIM models for the storage and visualization of damage information. Their 

methodology includes photogrammetry software (Meshroom) for the creation of 3D point cluds 

and photorealistic models, Gaussian Mixture Model and Agglomerative Clustering using 

Python Scikit-learn for element identification along with the use of Revit and Dynamo for the 

creation of the AI-HBrIM model containing 3D geometry and damage cubes. However, their 

approach lacks dealing with the integration of FE and structural analysis tools. 

Yoon et al. (2022) assess bridge condition based on images capture with a UAV from which 

damage is automatically detected through a mask region-based convolutional neural network 

(R-CNN) algorithm. The methodology proposed by these authors also included a FE model 

updating module based on a linear stiffness reduction corresponding to the level of bridge 

condition assessment, as per the damage grades defined in South Korean accepted codes. 

The main limitation of visual-based damage detection techniques is that they cannot identify 

sub-surface damages such as reinforcement corrosion and concrete delamination. These 

techniques need to be complemented with the application of remote sensing technologies such 

as ground-penetrating radar (GPR), infrared thermography (IR) (Xu and Turkan, 2020), or with 

the use of piezoelectric electromechanical sensors that can detect internal damage in a 

relatively inexpensive way (Na and Baek, 2018). Furthermore, in a comparative study between 

UAV photogrammetry scanning capabilities against a conventional TLS, Mohammadi et al. 

(2021) concludes that TLS provides more accurate results and is more suitable for the complex 

implementation of creating an AI-HBrIM model within the DT paradigm. 

Another monitoring technology that has grown in importance over the past few years thanks 

to its capability for real-time remote monitoring of displacements in bridges is the Interferometry 

Synthetic Aperture Radar (InSAR). This technology has benefited from the increase number 

of available satellites and their specialized tools capable of performing millimeter accuracy 

measurement. Alani et al. (2020) use InSAR in combination with GPR to assess the integrity 
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of a historical masonry bridge and the effects that local floods has on its displacement seasonal 

trends. More recently, by taking advantage of the improvements on data processing 

techniques and the availability of larger SAR databases, Gagliardi et al. (2022) manage to 

detect the seasonal deformation components of a historical masonry bridge based on an 

enhanced Multi-Temporal InSAR (MT-InSAR) methodology. One more bridge satellite 

monitoring case, coupled with hydraulic monitoring of river conditions, is reported by Bianchi 

et al. (2022). 

Regardless of the impressive advancements on UAVs, satellites and AI applications 

experienced over the past few years, it is evident that the human component cannot be entirely 

removed from any DT framework. On this regard, Karaaslan et al. (2022) develop a human-

centered approach using Mixed Reality (MR) to improve the quality and effectiveness of 

conventional bridge inspections. This is achieved through the use of Hololens 

(https://www.microsoft.com/en-us/hololens), which provide the bridge inspector with visual 

information in real-time about the bridge condition and defects. 

4.6 Historical and CH Bridges 

Historical bridges with CH value require an extra layer of care and special considerations from 

the part of bridge managers and operators as they not only play a key role in transportation 

networks, but also hold important social, cultural, and artistic value (Pach  ón et al., 2018). Any 

intervention performed in this type of bridge, must abide to the principles of evidence-based, 

minimum and incremental intervention, removable and distinguishable measures, and material 

compatibility established in the Venice Charter (ICOMOS, 1964) and strive to preserve the 

bridge authenticity (ICOMOS, 1994). Furthermore, guidelines and recommendations found in 

the ISCARSAH documents (ICOMOS-ISCARSAH, 2003b,a) and in annex I of the ISO 13822 

standard (ISO, 2010) must be followed to ensure the correct conservation of such valuable 

assets. 

Interventions on CH bridges must be performed by a multidisciplinary team as shown by the 

work done by Conde et al. (2017) and Bautista-De Castro et al. (2018). Conde et al. (2017) 

carry out a comprehensive field survey fully based on non-destructive testing techniques, 

followed by accurate and detailed 3D FE simulations calibrated using the results obtained from 

a dynamic identification campaign based on an operational modal analysis approach. Bautista-

De Castro et al. (2018) perform TLS, ambient vibration test and minor destructive tests. These 

works result in the detailed assessment of the corresponding bridges structural condition and 

in the determination of their acceptable safety level. The full adoption of a DT approach is 

desirable during interventions of CH bridges. A DT would have the ability to monitor in real-

time the structure and detect any possible damage induced by the intervention procedure itself 

as validated by Andersen et al. (2019) in the case of the Henry Hudson I89 Bridge in New 

York, thus complying with the observational approach suggested by conservation guidance. 

Perhaps one of the most advanced tools for damage detection of bridges (in which the CH 

value is also considered), is the one presented by Garc ́ıa-Mac ı́as and Ubertini (2020). Their 

MOVA/MOSS software is capable of automatically perform Operational Modal Analysis (OMA) 

and system identification through four different techniques: Enhanced Frequency Domain 

Decomposition (EFDD) and Polyreference Least Squares Complex Frequency Domain 

method (p-LSCF), both frequency-domain-based, Covariance driven Stochastic Subspace 

Identification (COV-SSI) and data-driven Stochastic Subspace Identification (DATA-SSI), this 

last two being time-domain-based. Subsequently, it executes frequency tracking and detects 

changes in the dynamic properties of the structure by applying statistical process control tools, 

namely, Hotelling, Multivariate Cumulative Sum (MCUSUM) and Multivariate Exponentially 

Weighted Moving Average (MEWMA). Finally, automatic damage detection is done through 



 

21 
 

the implementation of the Pruned Exact Linear Time (PELT) Method. Their tool unfortunately, 

is not part of any DT framework and compatibility issues may arise during integration with other 

modules of available frameworks. 

Along with the conservation of CH value, a sustainable DT framework must as well account 

for robustness and resilience. Structural robustness is the capability of a structure to sustain 

certain amount of damage without suffering full collapse, whereas the resilience of a structure 

refers to its ability to mitigate hazards, absorb the effects of discrete shocks, adapt and recover 

from damaging events while minimizing disruptions (Hajdin et al., 2018). Assessing both the 

robustness and resilience of a bridge, implies dealing with a series of uncertainties related to 

material resistances and external loads. An adequate assessment methodology could be, as 

suggested by Futai et al. (2022), the implementation of reliability-based and risk-based 

performance indicators. It has been proved that modeling uncertainties can greatly be reduced 

by the adoption of a DT framework (Rojas-Mercedes et al., 2022) 

5 Conclusion 

Although not all research works’ scope found on this systematic review encompass the DT 

paradigm, and regardless of all the challenges and limitations still in place for its full 

deployment and implementation in real practice, there seems to be only one school of thought 

and a general consensus towards the future adoption of DT for bridge design, management 

and operation among the scientific community and bridge practitioners. 

A suitable DT framework capable of accounting for the CH of existing bridges would be 

primarily based on the creation of an AI-HBrIM model with fully inter operable data, geometry, 

FE and data-driven modules. The AI-HBrIM would be kept interlinked to its physical asset 

counterpart through the implementation of a and multi-metric BHM system that constantly 

generates data about the structural, environmental and operational conditions of the bridge. 

That data would be effectively generated by optimized sampling methodologies and would 

pass through an intermediate FC layer before its final processing at a CC service. 

Current research gaps on the practical development and implementation of DTs are mainly 

related to (i) the lack of interoperability among the different proprietary and open-source 

software used along the DT model generation pipeline; (ii) performance improvement of 

currently available ADAs; and (iii) the direction for the creation of macro-DTs that integrate DT 

of individual infrastructure assets, needs to be determined and the benefits/drawbacks of 

whether it is done at geographical, systemic, or other kind of ontological integration approach, 

assessed. 

The DT paradigm was born within the Industry 4.0 era. Future potential developments in the 

field are related to the implementation of Industry 5.0 concepts and ideas within DT frameworks 

such as sustainability, human-centrism and resilience (Commission et al., 2022) 
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measurement by the sampling moir  é method from video recording and its application to bridge 

engineering. Experimental Techniques 44, 313–327. doi:10.1007/s40799-019-00358-4 

Rojas-Mercedes, N., Erazo, K., and Di Sarno, L. (2022). English Seismic fragility curves for a 

concrete bridge using structural health monitoring and digital twins. Earthquake and Structures 

22, 503–515. doi:10.12989/eas.2022.22.5.503 

Roselli, I., Malena, M., Mongelli, M., Cavalagli, N., Gioffr `e, M., De Canio, G., et al. (2018). 

English Health assessment and ambient vibration testing of the “ponte delle torri” of spoleto 

during the 2016-2017 central italy seismic sequence. Journal of Civil Structural Health 

Monitoring 8, 199–216. doi:10.1007/s13349-018-0268-5 

[Dataset] Saback de Freitas Bello, V., Popescu, C., Blanksv  ärd, T., T  äljsten, B., Pellegrino, 
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