

5G ZORRO
Grant Agreement 871533

H2020 Call identifier: H2020-ICT-2019-2

Topic: ICT-20-2019-2020 - 5G Long Term Evolution

D4.2: Intermediate prototype of Zero Touch
Service Mgmt with Security and Trust

Dissemination Level

 PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 2 of 68

Grant Agreement no:

871533

Project Acronym:

5GZORRO

Project title:

Zero-touch security and trust for ubiquitous
computing and connectivity in 5G networks

Lead Beneficiary:

NXW

Document version:

V1.0

Work package:

WP4 - Zero Touch Automation with Trust, Security and AI

Deliverable title:

D4.2: Intermediate prototype of Zero Touch Service Mgmt with Security and Trust

Start date of the project:

01/Nov/2019

(Duration 30 months)

Contractual delivery date:

30/Apr/2021

Actual delivery date:

01/June/2021

Editor(s)

Pietro G. Giardina (NXW)

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 3 of 68

List of Contributors
Participant Short Name Contributor

Nextworks NXW Pietro G. Giardina, Juan Brenes, Michael De Angelis, Elena Bucchianeri,
Gino Carrozzo

i2CAT Foundation i2CAT Adriana Fernández-Fernández, Carlos Herranz Claveras, Javier Fernandez
Hidalgo, Muhammad Shuaib Siddiqui

Universidad de Murcia UMU José María Jorquera Valero, Pedro Miguel Sánchez Sánchez, Manuel Gil
Pérez, Gregorio Martínez Pérez,

Atos Spain ATOS Fernando Díaz Bravo, Guillermo Gómez Chavez

IBM Israel Science and Technology IBM David Breitgand, Kathrine Barabash

Altice Labs ALB André Gouveia, André Gomes, Gonçalo Machado, Francisco Sério, José
Bonnet

Intracom ICOM Alberto Erspamer, Alberto Erspamer, Dimitrios Laskaratos, Vasileios
Theodorou

Ubiwhere UW Francisco Cardoso, Filipa Martins

Fondazione Bruno Kessler FBK Rasoul Behravesh

Telefonica Investigacion y Desarrollo TID Diego R. López

List of Reviewers
Participant Short Name Contributor

IBM Israel Science and Technology IBM K. Barabash

Nextworks NXW Gino Carrozzo

i2CAT Foundation i2CAT Muhammad Shuaib Siddiqui

Change History
Version Date Partners Description/Comments

0.1 15 Apr 2021 ATOS, UMU Contribution from ATOS, UMU

0.2 21 Apr 2021 UMU Contribution from UMU

0.3 07 May 2021 NXW, UMU, ATOS, IBM, UW, ICOM, ALB Contribution from NXW, UMU, ATOS, IBM, UW, ICOM, ALB

0.4 13 May 2021 NXW, FBK, UW, I2CAT, ATOS, ALB Contribution from NXW, UMU, ATOS, IBM, UW, ICOM, ALB

0.5 18 May 2021 NXW, ATOS, UMU Contribution from NXW, UMU, ATOS

0.6 25 May 2021 NXW, UMU, UW, ATOS, ALB, ICOM, IBM Contribution from NXW, UMU, UW, ATOS, ALB, ICOM, IBM

0.7 31 May 2021 IBM, NXW, UMU Internal QA review from IBM, fixes from NXW and UMU

1.0 31 May 2021 NXW, i2CAT Final QA review and submission

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 4 of 68

DISCLAIMER OF WARRANTIES
This document has been prepared by 5GZORRO project partners as an account of work carried out within the
framework of the contract no 871533.

Neither Project Coordinator, nor any signatory party of 5GZORRO Project Consortium Agreement, nor any
person acting on behalf of any of them:

▪ makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any

party's intellectual property, or

▪ that this document is suitable to any particular user's circumstance; or

▪ assumes responsibility for any damages or other liability whatsoever (including any consequential

damages, even if Project Coordinator or any representative of a signatory party of the 5GZORRO

Project Consortium Agreement, has been advised of the possibility of such damages) resulting from

your selection or use of this document or any information, apparatus, method, process, or similar

item disclosed in this document.

5GZORRO has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871533. The content of this deliverable does not reflect the official
opinion of the European Union. Responsibility for the information and views expressed in the deliverable lies
entirely with the author(s).

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 5 of 68

Table of Contents
Executive Summary .. 9

1. Introduction ...10

1.1. Document outline ..10

2. Security and Trust Orchestration ...12

2.1. Trust Management Framework ...12
2.1.1. Design Updates ..12
2.1.2. Prototype implementation ..16
2.1.3. Functional tests ..16

2.2. Trusted Execution Environment Security Management ..16
2.2.1. Design Updates ..17
2.2.2. Prototype implementation ..17
2.2.3. Functional tests ..19

2.3. Intra-domain Security enablers ...19
2.3.1. Design Updates ..19
2.3.2. Prototype implementation ..19
2.3.3. Functional tests ..20

2.4. Inter-domain Security at the communication level ..20
2.4.1. Design Updates ..20
2.4.2. Prototype implementation ..21
2.4.3. Functional tests ..22

3. Intelligent and Automated Slice & Service Management ...23

3.1. ISSM Workflow Manager (ISSM-WFM) ...23
3.1.1. Design Updates ..23
3.1.2. Prototype implementation ..23
3.1.3. Functional tests ..23

3.2. ISSM Optimizer (ISSM-O) ...24
3.2.1. Design Updates ..24
3.2.2. Prototype implementation ..24

4. MANO and Slicing Enhancements..25

4.1. Virtual Resource Manager ...25
4.1.1. Design Updates ..25
4.1.2. Prototype implementation ..27
4.1.3. Functional Tests ...29

4.2. Network Slice and Service Orchestrator ..30
4.2.1. Design Updates ..30
4.2.2. Prototype implementation ..32
4.2.3. Functional tests ..32

4.3. E-Licensing Manager ...33
4.3.1. Design Updates ..33
4.3.2. Prototype implementation ..33
4.3.3. Functional tests ..35

5. Module integration for intermediate orchestration prototype...36

5.1. Integration scenario overview ...36

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 6 of 68

5.2. Zero-touch network slice orchestration ...37
5.2.1. Integration tests and results ..41

5.3. E-Licensing control ...41
5.3.1. Integration tests and results ..44

5.4. Data-driven actuation ..53
5.4.1. Integration tests and results ..55

6. Conclusions ..56

References ..59

7. Abbreviations and Definitions ...61

7.1. Abbreviations ...61

8. Appendix I – Trust Management Framework ...62

8.1. Trust Management Framework Information Model ...62

8.2. Trust Management Framework Equations ..65
8.2.1. General PeerTrust equation ...65
8.2.2. Feedback Credibility equation ...67
8.2.3. Transaction Context Factor equation ..68
8.2.4. Community Context Factor equation ..68

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 7 of 68

List of Tables
Table 2-1: Definition of new Trust Management Framework service interfaces .. 14
Table 2-2: Trust Management Framework functional tests .. 16
Table 2-3: Trusted execution environment security management functional tests 19
Table 2-4: Intra-domain functional tests ... 20
Table 2-5: Definition of new Inter-domain Security Establishment service interfaces 20
Table 2-6: Inter-domain security functional tests ... 22
Table 3-1: ISSM-WFM functional tests .. 23
Table 4-1: Resource Definition Translator functional tests ... 29
Table 4-2: Monitoring Data Aggregator functional tests .. 29
Table 4-3: Network Slice and Service Orchestrator functional tests ... 32
Table 4-4: E-Licensing manager functional tests ... 35
Table 5-1: ISSM integration steps .. 38
Table 5-2: NSSO HTTP rest requests used ... 44
Table 6-1: D4.2 contribution to 5GZORRO objectives and KPIs. ... 57
Table 8-1: Trust Management Framework Instance Information Model ... 62
Table 8-2: Trustee Entity Information Model .. 63
Table 8-3: Trustor Entity Information Model .. 63

List of Figures
Figure 2-1: Trust Management Framework integration with SRSD and Data Lake ... 13
Figure 2-2: TEE Proof of concept diagram ... 18
Figure 4-1: Main VRM modules and interaction with other components of the 5GZORRO platform 26
Figure 4-2: Detailed view of the modules composing the Resource Manager ... 26
Figure 4-3: Detailed view of MDA functionality Prototype implementation .. 27
Figure 4-4: Resource Definition Translator internal architecture ... 28
Figure 4-5: Network Slice and Service Orchestrator interfaces .. 30
Figure 4-6: Updated ISSM-NSSO Interface .. 31
Figure 4-7: Updated NSSO-e-Licensing Manager Interface ... 31
Figure 4-8: Detailed view of the modules composing the Network Slice and Service Orchestrator 31
Figure 4-9: eLM Registration process .. 34
Figure 4-10: eLM Monitoring process ... 35
Figure 5-1: High-level steps followed by the Teams for the integration scenario .. 37
Figure 5-2: Integration Architecture of Flow 3-6 (D2.3) .. 38
Figure 5-3: E-License configuration workflow ... 42
Figure 5-4: E-License control workflow ... 43
Figure 5-5: NSSO docker components deployment .. 45
Figure 5-6: NSSO deployment ... 45
Figure 5-7: Onboard of VNF and NS descriptors in the OSM NFVO by the NSSO ... 45
Figure 5-8: NSI registered is OSM NFVO .. 46
Figure 5-9: CheckLicensing request from the NSSO to the ELM ... 46
Figure 5-10: License verified and service instantiation ... 46
Figure 5-11: NS instance deployed at OSM after the license verification. .. 46
Figure 5-12: ELM docker container deployment ... 47
Figure 5-13: ELMC_REST process for the PO registration ... 47
Figure 5-14: ELMC_MQ redirect the registration message ... 47
Figure 5-15: ELMA_MQ registers the POP and send ACK to ELMC_MQ ... 47

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 8 of 68

Figure 5-16: ELMA_REST OSM scheduled NSIs detection ... 48
Figure 5-17: Watcher Manager execution... 48
Figure 5-18: Action creation in ELMA_REST component .. 48
Figure 5-19: ELMA_REST watcher control. .. 48
Figure 5-20: ELMA_REST decommissioned VNF detection ... 49
Figure 5-21: ELMA_MQ Watcher event received .. 49
Figure 5-22: ELMC_MQ time of use action reception ... 49
Figure 5-23: Django Administration Console shows POP registration .. 50
Figure 5-24: Request with wrong Product_ID ... 51
Figure 5-25: Error in license verification shown at NSSO logs ... 51
Figure 5-26: Example of PO registration using eLMC API .. 52
Figure 5-27: SLA Breach prediction workflow ... 54
Figure 5-28: ISBP Architecture ... 55
Figure 5-29: ISBP containers running at ICOM premises .. 55
Figure 8-1 : UML diagram of Trust Management Framework ... 62

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 9 of 68

Executive Summary

This document reports on the intermediate prototypes of the 5GZORRO orchestration and security platforms
produced by the Workpackage 4.

The prototypes described in this deliverable implement the first working version of the 5GZORRO solutions
for advanced management of 5G Service and Slices with high level of security and trust, zero touch
automation and intelligent resource selection and optimization. The prototypes are built to be integrated
with an enhanced NFV management and orchestration solution (MANO) to provide intra and cross-domain
services as well as network slice deployment, strictly coupled with 5G infrastructure management and
monitoring functions.

The reported prototypes implement specific parts of the 5GZORRO Platform and specifically realise the initial
functionalities of:

• The Security and Trust Orchestration sub-system

• The Intelligent and Automated Slice and Service Management sub-system

• The Enhancements to the MANO and Network Slicing sub-systems.

The Security and Trust Orchestration prototype enables the concept to trustworthiness in two different ways.
At first, the Trust Management Framework implements a mechanism to measure the reputation of the
stakeholders; then, the Trust Execution Environment Manager provides the secure execution of services into
a trusted environment (Trusted Execution Environment – TEE), thus protecting it against malicious
stakeholders. Services that can be instantiated in a TEE can be either stakeholder services, i.e., services that
can be purchased from the 5GZORRO Marketplace, or directly 5GZORRO Platform Services (i.e., management
and control functions). Security management is realized at both intra and cross domain levels and provides
services such as secure cross-domain connections and intra-domain detection of failure events and threats.

The automated management of secure services and slices is instead realized with a specific prototype called
ISSM (Intelligent Service and Slice Management). It consists of several specialized modules enabling the
intelligent slice and service orchestration and optimization. The ISSM links the business services (e.g.,
Marketplace) provided by the 5GZORRO platform with the underlying MANO-based orchestration
mechanisms to execute business orchestration of workflows and specific optimization actions based on
several constrains (e.g., cost, efficiency, and trustworthiness). ISSM decisions are enforced by the Network
Slice and Service Orchestrator (NSSO) which is the prototype for MANO enhancements provided by the
5GZORRO project. The NSSO manages the lifecycle of 5G communication services, maps them into proper
network slices instantiated by the underlying NFVOs (e.g., ETSI OSM). The orchestration process includes
interaction with other modules in charge of enhancing the base MANO mechanism: these implement
resource and service monitoring functions as well as e-licensing verification mechanisms, both reported into
this deliverable as prototypes.

This deliverable describes the current status of implementation for the modules designed in deliverable D4.1
[1], and specifically provides:

• Updates to design and API interfaces as they derived from the respective implementation sprints;

• Reference to the major prototype components and the respective source code repositories hosted
in https://github.com/5gzorro.

• Reference to specific functional tests executed on the single components

• Results of a preliminary integration work in generic scenarios for the modules in a s stage of more

mature development, along with information on the integration strategy adopted by 5GZORRO to

facilitate the development and the integration of the different component of the platform.

https://github.com/5gzorro

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 10 of 68

1. Introduction

The orchestration of network services and slices still remains an active and central topic in all of the 5G
management solutions. In fact, beside any abstractions that can be built on top of the management and
orchestration (MANO) platforms, the final goal for any 5G network stakeholder is to have one or more
network services deployed on one or more dedicated networks slices automatically and in very short
timeframes.

Given this context evaluation which is common to many (if not all) the 5G management and orchestration
architectures in state of the art, one of the objectives of 5GZORRO is to enhance the MANO mechanisms
across various directions:

• be multi-stakeholder (i.e., multi-operator)

• be capable of increased automation in the establishment of the 5G services and slices (zero-touch)
also when spanning multiple administrative domains (cross-domain)

• have security embedded in lifecycle management mechanism, i.e., with secure resource deployment
and secure resource usage,

• have a platform capable to provide visibility via measurements of the level of trustworthiness of the
other stakeholders.

In this sense, the secure establishment of network services and slices in a multi-stakeholder environment,
with a high level of automation can be considered a challenging core objective of the 5GZORRO project.

To meet such requirements and achieve the aforementioned objective, a set of software modules have been
designed and are being developed in 5GZORRO project which implement the concepts of security and trust,
to be integrate with intelligent and automated management of services and slices.

This document contains information on the intermediate prototypes released at the end of May 2021 which
derive from the completion of first development sprints and their initial integration as part of the 5GZORRO
platform. The main functions covered by these prototypes and consequently the scope of the deliverable are:

• intermediate release of Trust and Security framework,

• intermediate release of Intelligent Slice and Service Management

• intermediate releases of MANO enhancements.

1.1. Document outline

This document is structured in two main parts.

In the first part, the current status of the modules is reported in terms of design updates, developments of
the prototypes, and functional tests. In this sense, the first part of the deliverable has the same structure of
deliverable D4.1 and can be considered as a follow-up. In particular, Section 2 focuses on the modules that
implement the concepts of security and trust into the 5GZORRO platform. Sections 3 and 4 report the set of
components that build the 5GZORRO orchestration stack, implementing the intelligent automation in the
management of stakeholder 5G network services and slices and the enhancements of the MANO stack in
terms of resource management, orchestration, and licensing.

In the second part, which maps into Section 5, an early integration work is reported against generic scenarios
which will be then specialised with use case validation scenarios. The section is organised to cover three
different integration scenarios:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 11 of 68

• Zero-touch slicing

• e-licensing control

• data-driven actuation.

Section 6 contains some conclusions with reference to the matched project objectives and highlights to the

contribution of this deliverable to related KPIs.

Some specific theoretical background at the base of the Trust Management Framework implementation has

been reported in Appendix I, as complement to the core prototype description information.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 12 of 68

2. Security and Trust Orchestration

The 5GZORRO Security and Trust layer introduces the security and trust functionalities required to ensure
the selection of trusted third parties, protect a tenant service or application running in a computing node,
and secure the communications between 5GZORRO components. In this vein, Security and Trust
Orchestration plays an important role not only for the suitable 5GZORRO platform functioning but also for
bringing a high-level trustworthiness. On account of this, the Security and Trust layer may be interpreted as
an enabler both at intra-domain and inter-domain environments.

The 5GZORRO Security and Trust Orchestration sub-system is split into four modules:

• Trust Management Framework, which is responsible for determining stakeholders’ trust score and
establishing reliable relationships;

• Trusted Execution Environment Security Management, which enables critical workloads in multi-
tenant and multi-stakeholder scenarios

• Intra-domain Security module, which offers internal security services such as detecting and
mitigating feasible attacks and threats

• Inter-domain Security module, which guarantees a secure end-to-end communication through an
on-demand VPN as a Service (VPNaaS).

In this deliverable the Intra-domain Security module is not presented as just preliminary tests on the Intra-
domain security monitoring enablers have been executed (see Sec. 2.3). The work for integrating these
enablers withing the 5GZORRO platform is planned for the next software release.

2.1. Trust Management Framework

5GZORRO ecosystem brings several novelties, for instance, enabling secure, flexible, and automated
establishments that boost new compositions of resources and services in 5G networks by means of multi-
stakeholder combination. 5GZORRO introduces the Trust Management Framework (TMF) that is the module
in charge of guaranteeing the establishment of a trustworthy end-to-end chain across domains. Therefore,
in a situation where a stakeholder needs to forecast trust levels of multiple stakeholders in order to identify
the most appropriate entity, the Trust Management Framework will provide the required functionality to
assess stakeholders’ reputation, and in consequence, to ensure a reliable selection based on past experience
and recommendations.

The scope of the Trust Management Framework is not only to evaluate stakeholders’ trust score but also to
manage the whole lifecycle of trust computation process. The main steps of a trust lifecycle management
are:

• data collection process from available storage sources (Data Lake and dedicated trust database);

• assessment of trust information from own history and recommendations;

• decision-making based on a trust score

• trust information storage for future interactions;

• finally, the continuous evaluation of trust in an established relationship.

2.1.1. Design Updates

Novel considerations related to the integration of the Trust Management Framework with other 5GZORRO
components (workflows) have emerged since the release of the related design in deliverable D4.1 (Jan. 2021).
Therefore, a new internal workflow has been designed to better describe the interaction of the Trust
Management Framework with other key modules and the triggered actions. As it can be observed in Figure

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 13 of 68

2-1, the Smart Resource and Service Discovery (SRSD) application module is the one in charge of launching
the trust computation process for an initial list of offers pre-classified by the SRSD employing mechanisms
such as intent-based priorities, imperative constraints and considerations provided by the consumer. Once
the Trust Management Framework receives a set of offers to be evaluated, the framework will start the data
collection process for each stakeholder associated with it. Hence, the following steps will be carried as many
times as offers need to be assessed.

The Trust Management Framework in each domain should possess a previously generated key pair (intra-

domain keys), as well as a Decentralised Identifiers (DID). Each 5GZORRO Platform Participant of a particular

domain must use the public key of its Trust Management Framework to share trust data into the Data Lake.

Additionally, the Trust Management Framework should possess another global key pair (inter-domain keys)

that could be used by other 5GZORRO Platform Participants (from other domains) in order to provide domain

recommendations. These recommendations may subsequently be used by other participants who do not

have previous information about a specific service or resource. Both key pairs (intra- and inter-domain)

should be created by the Identity and Permission Manager before the 5GZORRO Platform Participant

interacts with the Trust Management Framework.

The impact of these changes is reflected in the workflow described in Figure 2-1.

Figure 2-1: Trust Management Framework integration with SRSD and Data Lake

The Trust Management Framework will launch the startDataCollection method (see sec. 2.1 of deliverable

4.1 for details). Such capability will create new Data Lake pipeline that will retrieve trust information for each

5GZORRO Platform Participant using the two templates defined in sec. 5.1 of deliverable 4.1 (ref. step 5 in

Figure 2-1). As an outcome of this step, the Data Lake platform will generate a new input and output Kafka

topics which will be forwarded to the Trust Management Framework. It should be outlined that Data Lake

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 14 of 68

ought to gather information not only from the specific resource or service but also from its resource or service

provider. In the same way, the Data Lake ought to retrieve information from the 5GZORRO Platform

Participant who triggered a business flow but also recommendations from other participants. Hence, we may

acquire trust information from up to 4 levels: a particular resource or service history, a particular resource

or service recommendation(s), 5GZORRO Platform Participant history (an entity with which we want to

establish a relationship of trust), and 5GZORRO Platform Participant recommendation(s).

Subsequently, the Trust Management Framework will be subscribed through its getInformation method as a

consumer of the previous output Kafka topic provided by the Data Lake and will obtain all the information

collected in the templates. This information will be utilised to perform a final trust score that will be

forwarded to the SRSD. Given that we are assessing the confidence scores of a set of product offers but the

final selected offer is not known at this stage, the Trust Management Framework will disable the continuous

data collection process of each product offer via the stopDataCollection method.

After receiving all trust assessments from the list of offers, the Smart Resource and Service Discovery
application will generate a ranked list of offers based on certain intent priorities as well as the trust scores.
Then, such a list of offers will be sent to the Intelligent Slice and Service Manager. After that, the ISSM
Optimizer (ISSM-O) will determine a cost-efficient allocation of resources and services available at the
marketplace to implement the required slice or service. Hence, the ISSM-O should notify the final list of
highest ranked product ordering to the ISSM Workflow Manager (ISSM-WFM). At this point, the ISSM-WFM
will carry out multiple tasks, with the aid of other modules like the Network Slice and Service Orchestrator
(NSSO), in order to configure and instantiate a slice. Once the slice is instantiated and active, the ISSM-WFM
will notify the final decision to the Trust Management Framework. As a final step, the Trust Management
Framework will launch a continuous data collection for the selected slice or service in order to start the entire
trust lifecycle and update the trust score, in the case of some defined events or triggers are activated.

Due to the changed workflow presented above, it has been necessary to adapt and define new interfaces for
the Trust Management Framework service:

• the previous startDataCollection method, which was responsible for starting and stopping the data
collection, has been split into two methods the startDataCollection and stopDataCollection (see
Table 2-1).

• two new interfaces (requestTrustScores and notifyFinalSelection) have been created in order to
enable the interaction of the Smart Resource and Service Discovery application and the ISSM-WFM
with the Trust Management Framework.

Details on these interface updates are reported in Table 2-1 below.

Table 2-1: Definition of new Trust Management Framework service interfaces

Operation name: startDataCollection

Description
This method is responsible for starting a continuous collection data (e.g.,
Monitoring Analytic, Security Management Service, etc.) from Data Lake platform.

Input Parameters Type Description

 stakeholder_did String
Stakeholder’s DID on which it launches the process of continuous
information recollection.

 trust_parameters Dictionary Empty template with the data to be collected in the Data Lake.

 specific_events* Boolean
Set of triggers that enable an event drive pre-processing to take
place directly in the Data Lake.

Output Parameters Type Description

 data_collection_status Boolean It returns true or false if the data collection cycle is active or not.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 15 of 68

Notes

More detailed information about the dictionary can be found in Section 5.1 of Deliverable 4.1 (trust management
framework information model). Specific_events* is an optional parameter.

Operation name: stopDataCollection

Description
This method is responsible for stopping a continuous collection data (e.g.,
Monitoring Analytic, Security Management Service, etc.) from Data Lake platform.

Input Parameters Type Description

 stakeholder_did String
Stakeholder’s DID on which it disables the process of continuous
information recollection.

Output Parameters Type Description

 data_collection_status Boolean It returns true or false if the data collection cycle is active or not.

Notes

Operation name: requestTrustScores

Description
This method is employed by the Smart Service and Resource Discovery application
in order to evaluate trust scores of a list of pre-classified offers.

Input Parameters Type Description

 list_offers
List of
Product
offers

Set of offers matching stakeholder’s criteria such as intent-based
priorities.

Output Parameters Type Description

 list_trust_scores
List of
double

It returns the trust score computed for each offer.

Notes

Operation name: notifyFinalSelection

Description
This method is employed by the ISSM-WFM to notify the Trust Management
Framework the final resource or service/slice selected and on which the method
will be launched internally.

Input Parameters Type Description

 id_participant DID
Distributed identifier of the 5GZORRO participant who request a slice
or resource.

 id_candidate DID Distributed identifier of the final stakeholder candidate.

 id_offer DID Distributed identifier of the final selected resource or service/slice.

Output Parameters Type Description

 result Boolean It indicates if the operation has been completed successfully or not.

Notes

In relation to the aforementioned workflow updates, it has been required to review the previous Trust
Management Framework Information Model presented in deliverable D4.1. In particular, the updated
information model contemplates new trust parameters in order to assess the trust score of services and
resource providers and their product offers.

More specifically, to correctly manage the new trust parameters defined in the Trust Management
Framework Information Model, multiple equations have been defined which are used to compute the
5GZORRO stakeholder trust score (see Trust Management Framework Information Model). In particular, the
Trust Management Framework leverages the well-known reputation model called PeerTrust [1] which is

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 16 of 68

envisaged as a basis from which to design equations in line with the 5GZORRO ecosystem. Thus, these
equations will be employed by one of the modules that make up the architecture of the TMF presented in
deliverable D4.1, the Trust Assessment module. In this regard, all trust parameters as well as equations
contemplated for calculating trust scores can be found in Appendix I.

2.1.2. Prototype implementation

The Trust Management Framework designed in deliverable D4.1 included various modules: Trust Information
Sources, Trust Assessment, Trust Results and Evidence Storage, and Trust Level Update.

The current prototype covers in terms of modules and interfaces the Trust Information Source and the Trust
Results and Evidence Storage modules. Instead, Trust Assessment and Trust Level Update modules are in an
early implementation phase at the time of release of this deliverable (they will be part of the 5GZORRO full
release).

Regarding the communication paradigm employed by the Trust Management Framework, it follows both a
request/response paradigm and a publish/subscribe paradigm. The former is utilised by the 5GZORRO
modules that need to launch the trust lifecycle, for instance, the SRSD. The latter is used by the Trust
Management Framework itself in order to retrieve historical trust information, recommendations, and new
events or triggers, as well as to send trust information about a stakeholder. In the case of publish/subscribe
communication paradigm, such a framework will utilise the common Kafka instance which will be shared
with other 5GZORRO modules (intra- and cross-domain communication fabric).

The definition of the Trust Management Framework interfaces is available in the following GitHub page:
https://5gzorro.github.io/Trust-management-framework/.

Concerning the virtualization technology used for the software package, this module is released as a Docker
container to facilitate orchestration and delivery together with other 5GZORRO modules.

2.1.3. Functional tests

The following table describes several functional features which allow checking the proper behaviour of
different modules and activities carried out by the Trust Management Framework. It should be noted that all
the tests described in Table 2-2 are not related to the integration of the Trust Management Framework with
other 5GZORRO modules. Therefore, the following tests are internal to the TMF.

Table 2-2: Trust Management Framework functional tests

Name Description
Passed

(Yes/No/Partially)

Trust Parameters
Verify whether the dictionary received as parameter complies with
the format of the described trust information model

Yes

Start data collection
Verify that The Trust Management Framework is able to create a
new pipeline in Kafka

Yes

Receive information
from a topic

Verify that The Trust Management Framework can retrieve trust
information from a particular stakeholder to compute a trust score.

Yes

Send information to a
topic

Verify that The Trust Management Framework is able to push
information to a Kafka topic and also to the Data Storage in order to
keep track of a trust relationship.

Yes

2.2. Trusted Execution Environment Security Management

The Trusted Execution Environment Security Management module focuses on the development of
functionalities that allow 5GZORRO to protect their tenant service or application running in a computing node
against a stakeholder with malicious intentions.

https://5gzorro.github.io/Trust-management-framework/

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 17 of 68

For that purpose, this module will integrate commercial Trusted Execution Environments for the software
components execution to enhance the security and trust of the software.

As previously mentioned in the D4.1, SCONE framework modules [8] are integrated with the orchestration
services in 5GZORRO to allow the deployment of critical services on SGX-enabled [9] nodes made available
in the Marketplace. The orchestration services can then deploy a custom application into a secure enclave,
ensuring end-to-end encryption and secure provisioning of the application data, and keys.

2.2.1. Design Updates

No design update has occurred with respect to the deliverable D4.1. In fact, the main focus of the prototype
for this intermediate 5GZORRO release has been on testing the SCONE framework capabilities.

2.2.2. Prototype implementation

With a focus on the SCONE framework to enable TEE capabilities, a proof of concept was prepared to validate
the integration of TEE with the orchestration services. A Docker container was deployed in a virtual machine
with SGX-enabled capabilities in a Kubernetes cluster with two nodes, one with SGX-enabled capabilities
from the cloud provider Azure [10] and another without those capabilities placed in an OpenStack instance.
In this scenario, an application can run in a shared environment (i.e., OpenStack, Cloud, on-prem) without
the need for services to trust in each other; in other words, the application can run in a non-trusted shared
environment, since only the application itself (with the hashes generated by a special service called CAS,
described below) can see its own security-relevant and runtime information. Every other service or other
tenant will see encrypted information at runtime or at rest.

The adopted SCONE framework for TEE is based on four main components that allow deploying an
application in a secure environment:

• Session: Entails all security-relevant details of a SCONE application. It includes every aspect of the
container ecosystem such as commands to be executed on images, secrets, volumes and
environment variables. Everything is then attested with the unique signature of the enclave which is
authorized to retrieve the secrets from the CAS;

• LAS (Local Attestation Service): Service that runs locally, alongside the enclave, and the application
that wants to access the secrets. This service is responsible to complete the application attestation
and ensure that the hardware is SGX-enabled and share that information with CAS;

• CAS (Configuration and Attestation Service): Remote service which stores things like configurations,
secrets and filesystem keys needed by the application in runtime, that were provided by the session.
This service ensures that all secrets are protected from being visible by humans and are only visible
inside the TEEs. These secrets and configurations will then be put in transit and shared with the
application once the attestation takes place (when the application proves its integrity and
authenticity);

• Docker container: The trusted application intended to run in an enclave that once attested by the
LAS it will receive the configurations and secrets that are stored in the CAS.

Using these main four components, a stakeholder that wants to run an application in a secure environment
can easily achieve that with a few steps:

• Update the application to run on top of SCONE cross-compiled docker images and mount the source
code inside the container;

• Launch a new dedicated CAS, or use any existing one;

• Launch LAS alongside the enclave;

• Get the enclave SCONE hash;

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 18 of 68

• Upload the session to CAS with the enclave SCONE hash and all security details;

• Run the secure application in an enclave.

In the current version of the prototype the aforementioned steps are executed manually, whilst the target
for the final release of the 5GZORRO orchestration platform is to integrate these steps as part of the
automated zero-touch instantiation process.

For the proof of concept, a python image provided by SCONE and already compiled to run on SGX-enabled
hardware was used as the base image for the container. The code mounted on top of the container prints
the message sharing an environment variable that was uploaded using the SCONE session specification to
the CAS via SCONE CLI. The CAS used for this proof of concept, was provided by the SCONE framework since
they provide it publicly for test purposes.

Figure 2-2: TEE Proof of concept diagram

To start the service, a session must be created in the CAS service. Only then, the container with the secure
Docker image can be launched in a Kubernetes node. This node is equipped with SGX-enabled capabilities,
that are now part of the Kubernetes cluster with two nodes: one node with the required underlying SGX
capabilities and one regular node without them. To ensure that the container was instantiated in the correct
node (with SGX-enabled capabilities), it was configured taking advantage of the Kubernetes labelling system,
which allowed to mark it as SGX-enabled node.

When the docker container starts in the intended node, the LAS that is running alongside the container
attests the authenticity of it and the docker container was able to run the configured command (via SCONE
session) and prints the intended environment variable. This environment variable cannot be found in the
container environment since it is provided by CAS once the attestation takes place.

With this Proof of Concept (PoC), it was possible to achieve the intended validation, which was based on
instantiating confidential or critical services in a pool of resources that may be considered untrusted by the
requesting party. In fact, the PoC demonstrates how it is possible to run a service in a multi-domain
environment whose underlying resources may be serving multiple tenants, potentially with direct access to

https://app.diagrams.net/?page-id=O6IgNxdjHZ_OmtJNjBbg&scale=auto#G1BSTJlIvNfV0e1UNqpAc4bNJVgI8WUQ6s

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 19 of 68

either said containers or even the host. This validation has been done through a set of specified functional
tests, that are presented in the following section in Table 2-3.

2.2.3. Functional tests

The functional tests carried out on this module are mainly related to the correct verification of the
implemented proof of concept.

Table 2-3: Trusted execution environment security management functional tests

Name Description
Passed

(Yes/No/Partially)

Create docker image
Create docker image on top of SCONE cross-compiler docker
images

Yes

Setup trusted node Setup a node with SGX-enabled capabilities Yes

Instantiate LAS Setup LAS service alongside the enclave Yes

Upload SCONE session
Upload SCONE session to CAS with the secrets that intended to
run on the docker container

Yes

Instantiate docker
container

Instantiate docker container in the trusted node Yes

Retrieve secrets
Retrieve secrets from the docker container that are passed by
CAS once LAS attests its authenticity

Yes

Validate docker
container security

Check if the secrets that should be passed by CAS were not in
the container environment and the running code was
encrypted

Yes

2.3. Intra-domain Security enablers

The Intra-domain Security module receives network traffic data as input and produces network events and
alerts about potential failures or security threats using three detection mechanisms as stated in deliverable
D4.1: Rule-based intrusion detection, Protocol specification and Behaviour analysis.

2.3.1. Design Updates

Currently there are no design updates as the software modules described in the previous version of the
deliverable seem to work well. Well-defined and standardized software platforms are currently deployed and
in use.

2.3.2. Prototype implementation

In the current implementation, the Zeek platform [11] is used as a network security monitoring tool. This
platform monitors network events using various virtual Terminal Access Points (vTAPs) and produce live (real-
time) traffic data which are then aggregated and analysed within Elasticsearch platform [12]. Finally, data is
sent to Kibana platform [13] for visualization. Stored network data analysis is supported as well.

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in
near real time. Kibana is a browser-based analytics and search dashboard for Elasticsearch. All the software
modules are deployed as Docker containers in a well-defined Docker network configuration.

Currently, to deliver the JSON text based Zeek logs to Elasticsearch, Filebeat [14] is used. It reads the Zeek
log files and delivers them to Elasticsearch. When providing data to Elasticsearch, a pipeline is specified for
all events that are inserted inside the Elasticsearch index. After that, all the Zeek logs can be accessed through
Kibana dashboard.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 20 of 68

The intra domain security module is able to identify virtual attacks which are implemented to test our
workflow. Current open issue is the lack of actual real data which will be available after our exposure to an
initial setup of the integration flow. Currently the actual implementation follows blacktop/docker-zeek
project as published in https://github.com/blacktop/docker-zeek. Current GitHub repository can be found at:
https://github.com/5GZORRO/intrasecurity .

2.3.3. Functional tests

Our software tests refer to the successful deployment of the various containers needed for the module and
the successful data sharing communication between them.

Table 2-4: Intra-domain functional tests

Name Description
Passed

(Yes/No/Partially)

Zeek service Successfully deployed. Links with Filebeat (to be considered). YES

Kibana service Successfully deployed. Links with Elasticsearch. YES

Elastisearch service Successfully deployed. YES

Filebeat service Successfully deployed. Links with Elasticsearch and Kibana. YES

2.4. Inter-domain Security at the communication level

The Inter-domain Security module is in charge of managing the establishment of secure and reliable
connections between different domains within 5GZORRO. Thus, this module offers VPN-as-a-service, so that
the interconnection between domains is done automatically without any previous configuration. For this
purpose, it integrates the key derivation necessary to establish the secure connection with the Identity &
Permissions Management module, obtaining the cryptographic keys and information from it.

2.4.1. Design Updates

From Deliverable D4.1, the main design change is related to the deployment in the module. Previously, each
client of a domain had to be configured as a client of the domain to which the secure connection was to be
generated. Now, the inter-domain security module is designed to be deployed in the network gateways of
each domain, so that they act as an intermediary between the end entities and the external domain. This
reduces the complexity of configuring each network entity acting as a VPN client to the external domain. It
also reduces the number of credentials required for the authentication and secure connection generation
process.

According to this design change, it has been necessary to add new interfaces (see Table 2-5) that are required
to generate the connection between gateways. In this way, the connection can be generated directly by
calling functions of the gateway acting as a client. In this sense, these interfaces should have strong
authentication requirements, allowing only to trigger its functionality to trusted entities from external
domains.

These new interfaces are:

Table 2-5: Definition of new Inter-domain Security Establishment service interfaces

Operation name: add_client

Description
This method adds a new client to the gateway acting as VPN server. The client is
identified using its public key.

Input Parameters Type Description

 client_public_key String Public key of the client to be added, in Curve25519 format.

https://github.com/blacktop/docker-zeek
https://github.com/5GZORRO/intrasecurity

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 21 of 68

Output Parameters Type Description

 assigned_ip String Assigned IP to the new client.

 vpn_port Integer Port where the vpn server is running.

 server_public_key String Public key of the vpn server.

Notes

Operation name: remove_client

Description
 This method adds a new client to the gateway acting as VPN server. The client is
identified using its public key.

Input Parameters Type Description

 ip_address_server String Public key of the client to be removed, in Curve25519 format.

Output Parameters Type Description

 result Integer
It indicates if the client public key has been removed successfully or
not.

Notes

2.4.2. Prototype implementation

In the current prototype, an initial version of the entire set of interfaces has been implemented to verify its
suitability and to test the desired functionalities. However, this implementation only covers the functional
requirements to successfully establish a secure connection between domains. The functionalities which will
be implemented for the next release are: a) Client-to-gateway and gateway-to-gateway authentication; b)
Integration with the Identity and Permission manager module for key management.

The prototype is implemented following a request/response setup based on a Restful API. The definition of
the interfaces is available as Swagger file at https://5gzorro.github.io/inter-secure-channel-setup/#/

The prototype has been implemented using Python 3, with the following additional packet requirements:

• flask and flask_restful, for the Restul API setup [15]

• Gevent, for networking management [16]

• Werkzeug, for the WSGI server [17]

For the VPN service setup and management, WireGuard VPN [3] has been leveraged. WireGuard is an open-
source software implementing VPNs with state-of-the-art cryptography and an easy setup. This tool aims to
provide faster connections than previous solutions such as IPSec [4] or OpenVPN [5]. WireGuard works in a
client-server setup in which VPN connections are added using new network interfaces. This configuration
enables to have different VPN connections to different domains in the same client. The only configuration
needed is to define which IP range is redirected to each WireGuard interface.

To enable the automated installation and configuration of WireGuard, the module includes an interface
named "launch" which is in charge of deploying WireGuard in the target machine and of configuring the
required network properties to enable traffic forwarding. Additional packets installed during setup are linux-
kernel-headers and openresolv.

The GitHub repository of the module is available at: https://github.com/5GZORRO/inter-secure-channel-
setup.

The current prototype is released in the form of a Virtual Machine (VM) as the module is intended to be
deployed in gateways (which are rarely deployed as containers). However, it might be possible to deploy the
module in containers if the required dependencies are fulfilled.

https://5gzorro.github.io/inter-secure-channel-setup/#/
https://github.com/5GZORRO/inter-secure-channel-setup
https://github.com/5GZORRO/inter-secure-channel-setup

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 22 of 68

2.4.3. Functional tests

The functional tests (see Table 2-6) carried out on this module are mainly related to the verification of the
correct functioning of the implemented methods.

Table 2-6: Inter-domain security functional tests

Name Description
Passed

(Yes/No/Partially)

Module setup The module can be automatically installed and configured. Yes

Client addition
A new client is connected to the VPN, obtaining a client IP in the
VPN.

Yes

Client removal A client is disconnected, removing its IP from the known list. Yes

Connection
establishment

The automated connection establishment between two VMs running
in different subnets is tested.

Yes

Connection deletion
In the current design we use the public key to search for the client to
be removed.

Yes

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 23 of 68

3. Intelligent and Automated Slice & Service
Management

The 5GZORRO Intelligent and Automated Slice and Service Management (ISSM) functional block focuses on
automated management of secured cross-domain slices and services within them. ISSM is thus responsible
for enforcing business transactions both at the system level by interacting with NSSO and with alternative
slicing technologies that might be developed in the future, as well as by managing business transaction
contexts across the entire 5GZORRO platform allowing a principled, repeatable, auditable, and trustworthy
interaction among the multiple components of the platform to realize a specific business flow.

3.1. ISSM Workflow Manager (ISSM-WFM)

The ISSM Workflow Manager (ISSM-WFM) executes orchestration workflows in a context of a business
transaction, such as extending a slice across a second domain in cooperation with the Network Slice and
Service Orchestration.

3.1.1. Design Updates

There are no significant changes in the ISSM-WFM design since deliverable D4.1. In deliverable D2.3 [18],
updated orchestration workflows have been presented which better capture the intended behaviours in
scenarios such as cross-domain slice establishment, scale-out and optimization. Moreover, always in D2.3
updates have been provided about how ISSM-WFM integrates with the rest of the functional 5GZORRO
architecture.

3.1.2. Prototype implementation

The current ISSM-WFM prototype executes Workflow 3-6, Trustworthy Slice Setup with Third Party
Resources, reported in D2.3. The prototype implementation can be found in
https://github.com/5GZORRO/issm/. As such it can be considered as fully implemented.

The definition of the business flow implementing Flow 3-6 of D2.3 can be found in
https://github.com/5GZORRO/issm/blob/master/flows/issm-sensor.yaml.

Additional business flows will be realized as the rest of 5GZORRO platform matures and will be reported in
deliverable D4.3.

3.1.3. Functional tests

The functional tests to validate ISSM-WFM API with respect to the Workflow 3-6 reported in D2.3 are
presented in Table 3-1. The tests have been performed using mock-up APIs for all involved components. The
ISSM-WFM APIs have also been tested for the workflows involving actual the actual components, such as
NSSO, and Data Lake, as described in Subsection 5.2.

Table 3-1: ISSM-WFM functional tests

Name Description Passed (Yes/No/Partially)

Create flow Create a new business flow Yes

Execute flow Execute a new business flow Yes

Get progress Get progress of a business flow using web hook Yes

Delete flow Remove a business flow from ISSM-WFM Yes

Continuous progress Observe a progress of a flow with GUI Yes

https://github.com/5GZORRO/issm/
https://github.com/5GZORRO/issm/blob/master/flows/issm-sensor.yaml

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 24 of 68

3.2. ISSM Optimizer (ISSM-O)

The ISSM Optimizer (ISSM-O) optimizes cost-efficiency and cost-trustworthiness trade-offs of network
services and slices required to be created in a context of a specific business transaction subject to constraints
such as security and service area. ISSM-O continuously optimizes services and slices that have been already
set up in previous transaction flow executions.

3.2.1. Design Updates

Main design updates originated on top of the design baseline provided in deliverable D4.1 are as follows:

• The ISSM-O scope of operation has been split into two parts: (a) intra-domain and (b) inter-domain.
The reason for this functional split is that ISSM-O does not have a centralized visibility into the MNOs’
NFVIs and inventories. Therefore, the inter-domain component performs optimization at the
Marketplace level determining candidate domains for resource instantiation while the intra-domain
component optimizes resource allocation within MNO domains. The intra-domain component of
ISSM-O can be regarded as optional in the sense that each domain can use its own optimization tools
to allocate resources within a domain. However, this task is far from trivial. Building on our previous
work, we proposed an intra-domain approach as follows.

• The ISSM-O intra-domain component is responsible for optimizing MNO's resource allocation. Unlike
the ISSM-O inter-domain component that does not have any information about the resources,
topology, and infrastructure inside the domains, ISSM-O intra-domain performs resource
optimization with complete knowledge about the whole resources that are under the control of that
specific MNO. The optimization in the domain mainly happens intending to minimize resource
utilization and provisioning cost.

The intra-domain ISSM-O is designed considering different types of computing, transport, and radio
resources available to be allocated to the requests. Three objective functions have been identified to
optimize various aspects of the network based on the MNO's desired goal:

• The first objective function aims to minimize resource utilization for the MNO by dynamically
allocating resources to the requests upon the need. Employing this approach enables the MNO to
re-schedule the resource allocation in order to avoid resource under/over utilization.

• The second objective function tries to avoid excessive usage of the transport links, and instead, it
prefers to consolidate the workload of requests in close proximity of each other.

• Finally, the third objective function performs a cost optimization trade-off inside the domain. Inside
each domain, resources can have different usage costs for the MNO; therefore, achieving a cost-
optimized resource allocation inside the domain can lead to many economic advantages.

3.2.2. Prototype implementation

The ISSM-O prototype has been implemented in simulation for this deliverable and its integration within the
ISSM architecture for the 5GZORRO platform is planned for the next 5GZORRO release.

Optimization solvers such as OptaPlanner (https://www.optaplanner.org/) and Gurobi
(https://www.gurobi.com/) are being evaluated for integration as part of ISSM-O implementation. Full
description of the implementation of the ISSM-O module, its functional validation, and its integration with
the rest of ISSM for inter-domain optimization will be reported in D4.3.

https://www.optaplanner.org/
https://www.gurobi.com/

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 25 of 68

4. MANO and Slicing Enhancements

This section describes the component of the 5GZORRO Platform devoted to the Management and
orchestration of services and slices. From an architectural point of view, the set of services offered by the
orchestration modules is mainly oriented to the internal consumption by other components in the platform,
rather than by the 5GZORRO stakeholders themselves. In this sense, such set of modules offers functionalities
related to resource management and monitoring, e-licensing management as well as to control and network
slice and service orchestration across multiple and different administrative domains. These functionalities
are available towards the upper and more abstracted layers of the 5GZORRO platform, such as the Intelligent
Slice and Service Management, that exploits them for building service and slices based on an intelligent
composition of the available resources.

4.1. Virtual Resource Manager

The Virtual Resource Manager (VRM) is in charge of the management and monitoring of the resources related
to the 5G Virtualisation Platform available in each stakeholder domain adopting the 5GZORRO Platform. The
management of the resources is implemented through a set of functionalities that enables the owner of the
resources to store and catalogue them in terms of templates, descriptors and packages and includes the
onboarding of the resources into the internal catalogue of the target VIM/orchestrator, when needed.
Another feature related to the resource management is the direct support to the 5G Offer Catalogue. In this
case, the resource manager implements an internal translation logic, invocable on demand, that translates
the descriptor of the resources stored into the proper service and resources models defined by the TM Forum
(see Section 4.1.2.1). The possibility to implement a service that enables the VRM to be used as VNF/CNF
remote repository is still under discussion. For what concerns the monitoring, the internal module called
MDA (Monitoring Data Aggregator) retrieves resource statistics from the underlying virtualization platform
(e.g., NFVO, Radio Controller, etc.), aggregates them on the basis of a certain configurable rules and, finally,
sends them to the platform Data Lake via Kafka Bus.

4.1.1. Design Updates

The VRM is designed to be a multi-container application, with the aim to provide the high level of flexibility
required to immediately tackle any changes/updates in both resource composition and in the underlying 5G
virtualised infrastructure. Due to this and in part to the fact that some features are still under definition or
design, the final composition of such set of containers may vary during the following design and
implementation phases, up to the final version of the prototype.

The base services provided by the VRM have been reported in deliverable D4.1. In this section we describe
the updates to such set of features and also the initial software design of the components that were not
ready to be reported in D4.1.

Figure 4-1 shows to two main elements building the VRM and their relationship with the other components
of the 5GZORRO platform. The Resource Manager contains the logic to manage the resource DB and interact
with the Resource and Service Offer Catalogue (RSOC), which is the target of the resource definition
translation process. The Resource Manager also offers an interface the MDA exploits for retrieving
information used to reach the different components of the 5G Virtualisation platform, namely NFVO, VIM,
Radio and Network Controller. Same interface is exploited by the e-Licensing modules to retrieve the
coordinates to access the NFVO.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 26 of 68

Figure 4-1: Main VRM modules and interaction with other components of the 5GZORRO platform

Focusing into the Resource Manager module, it consists of several modules in charge to implement the
functionality of resource storage (descriptors and, where required, packages), model translation, and 5G
virtualisation infrastructure DB, as depicted in Figure 4-2.

Figure 4-2: Detailed view of the modules composing the Resource Manager

The Infrastructure GW provides the interface and the logic to access the underlying 5G Virtualised
infrastructure, avoiding the need for components like MDA and e-Licensing modules to directly access the
provider internal infrastructure. The Resource DB contains the resource definitions expressed in terms of
descriptors and, when required, in terms of references to certain resource packages (e.g., the DB contains a
VNF descriptor and a reference to the corresponding VNF package). The resource DB is managed by the
Resource Manager Catalogue Handler (RMCH) that offers the interface and the logic to access to the resource
information. The connection between the RM Catalogue Handler and the 5G Virtualised Infrastructure
represents the capability of the Resource Manager to access the internal catalogues of the different elements
to add (onboard), update, and remove resources. Finally, the Resource Definition Translator provides the

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 27 of 68

logic to translate the resources, as defined in the Resource DB, to the proper models defined by the TM
Forum as well as the required interface to store such translations to the RSOC.

As depicted in Figure 4-3, the MDA intends to receive from NSSO a monitoring spec with the needed
information/identifiers and therefore starting the monitoring stage within the timeline defined. MDA collects
metric values from the virtualization platform (for the current time, it collects from NFVO OSM), aggregates
them (or not, depending on the measurement type), and forwards the encrypted hash of the monitored data
to a Kafka topic.

Figure 4-3: Detailed view of MDA functionality Prototype implementation

4.1.2. Prototype implementation

This section reports the current status of the implementation of the Resource Manager and the Monitoring
Data Aggregator, which are the two main modules building the VRM. As anticipated, the base idea is to build
a multi-container application, therefore, Docker has been selected as the target virtualization platform for
the deployment of the VRM.

4.1.2.1. Resource Manager

With respect to design discussed above, the current implementation of the Resource Manager covers
partially the Resource Manager Catalogue Handler and the Resource Definition Translator (RDT), whose
internal architecture is detailed in Figure 4-4.

The component provides a North-bound interface (NBI) to expose translation services to the administrators
who require them and a South-bound interfaces (SBI) to interact with the RSOC and the Resource Manager
Catalogue Handler. Both the interfaces are REST-based. An NBI Controller implements the logic to manage
the requests from the NBI, whose set of REST APIs is specified in OpenAPI format. When a translation request
comes from the NBI, the NBI Controller invokes the Resource Manager Handler to retrieve the target
resource definition through the RMCH, then translates it by exploiting the translation rules implemented
internally. Finally, the NBI Controller requests the storage of the translated resource to the RSOC through the
RSOC Handler.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 28 of 68

As can be noted from the figure, the interaction with the RMCH is represented with a dashed arrow, since
this part has not been yet implemented, so the translation tests have been performed by pass the description
of the resource as a payload of a dedicated API in the NBI. On the contrary, the interaction with the RSOC
has been implemented and tested.

Figure 4-4: Resource Definition Translator internal architecture

The Translation Rules currently implemented provide the necessary logic to translate VNFD, PNFD and NSD
defined according to ETSI SOL-006 [19] standard to the correspondent TM Forum models for resources (TMF
API 634 [20]) and services (TMF API 633 [21]). In particular, the NSDs are translated as TM Forum services
while the VNF and PNF descriptors as TM Forum resources. The RDT is implemented in JAVA 8 and based on
the Spring Boot framework [22]. The source code is available on 5GZORRO GitHub project space here:
https://github.com/5GZORRO/resource-definition-translator.

The RMCH is the adaptation of the open source 5G Catalogue by Nextworks [23] for the purposes of
5GZORRO VRM. In particular, the implementation of the support to ETSI SOL-006 is in progress, as the current
version of the 5G Catalogue implements a descriptor data model based on ETSI SOL-001 [24].

As for the RDT, the resource management logic is programmed in Java8 and based on Spring Boot, while the
Resource DB consists of an instance of PostgreSQL [25] and of a set of directories in the local filesystem to
store the VNF packages and the related metadata. The logic that manages the Resource DB already
implements the onboarding of the descriptors on OSM, while the onboard of the related VM images on the
VIM is under development. For these two interactions, the 5G Catalogue uses two specific Java packages:

• J-OSMClient [26] – to interact with OSM

• OpenStack4j [27] – to interact with the VIM (OpenStack)

4.1.2.2. Monitoring Data Aggregator

Regarding the main workflow of the Monitoring Data Aggregator (MDA), it can be subdivided into four
fundamental courses of action:

1. receiving the monitoring spec from NSSO, containing critical information about which metrics will be
monitored and from them which will be aggregated following a specific method (for instance,
average, sum, or standard deviation), the associated business ID flow, the network slice ID, among
others;

2. collecting values of the metrics from resources (at this stage, this module collects from OSM);
3. performing metric aggregations within an aggregation step;
4. pushing encrypted hashed data into a Kafka topic after signing the collected metrics.

https://github.com/5GZORRO/resource-definition-translator

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 29 of 68

Concerning the communication paradigm, exercised by the MDA prototype, it supports simultaneously a

request/response and a publish/subscribe setup. Regarding the first one, it is based on FastAPI [28], a Python

framework that enables the use of a REST interface, and it will be exploited and employed by modules such

as Vertical Slicer to create/enable monitoring specs with the metrics that will be monitored. It is worth

mentioning that the endpoints prepared for the request/response paradigm are described on the following

readme page: https://github.com/5GZORRO/mda/blob/main/README.md.

Furthermore, the API description is available as an OpenAPI JSON file at

https://github.com/5GZORRO/mda/blob/main/doc/openapi.json. The latter paradigm is used by MDA itself,

publishing monitoring data to a Kafka topic, received on the monitoring specs.

This component has been implemented using Python v3, leveraging the following tools and libraries:

• FastAPI [28], for the REST interface;

• Kafka-python [29], for the Kafka producer;

• Psycopg2 [30], the PostgreSQL driver for Python;

• RSA [31], for encrypt operations;

• Timeloop [32], to run periodic tasks after a certain interval;

• Sqlalchemy [33], SQL toolkit, and Object Relational Mapper.

The GitHub repository of the MDA module is: https://github.com/5GZORRO/mda. For the current version,

the monitoring specification including the monitoring endpoint has been updated, where MDA fetches the

metric values, and a context object containing the slice ID, the resource ID, and the parent resourceID of this

last one. For more information, a wiki page linked to the GitHub repository describes these fields:

https://github.com/5GZORRO/mda/wiki/Monitoring-Spec-Example.

The module is deployed in a Kubernetes cluster as the target virtualization technology, facilitating a more

reliable integration with the partners and their 5GZORRO modules.

4.1.3. Functional Tests

This section reports the set of main functional tests performed during the implementation of the VRM
Resource Manager modules. In particular, Table 4-1 and Table 4-2 describe the test set for the RDT module
(as part of the Resource Manager) and the MDA, respectively.

Table 4-1: Resource Definition Translator functional tests

Name Description
Passed

(Yes/No/Partially)

Descriptors
Translation

Translation of descriptors for VNF, PNF and NS from ETSI SOL-006
to TMF 633 and 634

Yes

RSOC invocation Invocation of the RSOC to store the translated services/resources Yes

Table 4-2: Monitoring Data Aggregator functional tests

Name Description
Passed

(Yes/No/Partially)

Receiving a
monitoring spec

The module receives, from Vertical Slicer, a configuration containing
the metrics to monitor, the duration of the monitoring stage, and the
unique identifiers associated with the operator and business flow ID.

Yes

Collecting values of
the monitored metrics

The module collects metric values, from OSM, within the step
received from the monitoring spec.

Yes

Pushing data into a
Kafka topic

The module, after signing the collected data, that is, performing the
hashing and encryption operations, pushes it into a Kafka topic.

Yes

https://github.com/5GZORRO/mda/blob/main/README.md
https://github.com/5GZORRO/mda/blob/main/doc/openapi.json
https://github.com/5GZORRO/mda
https://github.com/5GZORRO/mda/wiki/Monitoring-Spec-Example

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 30 of 68

4.2. Network Slice and Service Orchestrator

The Network Slice and Service Orchestrator (NSSO) is responsible for processing communication service level
lifecycle management actions, namely instantiate, terminate and scale received from the Intelligent and
Automated Slice & Service Management (ISSM). With this scope, the NSSO performs the mapping of the
communication service into network slices, across multiple domains, and interacts with the 5G virtualized
infrastructure for the lifecycle management of the resources associated with the network slices. This
mapping is performed based on rules and algorithms which can be updated dynamically as part of the
management control loops. Moreover, the NSSO is responsible for configuring the monitoring metrics
associated to the service, and the correspondent e-Licenses to be attached to the service instances.

4.2.1. Design Updates

The design and implementation of the NSSO has been evolved with a more mature definition and
implementation of the interfaces between the different components, illustrated in Figure 4-5. In particular,
the interface exposed to the ISSM has been defined based on the initial interface available from the software
components and updated to allow passing IDs related to the 5G Offer transaction, which are passed to other
modules to map resource allocations, and service instances to the smart contracts associated with the offer.
The initial interfaces towards the Monitoring Data Aggregation (MDA) and the e-Licensing Manager modules
have been established. Work is still ongoing to define the interface between the NSSO and the Network
Service Mesh Manager (NSMM), to provision the connectivity between the different components of the end-
to-end service, and between NSSOs in other domains to provision slices on top of 3rd party resources.

Figure 4-5: Network Slice and Service Orchestrator interfaces

The updated interfaces used for this release of the 5GZORRO platform are shown in Figure 4-6 and Figure
4-7. In particular, Figure 4-6 shows the updated interface between the ISSM and the NSSO, in which two
parameters were added to the service instantiation request to allow to receive the ID of the product offer in
the 5GZORRO Marketplace, and the Transaction Id representing the Id of the offer acquisition.

The interface between the NSSO and the e-Licensing Manager was updated to allow passing the Product Id
from the 5GZORRO Marketplace, as shown in Figure 4-7. This interface is used by the NSSO, during the service
instantiation phase, to register the e-Licensing allocation with the Network Service Instance (NSI) ID. This way
the e-License Manager can confirm the entitlement of the tenant to deploy the VNFs used by the NSI. We
refer to Sec. 4.3 for further details regarding the e-Licensing Manager.

The NSSO interface toward the MDA, shown earlier in Figure 4-3 , was updated also to allow passing the
Product Id and Transaction Id, and with the definition of the Metric information model. The updated
interface enables the NSSO to configure the metrics to be collected and attach the metrics to the Ids

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 31 of 68

established in the 5GZORRO Marketplace to enable improved monitoring and analysis mechanisms in the
Data Lake.

Figure 4-6: Updated ISSM-NSSO Interface

Figure 4-7: Updated NSSO-e-Licensing Manager Interface

The NSSO groups several components providing different functionality, as depicted in Figure 4-8.

Figure 4-8: Detailed view of the modules composing the Network Slice and Service Orchestrator

The Vertical Service Management is responsible for processing the service lifecycle management requests,
while the Network Slice Management modules contain the logic to translate network slices into resource and
network service allocations in the 5G Virtualized infrastructure. The multiplicity of the Network Slice
Management aims to illustrate that there may be different software modules implementing the logic to
allocate the network slices on different segments of the network. In particular, two different software
modules have been identified for the initial prototype:

• Generic-purpose NSMF: offering standardized network slice management interfaces, and
implementing a driver-based approach to interact with the underlying infrastructure and MANO
platforms.

• Slice manager (SM) evolved from 5GCity project [34]

Each of these modules is accompanied by two different databases, containing the correspondent descriptors,
and the information regarding the instances.

As stated in D4.1, the 5GCity slice manager is being extended in the context of 5GZORRO to meet the
requirements of a NEST-based NS provisioning. To do so, the following functionalities have been added in
the current prototype:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 32 of 68

• Management of Generic Slice Template (GST): Define the slice attributes together with the set of
supported values for each of them in the managed domain. The specific attributes that we are
currently using are:

o Isolation Level (e.g., Logical Isolation)
o User Data Access (e.g., Direct internet access)
o Compute Availability Zone (e.g., nexusEdge)
o Access Technology (e.g., WiFi, Cellular)
o Area of Service
o Radio Spectrum (WiFi channel, 4G/5G band, duplex mode)
o Guaranteed Downlink Throughput per UE
o Maximum Downlink Throughput per UE
o Guaranteed Uplink Throughput per UE
o Maximum Uplink Throughput per UE

• Management of Network Slice Type (NEST): Define an instance of the GST with required values for
the desired attributes. Note that in order to be feasible, selected values must be a subset of
supported values. Together with the registration of every NEST, a network slice blueprint [35] (i.e.
required physical and logical resources) is also generated in the SM, which references the resources
to be used by this NEST. In the current prototype, this can be done in two different ways:

o Imperative approach: The resources to be used by the slice are also passed in the payload
provided in the NEST creation request.

o Declarative approach: The internal logic of the SM (as NSMF) and the RAN Controller (as
NSSMF) is used to determine the resources to be included in the slice blueprint, based on
the requested attributes’ values.

• NEST-based Network Slice Instance (NSI): Define a network slice instance following the specifications
of the blueprint associated with the selected NEST. Additionally, some configurable parameters are
also expected at this step for the required slice/service (e.g., PLMN, SSID, etc.)

4.2.2. Prototype implementation

The prototype covers all the modules of the NSSO and is built upon the following software components:

• Vertical Service Manager: Containerized deployment of the vertical service management function
available in [36]. This module contains the driver to interact with network slice manager from [36] .

• Generic-purpose NSMF: Containerized deployment of the network slice management function
available in [36]. This module contains the drivers to interact with the MDA and with the e-Licensing
Manager, using the APIs established in [40][41].

• I2CAT Network Slice Manager: Containerized deployment of the SM. This module contains the driver
to interact with the i2CAT’s RAN Controller.

4.2.3. Functional tests

The set of functional tests conducted so far on the NSSO are reported in Table 4-3.

Table 4-3: Network Slice and Service Orchestrator functional tests

Name Description
Passed
(Yes/No/Partially)

Service instantiation
A simple service instantiation is requested from the ISSM. The
NSSO provisions a network slice with one network service relying
on the local domain functionality.

Yes

Configuration of
monitoring metrics

The NSSO requests the configuration of the metrics to the MDA Yes

Configuration of e-
Licenses

The NSSO establishes the e-Licenses associated with a particular
service instance in the e-License Manager

Yes, details in Sec.
5.3

Creation of GST
A GST is created at the SM specifying the set of supported values
for each one of the considered attributes.

Yes

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 33 of 68

Imperative creation of
NEST (and network
slice blueprint)

A NEST and associated network slice blueprint is created at the SM
following the imperative approach (i.e. references to the desired
resources’ id is part of the provided payload)

Yes

NEST-based
instantiation of RAN
slices

A slice instance is created at the SM based on the provided NEST
(and associated network slice blueprint)

Yes

4.3. E-Licensing Manager

The 5GZORRO platform enables a rich ecosystem in which Network Functions (NF) vendors and Operators
expose and consume services from one another. The e-Licensing system adds a fundamental component to
enable a production-grade telecommunication framework which will monitor the utilization of NFs
commercialized through the 5GZORRO Marketplace.

4.3.1. Design Updates

The main updates during this development period are mainly due implementation decisions, that have been
focused in the internal communications between the centralized part of the e-Licensing Manager and their
distributed components. Thus, the e-Licensing Manager consists of a microservice-based application offered
in two main subsystems:

• e-License Manager Core (eLMC) as a single point of presence inside the 5GZORRO Platform with the
objective of centralizing TX and RX communications with the NSSO, the Marketplace, VNF Vendors
and Operators. In D4.1 it was introduced as the eLicensing Context and Evaluation Manager, and now
has evolved to the eLMC to centralize all the mentioned communications to the external entities,
and brokering the requests to the different eLMAs, acting as the brain of the eLicensing Manager.

• e-License Manager Agent (eLMA) as a distributed subsystem living closer to the Operator’s domain,
which oversees the control of the specific Network Function instances registered under a given
agreement (referred as TMF ProductOffering Object – PO – according to the Marketplace
catalogue[6]).

4.3.2. Prototype implementation

The e-Licensing Manager (eLM) makes use of OpenAPIs to communicate with external services such as the
Marketplace and the NSSO. These interfaces are based on REST and are available through the eLMC Swagger
console which will be accessible under <eLMC-URL>:8080/ui. At this moment, the final deployment
environment is not yet defined but an extensive set of tests have been carried out in a ATOS’s testbed and
are defined in section 4.3.3.

Internal communications between the different microservices that build up eLMC and eLMA are based on
AMPQ protocol by making use of a RabbitMQ Broker which is initially deployed along with the eLMC. This
choice enables the 5G Platform to seamlessly grow horizontally by including new Operators. The eLMA has
three inner components:

1. eLMA Rest component is a django based service which will take the control over the local licensing
registry, that is a mysql database containing the entire state of watchers and actions.

2. eLMA MQ: This is the client part of the MQ broker that deals with communication issues
orchestrating the connection of the other sub-modules

3. Watcher manager: This component takes care about the lifecycle of the watchers. Each watcher in
the watcher list is scheduled for its execution, providing as a result the relevant metrics for the
licensing control.

The eLMC is composed by:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 34 of 68

1. eLMC Rest: This component offers the endpoint to the NSSO.
2. eLMC MQ: This is the backend implementation of the MQ broker, managing the deployed eLMAs but

also has the functionality of dispatching the POs registration through the deployed eLMAs.

The current deployment is done using docker for both the eLMA and the eLMC. In the next release, the
deployment will be performed over Kubernetes.

Figure 4-9 depicts the most important steps in the registration process of a new productOfferingPrice (POP),
and shows which component of the e-Licensing Manager carries out each part of the process. The POP object
is hosted at the marketplace as a part of the Product Offer (PO). POs are used to model resources or services
that the providers offer in the 5GZORRO marketplace, describing their characteristics, constraints, and
specifications [7].

Figure 4-9: eLM Registration process

The entry point for the licensing process is the CheckLicensing Message (1) received through the eLMC REST
component, that notifies to the eLMC the PO that will be deployed. The incoming PO (2) is translated to a
POP and routed to the eLMA deployed in the domain where the PO components will be rolled out (3). The
eLMA_MQ component creates the required watcher(s) (4), that are the processes customized to control a
specific property of a running NFs inside the Operator’s domain. The watcher is registered (5) by the Watcher
Manager in the eLMA_Rest component (6). Finally, a message is sent back to the eLMC to inform that the
registration is succeeded (7-8).

The first released version of eLMA is capable of monitoring NFs which are commercialized under a time-of-
use based pricing. Even though the research work is still raising more flexible and advances techniques to
monitor this property, the current implementation is configured to trigger an action in the event of finding
out that the NF instance that was being monitored is no longer active or if the agreement has expired.

Figure 4-10 details how the current implementation of the eLM monitors the NF instances over the domains.
Watchers are periodically scheduled every certain time to be executed (1) and collect relevant metrics from
the running NFs inside every eLMA domain (2). When the watcher manager detects any change related to
the licensing agreements of the registered POP, it sends the persist action signal to the eLMC (3).

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 35 of 68

Figure 4-10: eLM Monitoring process

4.3.3. Functional tests

In this section are presented the functional tests that have been performed to the e-Licensing Manager
components. These tests are further demonstrated in Section 5.3.1, where a set of screenshots of the ELM
behaviour are depicted.

Table 4-4: E-Licensing manager functional tests

Name Description
Passed

(Yes/No/Partially)

Test_osm_interface

Test for the communication between the eLMA and
the MANO. It includes:

• Login

• Get_descriptors

• Get_instance_status

• Describe_instances

• Create_subscription

• Remove_subscription

Yes

Test_registration_POP Test for the registration of a POP in the ELMA. Yes

Test_registration_POP_error
Registration test of non-existent POP in the
marketplace

Yes

Test_registration_PO Test for the registration of a PO in the ELMC Yes

Test_watcher Test for the watcher creation/deletion/update Yes

Test_mysql
Test for the internal database creation and
connection.

Yes

Test_domain Test for the deployment in non-existing domain. Yes

Test_NSSO_interface Integration test with the NSSO Yes

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 36 of 68

5. Module integration for intermediate orchestration
prototype

Based on the artifacts presented in previous sections 2-4, the integration towards composing the 5GZORRO
intermediate orchestration prototype is described in this section.

The integration strategy adopted by 5GZORRO aims to go beyond the classical WP-centric division of the
effort, in favour forming proper design and development Teams in charge of specific areas of the 5GZORRO
Platform. Such strategy facilitates the implementation of the different parts building the 5GZORRO Platform
by fostering a cross-WP approach that includes right away the integration of different components.

The number and the composition of the Teams varies depending on the priorities and the requirements to
be satisfied during the different phases of implementation and integration activities. So far 5GZORRO has
created six Teams listed below:

• TEAM#1 – GOVERNANCE

• TEAM#2 – MARKETPLACE

• TEAM#3 – ZERO-TOUCH SLICING

• TEAM#4 – E-LICENSING

• TEAM#5 – SLA and DATALAKE

• TEAM#6 – PLATFORM

Except for TEAM#6 that is in charge of coordinating the deployment of the 5GZORRO Platform in the testbeds
(5GBarcelona and 5TONIC [42]), all the other Teams are focused on the design and the implementation of
different part of the 5GZORRO Platform. In this section we report the integration efforts of Teams 3, 4 and 5
which are more in scope with elements described in this deliverable, although, due to the nature of the
Teams, such effort also involves components of the platform that will be reported in D3.2 and are not
discussed in this document.

5.1. Integration scenario overview

As part of the integration strategy, one of the base ideas is to elaborate an integration scenario that is
common to all the Teams and can be used as storyline to drive the integration of the different pieces of the
5GZORRO platform for what concerns, at least, the base functionalities.

Such a scenario starts from the creation of a resource/service offer and its publication in the marketplace by
a stakeholder and terminates with its continuous post-deployment optimization, involving several
components at all the levels of abstraction of the 5GZORRO platform. For the sake of readability, this
document describes a part of that scenario which is more focused to the scope of the deliverable, i.e., when
the ISSM comes in, detailing those pieces that have been already covered by the integration work and
reported in Sections 5.2, 5.3, and, 5.4.

In Figure 5-1 the high-level steps of the integration scenario are described. Before describing them, it is
important to highlight that, since parts of the platform such as the Marketplace and NFVO/VIM, are not
discussed in the document, the integration scenario relies on some assumptions:

1. The target resource/service is already present in the Marketplace and related catalogues
2. Any images and/or descriptors required are onboarded on the NFVO/VIM

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 37 of 68

Figure 5-1: High-level steps followed by the Teams for the integration scenario

At the Business Level Orchestration – Optimization phase, the ISSM manages the intent-based request from
a stakeholder to find and orchestrate a service/resource with certain characteristics. The ISSM-WFM relies
on the ISSM-O to maximize cost-efficiency and cost-trustworthiness and interacts with Smart Resource and
Service Discovery module (not reported in this document) to find suitable resource/service candidates
among the ones present in the Marketplace.

Then, the ISSM-WFM builds a request to the NSSO to orchestrate the deployment, during the
Resource/Service Orchestration phase. In this step, the NSSO verifies the service/resource license with the
e-Licensing Manager then proceeds with the deployment. After the deployment operation is completed, the
NSSO requests the VRM-MDA to start the monitoring of certain parameters of the resource/service so that
entering in the Resource/Service Monitoring phase.

The VRM-MDA periodically delivers bunch of aggregated monitoring data to the 5GZORRO Data Lake (Data
Collection phase). The data stored in the Data Lake is available for those components that perform a
continuous analysis looking for failures, threats, and possible contact violations in the Data Analysis phase.
One of these components is the SLA Breach Predictor that, as well as the Data Lake is not in the scope of this
deliverable. They are reported in the integration scenario as they implement the mandatory steps that leads
to the optimization of the deployed resource/service performed by the ISSM-O, again during the Business
Level Orchestration – Optimization phase, completing the orchestration loop.

5.2. Zero-touch network slice orchestration

Figure 5-2 shows a simplified integration architecture corresponding to the essential sub-flows common to
Flow 3-6 and Flow 3-7, dealing cross-domain slice establishment between two operators, explained in detail
in deliverable D2.3.

The integration focused on the following major components: ISSM-WFM, NSSO, MDA, Data Lake (DL), and
Identity and Permission Manager. For the rest of the components involved with Workflow 3-6, mockup APIs

Business Level
Orchestration /

Optimization

Resource/Service
Orchestration

Resource/Service
Monitoring

Data Collection

Data Analysis

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 38 of 68

corresponding to those previously reported in D4.1 as well their more updated versions being reported in
this deliverable.

Figure 5-2: Integration Architecture of Flow 3-6 (D2.3)

It has been assumed that Operator 1 has already established a slice subnet (this is not shown in the figure)
and, at some point in time, either due to optimization request or due to an explicit operator request, this
slice should be scaled out into the domain of Operator 2. For this initial integration, we omit the details of
resource selection, optimization, e-licensing, and acquisition (using the mockup APIs that return predefined
values) and focus on facilitating the end-to-end orchestration of the workflows. The rationale behind this
integration approach was to test all relevant APIs and facilitate an agile DevOps lifecycle by providing a robust
workflow skeleton to which each team can independently add business logic of different components as it is
being developed and this logic would be automatically tested and iteratively improved.

The slice subnet scale-out was represented by procuring a single resource in the Operator 2 domain. It was
not really a slice subnet, but rather a VNF that was pre-onboarded in the respective operators’ domains. This
VNF has been instantiated and monitored for simple metrics like CPU and memory utilization, but we have
deferred the actual 5G slice establishment with 5GC, UPF and SDN stitching to the next stage. Consequently,
the product offer we used comprised just a single VNF offered by Operator 2 on the marketplace. The current
integrated prototype constitutes a partial implementation of Workflows 3-6, 3-7, 3-10 (D2.3). However, this
is a complete end-to end implementation that now progresses very fast to the next release.

The simplified integration workflow that has been implemented includes the following steps.

Table 5-1: ISSM integration steps

Step Description Input Output Comment

1 5GZORRO
actor registers
itself “Account
Manager”

Operator business details • operator ID

• authToken

• inTopic

• outTopic

• publicKey

• privateKey

Account Manager is a
mockup component
that uses Identity and
Permission Manager to
uniquely identify an
operator and equip it
with all the needed
identities and
permissions to use the

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 39 of 68

Step Description Input Output Comment

5Gzoro platform. In the
current integration
iteration, this
component mocks the
life cycle management
of a platform user
(agent)

2 The operator
is registered in
the Data Lake

• operatorID

• authToken

• nameSpace

• availableResources

The DL API is described
in D3.1 (p.83--86)

3 The operator
details are
propagated to
ISSM

• operatorID none It has been decided by
the partners that in the
next version of an
integrated prototype,
ISSM would
dynamically verify
operatorID against
“Account Manager”.
Currently, it is an
implementation
shortcut

4 ISSM-WFM
receives a
“slice
instantiation”
request

• NSSO format slice
blueprint

ISSM executes steps of
Workflow 3-6 (D2.3)
related to resource
discovery, optimization,
and acquisition at the
marketplace

For the sake of
simplicity, at this stage,
we avoided semantic
transformations across
ISSM-WFM and NSSO

Another simplification
was considering only
the part of the
workflow related to
the domain of
Operator 2 assuming
that Operator 1 already
established its slice
subnet. This is justified
by the fact that this is
an actual common
scenario when scale-
out is driven by an
optimization or an
operator wants to
extend its service area
footprint. Furthermore,
instantiating a slice
subnet in a single
domain is a standard
mainstream operation
while the focus of this

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 40 of 68

Step Description Input Output Comment

project is on the cross-
operator slices.

5 ISSM -WFM
requests
resource
instantiation
from NSSO

• Business Flow ID

• Product Offer ID

• resourceID Business transaction ID
is automatically
generated by ISSM-
WFM

Product Offer ID is
generated by the
marketplace at the
time of a product offer
creation

resourceID is
generated by NSSO
upon instantiation of a
product offer

6 NSSO
propagates
configuration
with dynamic
variables to
MDA

• Operator ID

• Business Flow ID

• DL Kafka Topic

• Monitoring Endpoint

• Context (object)

• Resource ID

• Network Slice ID

• Parent Resource ID

• Reference ID

• Metric
Name/metricID

• Metric Type

• Aggregation Method
(sum, average. etc.)

• Step

• Step Aggregation

none

7 MDA fetches
metric values
from OSM

• metricName/metricID • metricValue

8 Aggregate
metric by MDA
component

• metricName/metricID

• metricValue

• aggregationMethod

• step

• step_aggregation

• Should something be
here, e.g.
‘aggregated
metricValue’

9 Hash/signing
data with PK
from the
Operator with
SHA256 and
RSA algorithm

• Input keys none

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 41 of 68

Step Description Input Output Comment

10 Post data into
Data Lake (DL
Kafka topics /
REST API)

• operatorID

• businessID

• networkID

• monitoringData

• resourceID

• referenceID

• metricName/metricID

• metricValue

• aggregationMethod
(if the case)

• timestamp

• hashedData

none At this point,
monitoring data enters
DL and the Intelligent
SLA Breach Prediction
component comprising
pipelines executing in
the DL can consume
the data and analyse it.

5.2.1. Integration tests and results

The actual testing took place in a distributed environment bringing together premises of Nextworks, Altice
Labs and IBM interconnected by VPN. The ISSM-WFM and Data Lake components have been deployed locally
at IBM. The NSSO, OSM, Identity and Permission Manager and Account Manager have been deployed in
Nextworks.

Since for the integration we did not possess an environment for the real instantiation with the source of the
data defined, Altice Labs used a dummy orchestrator (OSM) to produce/collect metric values and,
consequently, have the capability to push the encrypted hash of data into the ingestion pipeline of Data Lake
for a given IN topic. This Kafka topic, along with the Business Flow ID, is obtained when the NSSO receives a
blueprint describing what should be instantiated (VSB).

Altice Labs provided a REST API for the definition of the monitoring specs and this way facilitated this
integration phase that endeavours to demonstrate that MDA, indeed, receives, from Vertical Slicer, a
configuration stating which metrics should be monitored and aggregated.

Moreover, for testing purposes, the MDA component was deployed into the Nextworks environment, and
due to this reason, ALB made available software packages to use as dependencies. Furthermore, a text
configuration file was generated to declare the environment variables concerning the database applied and
the operator’s private key.

5.3. E-Licensing control

Every software component onboarded in the 5GZORRO Marketplace may include the tied licensing
agreements associated, and with them, the definition of the costs derived from the use of this software. This
integration work aims to demonstrate the process that begins after the software acquisition by any customer.
From this moment, the resource is ready to be onboarded, deployed and managed by the platform.

The e-Licensing control configuration is triggered with the purpose of obtaining the relevant information
about the use of this software, in accordance with the agreements that have been signed. Stamping these
uses in the blockchain.

Below two workflows are depicted for illustrating the license configuration and the control of the use of the
software deployed in 5GZORRO. It is worth to notice that we detected two misprints in workflows presented
in deliverable D2.3 regarding the trigger of the licensing control (see D2.3). The correct sequence for the
licensing check message is always from the NSSO, and not triggered by the ISSM.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 42 of 68

The workflow of the licensing configuration is depicted in Figure 5-3.

Figure 5-3: E-License configuration workflow

The steps that are followed in the pictures are:

1. The ISSM request resources to the Marketplace. From this list of potentially heterogeneous
resources, we are supposing that we have software resources to illustrate this workflow.

2-3. The Marketplace performs the whole process of the resource acquisition, generating the distributed
identifiers of the products and resources.

4. The ISSM request the instantiation of the vertical slice, in certain tenants.

5. The NSSO registers the instance in the MANO, retrieving the ID of the NSI that has been registered.

6. The NSSO request the licensing checking to the eLMC, with all the information about the deployment
that is processing: Product DID, domain IDs, tenant IDs, NSD IDs and NSI IDs. The NSSO waits for the
service instantiation until the e-Licensing Manager verifies the NS license and process all the
configurations for the software control.

7. The eLMC replies to the NSSO with an operation code that identifies the deployment intent.

8. The eLMC processes the registration of the product offer.

9-10.The eLMC request the related licensing agreements. These agreements are reflected in the nested
productOfferingPrice object inside the productOffer.

11. The eLMC register the productOfferingPrice objects in the eLMAs hosted in each domain involved in
the productOffer

12-13. For each resource agreement, the eLMA subscribes to the MANO instances through the OSM NBI.
This subscription allows the eLMA to be aware of any event related to the instance. The watcher, who is
the entity devoted to managing this subscription is created in the eLMA.

14. The eLMAs in the domains involved notifies the eLMC the result of the configuration process.

15. The eLMC notifies the response of the configuration of the licensing control to the NSSO

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 43 of 68

16. The NSSO triggers the instantiation of the NSIs in the MANO.

The workflow of the licensing working procedure is depicted in Figure 5-4.

Figure 5-4: E-License control workflow

In particular,

1-2. For each monitored instance, the eLMA request the status in the MANO

3-4. If the instance is not running in the MANO, the monitored instance object and the open actions in
the eLMA are updated.

5-8. If the instance is running, the eLMA retrieves the metric or set of metrics related to the licensing
agreements to the MANO, this metric is updated in the status of the monitoring instance and in the open
actions.

9. Depending on the status of the monitored instance and the actions, the eLMA evaluates comparing
with the previous status.

10. The eLMA notifies to the eLMC the changes of the monitored instances in his domain.

11. Since the eLMC has the global view of all the eLMAs and can compare the status of all the
deployments, decide if an action needs to be submitted for persisting.

12-14. If the eLMC decides to submit an action for storing, this action is sent to the Marketplace that will
create a transaction with the action in the DLT. In case of error in the transaction, the NSSO is notified.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 44 of 68

5.3.1. Integration tests and results

The environment selected for the early integration is ATOS testbed. Once these tests are passed, the
5GZORRO components will be deployed to the 5GBarcelona testbed for the integration with further
components. The VNF used in this integration is not functional, since the objective of this effort is to test the
interfaces and the behaviour of both NSSO and ELM.

The interaction with the Marketplace is mocked for the moment for two workflows (Figure 5-3 and Figure
5-4). At this stage of integration, the licensing agreements (steps 9-10) are pre-created and hosted inside the
e-Licensing Manager. The work in progress outcomes for the next period are the Licensing agreements
creation in the 5GZORRO marketplace through the portal GUI, and the interface between the e-Licensing
manager to request the signed agreements. Besides, the interface between the e-Licensing Manager and the
Marketplace for the action persisting is work in progress, so it is mocked at this stage (steps 12-13 in Figure
5-4).

A set of HTTP REST calls are used to configure the NSSO externally described in Table 5-2:

Table 5-2: NSSO HTTP rest requests used

HTTP REST call Description

Login_domain Login in the NSSO platform

Onboard_vsb_mysql Onboard of the vertical slice blueprint. That is: VNFDs, NSDs, etc

Onboard_vsd_mysql Onboard the vertical slice descriptor

Instantiate_mysql Covers step 5 and step 6 in Figure 5-3, registering the NSI in the MANO and
triggering the licensing checking

A set of screenshots are presented to illustrate the integration with the NSSO and ELM software components.
They are presented in three groups to facilitate the comprehension of the thread in each component:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 45 of 68

(1) The first group of screenshots demonstrates the licensing verification before the NS instantiation, and also the configuration of the watchers in the e-
Licensing Manager to control the use of the NS.

The NSSO deployment is composed by 3 docker containers in Figure 5-5 with the postgres database, the rabbitmq broker instance and the apache webserver
that hosts the VNF metadata:

Figure 5-5: NSSO docker components deployment

Also, the NSSO logs are presented in Figure 5-6

Figure 5-6: NSSO deployment

Using the Onboard_vsb_mysql HTTP call, the VNF/NS descriptors are correctly onboarded in the MANO, as shown in Figure 5-7:

Figure 5-7: Onboard of VNF and NS descriptors in the OSM NFVO by the NSSO

Once HTTP REST requests in Table 5-2 are completed, the NSI is registered in OSM (Figure 5-8). This is step 5 at Figure 5-3. At this point the NSSO request the
ELM to process checkLicensing message that is displayed in Figure 5-9 and waits for the license verification and configuration. Once the NSSO is notified about
the license verification, sends the request to the NFVO to instantiate the NSi (Figure 5-10). In Figure 5-11 is displayed the NSi instance running.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 46 of 68

Figure 5-8: NSI registered is OSM NFVO

Figure 5-9: CheckLicensing request from the NSSO to the ELM

Figure 5-10: License verified and service instantiation

Figure 5-11: NS instance deployed at OSM after the license verification.

From the e-Licensing manager perspective, the ELM deployment is dockerized and composed by 7 containers as described in Figure 5-12:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 47 of 68

Figure 5-12: ELM docker container deployment

Once the NSSO triggers the checkLicensing request, the ELMC_REST receives the message and extracts the product offer and delegates to ELMC_MQ the
distribution of the request.

Figure 5-13: ELMC_REST process for the PO registration

ELMC_MQ receives the PO requests from the ELMC_REST and redirects the registration message to the ELMAs registered in the system.

Figure 5-14: ELMC_MQ redirect the registration message

ELMA_MQ receives the registration request and corroborates the POP existence in the marketplace. Once the POP has been registered and watchers are
configured, sends the message of registration successful to the ELMC.

Figure 5-15: ELMA_MQ registers the POP and send ACK to ELMC_MQ

ELMA Rest detects the instances that are scheduled in the NFVO that are being evaluated for the licensing check. ELMA_REST request the watcher registration:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 48 of 68

Figure 5-16: ELMA_REST OSM scheduled NSIs detection

The watcher manager detects the instantiation of the NSI and register the time when it has been deployed

Figure 5-17: Watcher Manager execution

The ELMA_REST detects the watcher and creates an action. In this action will be registered the use that is being performed (time of use in this case).

Figure 5-18: Action creation in ELMA_REST component

(2) The second group of screenshots describe how the control of the software is performed. The process starts in the ELMA_REST component. Each 5 seconds,
all the watchers configured in the watcher manager are scheduled for execution. Thus, in the ELMA_REST component retrieves this execution, verifies that
the instance is at RUNNING state and updates the time of use metric.

Figure 5-19: ELMA_REST watcher control.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 49 of 68

In this case we have manually removed the deployed NSi from OSM. This operation is detected by the ELMA_REST as displayed in Figure 5-20, so the watcher
is stopped and a notification is sent to the ELMA_MQ:

Figure 5-20: ELMA_REST decommissioned VNF detection

The ELMA_MQ received the watcher event that informs about the decommissioned VNF, and the value informs that the VNF has been used for 100,619746
seconds. This action is sent to the ELMC

Figure 5-21: ELMA_MQ Watcher event received

 Finally, the ELMC_MQ receives the action and informs the marketplace.

Figure 5-22: ELMC_MQ time of use action reception

(3) The third group of screenshots are related to functional test that have been described in Table 4-4 and are related to this integration effort.

a) Test Registration POP:

The POP registration has been demonstrated in Figure 5-15. Using the django administrator console, it is possible to access the data gathered in ELMA_REST
database and verify the correct POP registration:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 50 of 68

Figure 5-23: Django Administration Console shows POP registration

b) Test_registration_POP_error

In this case, we try to register a PO that is not signed in the mocked marketplace. We will use Postman to make the NSSO to create a request to the ELMC
with a wrong product_id and verify that the instantiation of the service is not successful since there is not a license purchased related to this this product id.

The HTTP rest call is:

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 51 of 68

Figure 5-24: Request with wrong Product_ID

The resulting response in the NSSO is an error in the license verification, so as expected the NSI it is not instantiated:

Figure 5-25: Error in license verification shown at NSSO logs

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 52 of 68

c) Test NSSO interface

Before the integration effort we used our swagger API: http://ELMC_URL:8080/ui for the first functional tests regarding the interface between the NSSO and
the eLMC. As showed in the swagger API, the response from the eLMC is notifying us that the PO registration process has started, so the interface is well
defined:

Figure 5-26: Example of PO registration using eLMC API

http://elmc_url:8080/ui

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 53 of 68

5.4. Data-driven actuation

As discussed in previous sections, the provisioning of a network slice to an operator through 5GZORRO
components, creates a Service Level Agreement (SLA) contract. The SLA contains the quantifiable metrics of
the virtual resource that have been agreed upon, called Service Level Objectives (SLO). The creation of the
smart contract initiates a workflow whose purpose is to trigger a data pipeline that predicts the future values
of those SLOs throughout the lifecycle of the SLA, using Machine Learning algorithms. To that end, the
following 5GZORRO components are involved:

• Monitoring Data Aggregator (MDA)

• Intelligent SLA Breach Prediction module (ISBP)

• Smart Contract Lifecycle Manager (SCLM)

• Data Lake

The workflow is visible in Figure 5-27.

Once the SLA is created, the MDA starts collecting monitoring data related to the network slice that has been
provisioned, and sends them to the Storage Service located in the Data Lake of 5GZORRO. Concurrently,
SCLM sends the SLA to a different message queue also located in the Data Lake. The ISBP, which is part of
the Data Lake and awaits messages from these message queues, parses the message containing the SLA and
creates a pipeline that generates future predictions of the SLO metric, based on the monitoring data of the
slice. The predictions are generated by an AI model that has been trained on data similar to the ones it is
predicting. The ISBP also includes functionality that enables the re-training of the AI model if the accuracy of
its predictions falls under a given threshold. Finally, if the generated prediction is above the threshold
dictated by the SLA, it is packaged in a notification message and pushed to a message queue. This notification
can be then picked up by the Intelligent Slice and Service Manager component of 5GZORRO that can then
take action to prevent contract breach.

The architecture of the components mentioned above can be seen in Figure 5-28. The MDA and the SCLM,
are not part of the Data Lake and interface with the Storage Services and a message queue to push monitoring
data and the SLA events respectively. Accordingly, the Data Lake maintains several message queues in order
to implement a stream-based service. As can be seen, each queue stores different kind of data.

The ISBP is located within a Docker container and has connections to the message queues, but also exposes
a REST API, implementing a limited number of functions. The Prediction and Training modules are ephemeral
containers whose lifecycle depends only on the duration of the task they have to complete. The launching of
these containers is triggered by events fired by the creation of the files containing the data for the prediction
and model training respectively. Upon completion, the Prediction module sends the generated prediction to
the ISBP using a simple HTTP request, whereas the Training module stores the new model to the Data Lake
storage.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 54 of 68

Figure 5-27: SLA Breach prediction workflow

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 55 of 68

Figure 5-28: ISBP Architecture

5.4.1. Integration tests and results

The components ISBP and Prediction/Training modules have been developed and tested in local ICOM
premises with a local installation of Apache Kafka as the message queue ISBP connects to. The tests involve
an existing dataset consisting of metrics acquired from one of ICOM’s servers. These metrics include the
server bandwidth, cache hits and request per minute. The data is pushed to Kafka which simulates the
workflow discussed above. The results with the ephemeral containers mentioned previously can be seen in
Figure 5-29.

The integration of these components with the rest of the components of the Data Lake is underway, with the
main focus being:

• The deployment of these components to the infrastructure of the Data Lake.

• The connectivity of ISBP with the message queues.

• The connectivity of the components related to other aspects of the Storage Services of the Data Lake.

Figure 5-29: ISBP containers running at ICOM premises

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 56 of 68

6. Conclusions

This deliverable reports the status of the implementation of the set of modules building the 5GZORRO
platform that are being implemented in the context of WP4. In this sense, the document follows the same
structure of D4.1 and provides an overview of three of main features of the 5GZORRO Platform the WP4 aims
to realise: Security and Trust Orchestration, Intelligent and Automated Slice and Service Management and
MANO and Slicing Enhancements. Per each of such feature is discussed the set of modules it encompasses
and per each module are reported any deviation from the original design (see D4.1), the current
implementation status and a list of the main functional tests performed.

The second part of the document discusses the effort in the integration of modules presented and the
strategy adopted by 5GZORRO to perform such integration. Several Platform Development Teams have been
created, with the aim of going beyond the limitation imposed by the classical WP-based division of the effort,
thus facilitating the development of the components by following an integration-driven approach. In this
sense, the integration of the components, as result of the activities of Teams 3 (Zero-touch slicing), 4 (e-
Licensing Management) and 6 (SLA-Datalake) are reported and detailed, in terms of storylines and integration
tests, which also include the interaction with other 5GZORRO modules not discussed in this document whose
implementation will be reported in D3.2.

The modules and the integration work reported in this document does not represent a stable implementation
but rather a snapshot of the current status of some parts of the 5GZORRO platform, which will be
continuously improved and refined in the following months and reported in the deliverable D4.3.

The list of KPIs and object covered by this deliverable is reported in Table 6-1.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 57 of 68

Table 6-1: D4.2 contribution to 5GZORRO objectives and KPIs.

OBJECTIVE Target KPIs Applicable Prototype Artifact

OBJ-2. Design and prototype a
security and trust framework,
integrated with 5G service
management platforms, to
demonstrate Zero-Day trust
establishment in distributed
multi-stakeholder
environments and automated
security management to
ensure trusted and secure
execution of offloaded
workloads across domains in
5G networks

• Provide mechanisms for zero touch trust automation in multi-domain
scenarios on top of a 5G service management framework (KPI target:
to cover up to 4 different stakeholders as part of the automated trust
establishment process and to enable its automatic renegotiation
when a stakeholder is joining or leaving the trust link).

See Sec. 2 for Security and Trust
Orchestration

• Enhance a 5G service management framework enabling the
detection of security vulnerabilities and compromises and the
provision of a set of potential countermeasures to mitigate them
using a zero-touch approach (KPI target: identifying 6 different types
of common attacks to software infrastructures and provide a
complete set of countermeasures -filter traffic, divert it to a
honeynet, send an alert to the system admin, etc.- for each of them).

See Sec. 2.3 Intra-domain Security
enablers

• Support the integration of zero trust hardware platforms (TEE -
Trusted Execution Environments) as a root of trust for the monitoring
of information and the establishment of end-to-end secure
communications enabling critical workloads to go across different
tenants and different stakeholders (KPI target: research on the
integration evolution of three TEE platforms --one provided by a
project partner-- and two other commercial ones to support a fast
and secure establishment of end-to-end cross-slice communications
for critical workloads).

See Sec. 2.2 Trusted Execution
Environment Security Management

OBJ-5. Define and prototype a
secure shared spectrum market
to enable real-time trading of
spectrum allocations between
parties that do not have a pre-
established trust relationship.

• Agnostic support of various radio technologies, to ensure that the
market will work regardless of the considered radio technology (KPI
target: 5GNR, LTE and WiFi will be supported).

See Sec. 4.2 Network Slice and Service
Orchestrator

OBJ-6. Realize a cloud-friendly
network software licensing
framework for location

• Enable the creation of license agreement templates associated to
VNF/NS instances (KPI target: create templates attached to
eContract detailing name, context, license conditions, negotiation
goal and constraints).

See Sec. 4.3 E-Licensing Manager .

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 58 of 68

OBJECTIVE Target KPIs Applicable Prototype Artifact

independent network
appliances execution.

• Generate vendor independent license token to manage location
independent VNFs from 3rd party edge to core datacenter (KPI
target: license service creates generic tokens to latter run any vendor
VNF across at least 2 network segments).

See Sec. 4.3 E-Licensing Manager .

• Instantiate Network Services with VNFs from diverse providers (KPI
target: use eContract to include VNF licensed by at least 3 different
providers).

See, Sec. 3.1, ISSM Workflow Manager
(ISSM-WFM, Sec. 4.2 Network Slice and
Service Orchestrator , Sec. 4.3 E-Licensing
Manager

OBJ-8. Ensure the long-term
success of the project through
standardization and
dissemination in scientific,
industrial, and commercial
fora, and by contributing to
relevant open-source
communities & SDOs also
exploring synergies with other
EU initiatives and projects.

No specific target to be covered by architecture design 5GZORRO Platform prototypes are
available on GitHub under the 5GZORRO
Project space [42]

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 59 of 68

References

[1] 5GZORRO Consortium, Deliverable D4.1 - Intermediate prototype of Zero Touch Service Mgmt with
Security and Trust.

[2] Xiong, L., & Liu, L. (2004) - Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE transactions on Knowledge and Data Engineering, 16(7), 843-857.

[3] Haga, S., Esmaeily, A., Kralevska, K., & Gligoroski, D. (2020, November) - 5G Network Slice Isolation with
WireGuard and Open Source MANO: A VPNaaS Proof-of-Concept. In 2020 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN) (pp. 181-187). IEEE.

[4] Bollapragada, V., Khalid, M., & Wainner, S. (2005) - IPSec VPN Design. Cisco Press.

[5] Feilner, M. (2006) - OpenVPN: Building and integrating virtual private networks. Packt Publishing Ltd.

[6] Product Catalog Management API REST Specification, TM Forum Specification, TMF620, Release 19.0.0,
July 2019.

[7] 5GZORRO Consortium, Deliverable D3.1 – Design of the evolved 5G Service layer solutions, Jan 2021

[8] SCONE – A secure container environment - https://scontain.com/index.html?lang=en

[9] Intel Software Guard Extensions –https://software.intel.com/content/www/us/en/develop/topics/
software-guard-extensions.html

[10] Azure Cloud – SGX powered Servers - https://azure.microsoft.com/en-us/blog/dcsv2series-vm-now-
generally-available-from-azure-confidential-computing/ Accessed 27 January 2021.

[11] Zeek network security monitor - https://zeek.org/

[12] Elasticsearch search and analytics engine - https://www.elastic.co/elasticsearch/

[13] Kibana - https://www.elastic.co/kibana

[14] Filebeat log shipper - https://www.elastic.co/beats/filebeat.

[15] Flask - https://flask.palletsprojects.com/en/1.1.x

[16] Gevent Python networking library - http://www.gevent.org/

[17] Werkzeug WSGI server - https://werkzeug.palletsprojects.com/en/1.0.x/

[18] 5GZORRO Consortium, Deliverable D2.3 – Update Design of the 5GZORRO Platform for Security & Trust,
April 2021

[19] ETSI GS NFV-SOL 006 V3.3.1 (2020-08): Network Functions Virtualisation (NFV) Release 3; Protocols and
Data Models; NFV descriptors based on YANG Specification

[20] Resource Catalog Management API REST Specification” (2020-11), TM Forum Specification, TMF634,
Release 17.0.1, December 2017

[21] Service Catalog Management API REST Specification, TM Forum Specification, TMF633, Release 18.5.0,
January 2019.

[22] Spring Boot application framework - https://spring.io/projects/spring-boot

[23] Nextworks 5G Catalogue - https://github.com/nextworks-it/5g-catalogue

https://zeek.org/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
https://www.elastic.co/beats/filebeat
https://flask.palletsprojects.com/en/1.1.x
http://www.gevent.org/
https://werkzeug.palletsprojects.com/en/1.0.x/
https://spring.io/projects/spring-boot
https://github.com/nextworks-it/5g-catalogue

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 60 of 68

[24] Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models; NFV descriptors based on
TOSCA specification https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/03.03.01_60/
gs_NFV-SOL001v030301p.pdf

[25] PostgreSQL - https://www.postgresql.org/

[26] J-OSM - A Java-based client for Open Source MANO (OSM) - https://github.com/girtel/J-OSMClient

[27] OpenStack4j - A fluent OpenStack client - https://github.com/ContainX/openstack4j

[28] FastAPI - https://fastapi.tiangolo.com

[29] Python client for Apche Kafka - https://kafka-python.readthedocs.io/en/master/index.html

[30] Psycopg – PostgreSQL database adapter for Python - https://www.psycopg.org/docs/

[31] Python-RSA - https://stuvel.eu/python-rsa-doc/

[32] Timeloop - https://github.com/sankalpjonn/timeloop

[33] SQLAlchemy - Python SQL toolkit and Object Relational Mapper - https://www.sqlalchemy.org/

[34] 5GCity – A distributed cloud & radio platform for 5G Neutral Hosts - https://www.5gcity.eu/

[35] Network Slice Blueprint Definition - https://www.ngmn.org/wp-content/uploads/
160113_NGMN_Network_Slicing_v1_0.pdf, page 6

[36] NXW slicer, 5GZORRO-core-1.0-alfa release, https://github.com/nextworks-it/slicer/tree/5gzorro-core-
1.0-alfa

[37] NXW slicer-catalogue, 5GZORRO-core-1.0-alfa release, https://github.com/nextworks-it/slicer-
catalogue/tree/5gzorro-core-1.0-alfa

[38] NXW nfvo-drivers, 5GZORRO-core-1.0-alfa release, https://github.com/nextworks-it/nfvo-
drivers/tree/5gzorro-core-1.0-alfa

[39] NXW slicer-catalogue, 5GZORRO-core-1.0-alfa release, https://github.com/nextworks-it/slicer-
catalogue/tree/5gzorro-core-1.0-alfa

[40] MDA OpenAPI specification, https://github.com/5GZORRO/mda/blob/main/doc/openapi.json

[41] E-Licensing core OpenAPI specification, https://github.com/5GZORRO/elicensing-manager-
core/blob/master/elicensemanagercore/elmc_front/swagger.yaml

[42] 5GZORRO Consortium, Deliverable D5.1 – Use case validation plan and testbed design

[43] 5GZORRO GitHub space - https://github.com/5GZORRO

https://github.com/girtel/J-OSMClient
https://github.com/ContainX/openstack4j
https://fastapi.tiangolo.com/
https://kafka-python.readthedocs.io/en/master/index.html
https://www.psycopg.org/docs/
https://stuvel.eu/python-rsa-doc/
https://github.com/sankalpjonn/timeloop
https://www.sqlalchemy.org/
https://www.5gcity.eu/
https://github.com/nextworks-it/slicer/tree/5gzorro-core-1.0-alfa
https://github.com/nextworks-it/slicer/tree/5gzorro-core-1.0-alfa
https://github.com/nextworks-it/slicer-catalogue/tree/5gzorro-core-1.0-alfa
https://github.com/nextworks-it/slicer-catalogue/tree/5gzorro-core-1.0-alfa
https://github.com/nextworks-it/nfvo-drivers/tree/5gzorro-core-1.0-alfa
https://github.com/nextworks-it/nfvo-drivers/tree/5gzorro-core-1.0-alfa

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 61 of 68

7. Abbreviations and Definitions

7.1. Abbreviations

API Application Programming Interface

CLI Command Line Interface

DID Distributed Identifier

GST Generic Slice Template

MANO Management and Orchestration

MNO Mobile Network Operator

NBI North Bound Interface

NEST Network Slice Type

NFVO Networks Function Virtualization Orchestrator

NSI Network Service Instance

OSM Open Source MANO

PLMN Public Land Mobile Network

RAN Radio Access Network

REST Representational State Transfer

SBI South Bound Interface

SSID Service Set Identifier

TAP Terminal Access Point

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VPN Virtual Private Network

WP Work Package

WSGI Web Server Gateway Interface

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 62 of 68

8. Appendix I – Trust Management Framework

8.1. Trust Management Framework Information Model

The redesigned information model of the Trust Management Framework is presented in Figure 8-1. In
particular, it presents the set of characteristics that are interpreted by the PeerTrust reputation model to
generate a final score for each trust computation request.

Figure 8-1 : UML diagram of Trust Management Framework

Table 8-1: Trust Management Framework Instance Information Model

Parameter Type Description

trustorDID String Unique identifier for a resource or service consumer.

trusteeDID String Unique identifier for a resource or service provider.

trustValue Double Current trust value assigned.

evaluationCriteria List of intra or inter-
domain policies

Criterion selected by trust model to assign the values to the trustee.

initEvaluationPeriod TimeStamp The time when trust value was generated.

endEvaluationPeriod TimeStamp The time when trust value will be over and has to be reassigned, if
required.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 63 of 68

Table 8-2: Trustee Entity Information Model

Parameter Type Description

trusteeDID String Unique identifier for a resource or service provider.

offerDID String Unique identifier for a particular product offer of the provider.

type String Kind of offer (RAN, spectrum, VNF/CNF, slice, or edge)

trusteeSatisfaction Double Truestee’s satisfaction after x interactions with other providers.

recommendation List of objects A recommendation about a third-party.

recommender String Unique identifier for a recommender.

trustLevel Double Final trust score ranged from 0.0 to 1.0.

location List of
GeographicalAddress
objects

It constitutes a group of GeographicalAddress.

recommendations List of
recommendations

Set of recommendations about a third entity from one or more
external entities (recommenders).

Table 8-3: Trustor Entity Information Model

Parameter Type Description

trustorDID String Unique identifier for a resource or service consumer.

trusteeDID String Unique identifier for a resource or service provider.

offerDID String Unique identifier for a particular product offer.

type String Kind of offer (RAN, spectrum, VNF/CNF, slice, or Edge)

directParameters List of key-value
features

Dictionary with direct trust data to calculate trust level.

directWeighting Double Direct weighting parameter.

userSatisfaction Double Internal assessment of the service or resource provided
by a stakeholder (trustor).

 providerSatisfaction (PS) Double Trustor satisfaction in a third-party provider (trustee).

 PSWeighting Double Weighting factor  [0,1], PS + OS = 1

 offerSatisfaction (OS) Double Trustor satisfaction in a particular kind of offer of a
third-party provider.

 OSWeighting Double Weighting factor  [0,1], PS + OS = 1

providerReputation List (double) Set of previous trust evaluations about a provider.

offerReputation List (double) Set of previous trust evaluations about a specific kind of
offer of a provider.

availableAssets Integer The available assets (services and resources) of the
trusteeDID when the trustor is determining the
reputation.

totalAssets Integer The total assets of the trusteeDID when the trustor is
determining the reputation (active and inactive).

availableAssetLocation Integer The available assets of the trusteeDID, at a specific
location, when the trustor is determining the
reputation.

totalAssetLocation Integer The total assets of the trusteeDID, at a specific location,
when the trustor is determining the reputation (active
and inactive).

managedViolations Integer The total number of predicted SLA violations that were
finally managed successful, associated with the
trusteeDID.

predictedViolations Integer The total number of predicted SLA violations associated
with the trusteeDID.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 64 of 68

Parameter Type Description

executedViolations Integer The total number of predicted SLA violations that were
finally managed unsuccessful (violation), associated
with the trusteeDID.

nonPredictedViolations Integer The number of SLA violations that were not predicted
and turned out to be SLA violations, associated with the
trusteeDID.

consideredOffers Integer The number of offers considered by the Smart Resource
and Service Discovery (SRSD), for a particular type of
offer, from the trusteeDID when trustor is determining
the reputation.

totalOffers Integer The available number of a particular offer type from the
trusteeDID when trustor is determining the reputation.

consideredOfferLocation Integer The number of offers considered by the Smart Resource
and Service Discovery (SRSD) for a particular type of
offer from the trusteeDID, at a specific location, when
trustor is determining the reputation.

totalOfferLocation Integer The available number of a particular offer type from the
trusteeDID, at a specific location, when trustor is
determining the reputation.

managedOfferViolations Integer The total offer number (for a particular kind of offer) of
predicted SLA violations that were finally managed
successful, associated with the trusteeDID.

predictedOfferViolations Integer The total offer number (for a particular kind of offer) of
predicted SLA violations associated with the
trusteeDID.

executedOfferViolations Integer The total offer number (for a particular kind of offer) of
predicted SLA violations that were finally managed
unsuccessful (violation), associated with the
trusteeDID.

nonPredictedOfferViolations Integer The total offer number (for a particular kind of offer) of
SLA violations that were not predicted and turned out
to be SLA violations, associated with the trusteeDID.

interactionNumber Integer Number of interactions carried out by the trusteeDID
with the other domains.

feedbackNumber Integer Number of feedbacks made by other providers about
the trusteeDID.

feedbackOfferNumber Integer Number of feedbacks made by other providers about a
particular kind of trusteeDID’s offer.

location List of
GeographicalAddress
objects

It constitutes a group of GeographicalAddress.

validFor TimePeriod The period for which this resource or service is valid.

indirectParameters List of key-value
features

Dictionary with indirect trust data to calculate trust
level.

recommendationWeighting Double Recommender’s weighting parameter(s).

recommendations List of
recommendations

Set of recommendation about a third entity from one
or more external entities.

credibility Double Factor that determines how accurate the
recommendations are.

transactionFactor Double The context factor adapted on the current transaction
of the trustee (required by PeerTrust model).

communityFactor Double The context factor adapted on the community of
stakeholders to which the trustee belongs (required by
PeerTrust model).

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 65 of 68

Parameter Type Description

trustPropagation Boolean Intra or inter-domain trust score and parameterTuple
propagation (0 means intra, 1 means inter).

trustUpdate List of objects It indicates the triggers to recompute trust score.

trustEvaluation List of objects It identifies different evaluation algorithms such as
PeerTrust reputation model.

8.2. Trust Management Framework Equations

8.2.1. General PeerTrust equation

The PeerTrust model is composed of a main equation that allows representing how a domain v can evaluate
the trust score of a domain u. In particular, the principal equation is as follow:

𝑇(𝑢) = 𝛼 ∗ (
∑ 𝑆(𝑢, 𝑖)𝐼(𝑢)

𝑖=1 ∗ 𝐶𝑟(𝑝(𝑢, 𝑖)) ∗ 𝑇𝐹(𝑢, 𝑖)

𝐼(𝑢)
) + 𝛽 ∗ 𝐶𝐹(𝑢)

where

• 𝛼 , 𝛽 depict weighting factors to be considered by the domain v. 𝛼, 𝛽 ∈ [0,1]and 𝛼 + 𝛽 =
 1. It is advisable that 𝛼 has a higher value than 𝛽.

• 𝐼(𝑢) is the total interaction number of domain u with the rest of domains.

• 𝑝(𝑢, 𝑖) denotes the rest of domains participating in the i-th interaction with the domain u.

• 𝑆(𝑢, 𝑖) represents the normalized value of satisfaction that the domain u obtains from 𝑝(𝑢, 𝑖) in its
i-th interaction.

• 𝐶𝑟(𝑣) references the domain v's credibility has in the domain u's opinion.

• 𝑇𝐹(𝑢, 𝑖) is the context factor adapted on the i-th transaction of domain u.

• 𝐶𝐹(𝑢) indicates the context factor adapted on the community of entities to which the domain u
belongs.

8.2.1.1. Satisfaction equation

Once the principal equation has been introduced (see section above), each of the parts that make up the
main equation will be split into sub-equations to explain in more detail how each of the parameters is
evaluated. In particular, next equation defines the domain u's satisfaction on a product offer published by a
particular domain in the i-th interaction.

𝑆(𝑢, 𝑖) = 𝛾 ∗ 𝑃𝑆(𝑢, 𝑖) + 𝜑 ∗ 𝑂𝑆(𝑢, 𝑖)

where

• 𝛾, 𝜑 depict weighting factors to be considered by the domain u. 𝛾, 𝜑 ∈ [0,1] and 𝛾 + 𝜑 = 1.

• 𝑃𝑆(𝑢, 𝑖) is the satisfaction that the domain u has on the i-th domain (provider).

• 𝑂𝑆(𝑢, 𝑖) is the satisfaction that the domain u has on the i-th domain's offer.

• It should be pointed out that 𝑃𝑆(𝑢, 𝑖) + 𝑂𝑆(𝑢, 𝑖) = 1.

The provider's satisfaction of the domain u on the i-th interaction will be computed about the domain j
stakeholder.

𝑃𝑆(𝑢, 𝑗) = 𝑅𝑒𝑝(𝑢, 𝑗) ∗ ⨁ 𝑅𝑒𝑐(𝑥, 𝑗)

𝑛

𝑥=1

 ∗ 𝑇(𝑡−1)(𝑢, 𝑥)

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 66 of 68

where

• ⨁ is a aggregation operation such as Minimum value, Maximum value, Arithmetic mean, or
Harmonic mean. 𝑛 denotes the rest of domains participating in the x-th interaction with the domain
j.

• 𝑅𝑒𝑐(𝑥, 𝑗) is the recommendation of the x-th domain with which the domain j has a trust relationship.
In other words, 𝑇(𝑥, 𝑗).

• 𝑇(𝑡−1)(𝑢, 𝑥) is the last trust score that the domain u has on the domain x.

The 𝑅𝑒𝑝(𝑢, 𝑗) is the average reputation that the domain u has on the provider j based on all assets (service
and resources). This reputation contemplates features such as available assets, assets in a particular location,
and multiple time windows to compute these features along the provider j lifecycle.

𝑅𝑒𝑝(𝑢, 𝑗) = ∑ 𝜀(𝑘)

𝑛

𝑘=1

∗
(

𝐴𝐴(𝑗)

𝐼𝐴(𝑗)
 +

𝐴𝐴𝐿(𝑗)

𝐼𝐴𝐿(𝑗)
 + 2 ∗

𝑀𝑉(𝑗)

𝑃𝑉(𝑗)
 − 2 ∗

𝐸𝑉(𝑗)+𝑁𝑃𝑉(𝑗)

𝑃𝑉(𝑗)
) + 2

6

where

• ∑n
k=1 represents the 𝑛 time windows established by the domain u.

• 𝜀(𝑘) depicts weighting factor to be considered by the domain u for each the time window 𝑘. 𝜀(𝑘) ∈
[0,1] and 𝜀1 + ⋯ + 𝜀𝑛 = 1.

• 𝐴𝐴(𝑗) means the available assets of provider j when the domain u determined the reputation on
provider j.

• 𝐼𝐴(𝑗) depicts the total assets of the provider j when the domain u determined the reputation on
provider j.

• 𝐴𝐴𝐿(𝑗) means the available assets of the provider j, at a particular location, when the domain u
determined the reputation on provider j.

• 𝐼𝐴𝐿(𝑗) depicts the total assets of the provider j, at a particular location, when the domain u
determined the reputation on provider j.

• 𝑀𝑉(𝑗) represents the total number of predicted SLA violations that were finally managed successful.

• 𝑃𝑉(𝑗) represents the total number of predicted SLA violations.

• 𝐸𝑉(𝑗) represents the total number of predicted SLA violations that were finally managed
unsuccessful (executed).

• 𝑁𝑃𝑉(𝑗) represents the number of SLA violations that were not predicted and turned out to be SLA
violations.

The provider's satisfaction of the domain u on the i-th interaction will be computed about a particular offer
of the domain j stakeholder.

𝑂𝑆(𝑢, 𝑜𝑗) = 𝑅𝑒𝑝(𝑢, 𝑜𝑗) ∗ ⨁ 𝑅𝑒𝑐(𝑥, 𝑜𝑗)

𝑛

𝑥=1

 ∗ 𝑇(𝑡−1)(𝑢, 𝑥)

where

• ⨁ is a aggregation operation such as Minimum value, Maximum value, Arithmetic mean, or
Harmonic mean. 𝑛 denotes the rest of domains participating in the x-th interaction with the domain
j.

• 𝑅𝑒𝑐(𝑥, 𝑜𝑗) is the recommendation of the x-th domain with which the domain j has a trust relationship

about a specific kind of offer (RAN, Spectrum, Edge, Slice, or VNF/CNF). In other words, 𝑇(𝑥, 𝑜𝑗).

• 𝑇(𝑡−1)(𝑢, 𝑥) is the last trust score that the domain u has on a kind of specific offer of the the domain
x.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 67 of 68

The 𝑅𝑒𝑝(𝑢, 𝑜𝑗) is the average reputation that the domain u has on a kind of specific offer of the provider j.

This reputation contemplates features such as available offers, offer in a particular location, and multiple
time windows to compute these features along the provider j’s offer lifecycle.

𝑅𝑒𝑝(𝑢, 𝑜𝑗) = ∑ 𝜀(𝑘)

𝑛

𝑘=1

∗
(

𝐶𝑂(𝑗)

𝐼𝑂(𝑗)
 +

𝐶𝑂𝐿(𝑗)

𝐼𝑂𝐿(𝑗)
 + 2 ∗

𝑀𝑂𝑉(𝑗)

𝑃𝑂𝑉(𝑗)
 − 2 ∗

𝐸𝑂𝑉(𝑗)+𝑁𝑃𝑂𝑉(𝑗)

𝑃𝑂𝑉(𝑗)
) + 2

6

where

• ∑n
k=1 represents the 𝑛 time windows established by the domain u.

• 𝜀(𝑘) depicts weighting factor to be considered by the domain u for each the time window 𝑘. 𝜀(𝑘) ∈
[0,1] and 𝜀1 + ⋯ + 𝜀𝑛 = 1.

• 𝐶𝑂(𝑗) means the number of offers considered by the Smart Resource and Service Discovery (SRSD),
for a particular type of offer, from the provider j when the domain u determined the reputation on
provider j.

• 𝐼𝑂(𝑗) depicts the available number of a particular offer type from the provider j when the domain u
determined the reputation on provider j.

• 𝐶𝑂𝐿(𝑗) means the number of offers considered by the Smart Resource and Service Discovery (SRSD),
for a particular type of offer from provider j, at a particular location, when the domain u determined
the reputation on provider j.

• 𝐼𝑂𝐿(𝑗) depicts the available number of a particular offer type from the provider j, at a particular
location, when the domain u determined the reputation on provider j.

• 𝑀𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations
that were finally managed successful.

• 𝑃𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations.

• 𝐸𝑂𝑉(𝑗) represents the total offer number (for a particular kind of offer) of predicted SLA violations
that were finally managed unsuccessful (executed).

• 𝑁𝑃𝑂𝑉(𝑗) represents the offer number of SLA violations that were not predicted and turned out to
be SLA violations.

It is worth mentioning that 𝐼𝐴, 𝐼𝐴𝐿, 𝑃𝑉, 𝐼𝑂, 𝐼𝑂𝐿, 𝑎𝑛𝑑 𝑃𝑂𝑉 are parameters whose minimum value is 1. In
other case, if these parameters were initialized to 0, such equation parts should be omitted due to the fact
that the division of 0 by 0 is not allowed.

8.2.2. Feedback Credibility equation

In this first iteration, we have contemplated using a general credibility metric that can be applied to multiple
contexts. Specifically, the personalized similarity metric (PSM) is the one selected. The objective of this
formula is to determine how similar v and w domains are when evaluating the same domain u.

𝐶𝑟(𝑝(𝑢, 𝑖)) =
𝑆𝑖𝑚(𝑝(𝑢, 𝑖), 𝑤)

∑ 𝑆𝑖𝑚(𝑝(𝑢, 𝑗), 𝑤)𝐼(𝑢)
𝑗=1

≡
𝑆𝑖𝑚(𝑣, 𝑤)

∑ 𝑆𝑖𝑚(𝑣, 𝑤)𝐼(𝑢)
𝑗=1

𝑆𝑖𝑚(𝑣, 𝑤) = 1 −
√∑ (

∑ 𝑆(𝑥,𝑖)𝐼(𝑥,𝑣)
𝑖=1

𝐼(𝑥,𝑣)
−

∑ 𝑆(𝑥,𝑖)𝐼(𝑥,𝑤)
𝑖=1

𝐼(𝑥,𝑤)
)

2

𝑥 ∈𝐼𝐽𝑆(𝑣,𝑤)

∣ 𝐼𝐽𝑆(𝑣, 𝑤) ∣

where

• 𝐼(𝑥, 𝑣) depicts the total number of interactions that have been carried out by the domain x with the
domain v.

5GZORRO Grant Agreement No. 871533 Deliverable D4.2 – version v1.0

Page 68 of 68

• 𝐼(𝑥, 𝑤) depicts the total number of interactions that have been carried out by the domain x with the
domain w.

• ∣ 𝐼𝐽𝑆(𝑣, 𝑤) ∣ is the set of domains that are interacted both with domain v and domain w.

8.2.3. Transaction Context Factor equation

The purpose of this equation is to calculate a final value associated with the current transaction type (product
offer and provider) from the number of feedbacks provided in different time windows established. A higher
number of feedbacks in the different time windows will indicate that both the type of offer and the provider
are currently being used by other domains, and therefore, there will be a higher number of recommenders
to be contemplated for finally determining a stable reputation.

𝑇𝐹(𝑢, 𝑖) =

∑ 𝜀(𝑗) ∗ (

𝐹𝑂(𝑢,𝑖)

𝑇𝑂𝐼(𝑢,𝑖)
+

𝑅(𝑢,𝑖)

𝑇𝐼(𝑢,𝑖)

2
)

𝑛

𝑗=1

𝑛

where

• ∑𝑛
𝑗=1 represents the number of time windows established by the domain u.

• 𝜀(𝑗) depicts weighting factor to be considered by the domain u for each the time window 𝑗. 𝜀(𝑗) ∈
[0,1] and 𝜀1 + ⋯ + 𝜀𝑛 = 1.

• 𝐹𝑂(𝑢, 𝑖) is the total number of feedbacks of a particular type of offer that have been published about
the domain u in the DLT.

• 𝑅(𝑢, 𝑖) means the total number of recommendations made by other domains about the domain u
and published in the DLT.

• 𝑇𝑂𝐼(𝑢, 𝑖) is the total number of offer interactions recorded in the i-th interaction of the domain u.

• 𝑇𝐼(𝑢, 𝑖) is the total number of provider interactions recorded in the i-th interaction of the domain u.

8.2.4. Community Context Factor equation

The purpose of the 𝐶𝐹(𝑢) is to obtain the feedacks about a domain u. For this purpose, the interaction
number that the domain u had in the community through the contribution of services or resources with other
domains are evaluated. In addition, a dynamic list of trustworthy recommenders is contemplated to ask for
domain u's feedbacks. Finally, we also consider an aggregation function in order to set up.

𝐶𝐹(𝑢) =

𝑅(𝑢)

𝑇𝐼(𝑢)
+

⨁ (𝑅𝑒𝑐(𝑗,𝑢)∗𝐶𝑟(𝑗))𝑛
𝑗=1

𝑛

2

where

• 𝑅𝑒𝑐(𝑗, 𝑢) the recommendation of the j-th domain with which the domain u has a trust relationship
and it is in our list of trustworthy recommenders. In other words, 𝑇(𝑗, 𝑢).

<END OF DOCUMENT>

