

Personalised Health Monitoring and Decision Support Based
on Artificial Intelligence and Holistic Health Records

D2.4 – Conceptual model and reference
architecture

WP2 Requirements, State of the Art Analysis and User
Scenarios in iHelp

Dissemination Level: Public

Document type: Report
Version: 1.0.0

Date: August 30, 2021

The project iHelp has received funding from the European Union’s Horizon 2020 Programme for
research, technological development, and demonstration under grant agreement no 101017441.

GA-101017441

D2.4 – Conceptual model and reference architecture 1

Document Details

Project Number 101017441

Project Title
iHelp - Personalised Health Monitoring and Decision
Support Based on Artificial Intelligence and Holistic Health
Records

Title of deliverable Conceptual model and reference architecture

Work package WP2

Due Date 31/08/2021

Submission Date 30/08/2021

Start Date of Project January 1, 2021

Duration of project 36 months

Main Responsible Partner Engineering Ingegneria Informatica (ENG)

Deliverable nature Report

Author name(s)

Fabio Melillo (ENG) – Contributors: Ainhoa Azqueta
(UPM), Miriam Cabrita (iSprint), Athanasios Dalianis (ATC),
Antonio De Nigro (ENG), Krasimir Filipov (KOD), George
Giotis (ATC), Maritini Kalogerini (ATC), George Manias
(UPRC), Irida Manika (iSprint), Patricio Martinez (LXS),
Nikolay Mehandjiev (KOD), Harm op den Akker (iSprint),
Marta Patiño (UPM), Aristodemos Pnevmatikakis (iSprint),
Jacob Roldan (LXS), Usman Wajid (ICE)

Reviewer name(s)
Jose María Zaragoza (LXS)
Andrea Damiani, Nikola Dino Capocchiano, Calogero Casá,
Livia Lilli (FPG)

Document Revision History

Version History
Version Date Author(s) Changes made

0.0.0 2021-02-16 Irida Manika (iSprint)
Harm op den Akker (iSprint)

iHELP Deliverable Template
– Initial version.

0.0.1 2021-03-10 Fabio Melillo (ENG) First template for collecting
the contributions

0.2.0 2021-03-15 Fabio Melillo (ENG) Edit of the template
structure

0.3.0 2021-03-20 Fabio Melillo (ENG) Simplification of section 6

0.3.1 2021-03-23 Krasimir Filipov (KOD)
Nikolay Mehandjiev (KOD) KOD contribution

0.3.2 2021-03-30 George Manias (UPRC) UPRC contribution

GA-101017441

D2.4 – Conceptual model and reference architecture 2

0.3.3 2021-04-02 Fabio Melillo (ENG)
Edit of the template
structure. Added
Conceptual Model section

0.3.4 2021-03-30 Usman Wajid (ICE) Contribution in ICE related
sections

0.3.5 2021-04-25 Marta Patiño (UPM)
Ainhoa Azqueta (UPM) UPM contribution

0.3.6 2021-04-30
George Giotis (ATC)
Athanasios Dalianis (ATC)
Maritini Kalogerini (ATC)

ATC contribution

0.3.7 2021-05-10

Aristodemos Pnevmatikakis
(iSprint)
Miriam Cabrita (iSprint)
Harm op den Akker (iSprint)

iSprint contribution

0.3.8 2021-05-17 Jacob Roldan (LXS)
Patricio Martinez (LXS) LXS contribution

0.3.9 2021-06-16 Fabio Melillo (ENG) Included the KI comments

0.3.10 2021-06-17
Jacob Roldan (LXS)
Patricio Martinez (LXS)
Harm op den Akker (iSprint)

LXS and iSprint addressed
the KI comments.
Documents merged.

0.3.11 2021-07-08 Fabio Melillo (ENG) Edited the sections: 1, 2, 3,
4, 5, 6

0.3.12 2021-07-09 George Manias (UPRC) Contribution to section 7
0.3.13 2021-07-12 Fabio Melillo (ENG) Edited the sections 8, 9

0.3.14 2021-07-13 Antonio De Nigro (ENG)
Fabio Melillo (ENG)

Edited the sections 1, 2, 3, 5,
7, 8, 9

0.3.15 2021-07-14 George Manias (UPRC)
Added the “Infrastructure
discussion” document in the
Annex

0.3.16 2021-07-21 Jose María Zaragoza (LXS) Internal review

0.3.17 2021-07-26 Fabio Melillo (ENG) Resolved feedbacks and
comments

0.3.18 2021-07-31 Andrea Damiani (FPG) Internal review
0.9 2021-08-03 Fabio Melillo (ENG) Final Version

1.0 2021-08-30 Dimosthenis Kyriazis (UPRC) Quality check and final
version

GA-101017441

D2.4 – Conceptual model and reference architecture 3

Table of Contents

1 Introduction... 6

2 Approach to the architecture definition ... 7

3 Context .. 9

4 Functional Overview.. 11

5 Security and Privacy .. 13

6 Software Architecture ... 16

6.1 Overall ... 17

6.2 Final User applications ... 19

6.2.1 DSS Dashboard ... 19

6.2.2 WebApp for HCP ... 21

6.2.3 Mobile App ... 21

6.3 Data Ingestion .. 24

6.3.1 HHR Importer ... 24

6.3.2 Data Gateway ... 24

6.3.3 Data Harmoniser .. 25

6.3.4 Data Cleaner ... 26

6.3.5 Data Qualifier ... 27

6.3.6 Data Connectors ... 27

6.3.7 Secondary Data Pre-processor ... 28

6.4 Data analysis .. 30

6.4.1 Analytic Workbench ... 30

6.4.2 Personalised Predictor .. 31

6.4.3 Predictor and Risk identifier ... 31

6.4.4 Personalised Advisor .. 32

6.4.5 Social Analyser .. 35

6.4.6 Monitoring and Alerting ... 37

6.5 Data storage .. 39

6.5.1 Big Data Platform.. 39

7 Infrastructure .. 41

GA-101017441

D2.4 – Conceptual model and reference architecture 4

8 Deployment ... 43

9 Conclusions.. 50

Bibliography .. 51

List of Acronyms .. 52

Annex A - Infrastructure Discussion .. 53

Infrastructure & Architecture Discussions .. 53

Technical Groups ... 55

Infrastructure Resources ... 57

List of Figures

Figure 1: Actors of the system... 9
Figure 2: Context diagram ... 10
Figure 3: Overview of data protection principles .. 14
Figure 4: Simple Overview ... 16
Figure 5: Overall Architecture ... 18
Figure 6: Login interface .. 19
Figure 7: Database’s data visualization ... 20
Figure 8: Individual patient data visualization .. 20
Figure 9: Different chart types .. 20
Figure 10: Workflow UI ... 21
Figure 11: iHelp Mobile App and its direct interactions with other components. The mobile app collects data
(Reports and Questionnaires) which is stored in the Data Service. At the same time, the app visualizes data
from 3rd party sensor providers (e.g. Garmin, Fitbit) through the same Data Service. The digital virtual coach
is powered by a separate service (Virtual Coach Service), which in turn is controlled through the iHelp
Personalised Advisor. .. 23
Figure 12: Data Harmoniser .. 26
Figure 13: Interactions of Analytic Workbench component with other iHelp components 31
Figure 14: Personalised Advisor module and all related/surrounding components. The iHelp Personalised
Advisor module is the core component here, that uses the various WOOL Services to send
notifications/messages/dialogue to the Mobile App through the Virtual Coach Service. 33
Figure 15: Screenshot of the WOOL Editor Tool, a work in progress graphical user interface for authoring
WOOL Dialogues. The screenshot shows the structure of a collection of WOOL dialogues (left), and the main
Dialogue Editing window on the right. Every box in the dialogue editor window is a step in the conversation,
which are linked to other steps as shown by the arrows. ... 35
Figure 16: Overview of the Social Analysis component .. 37
Figure 17: Identified tools. .. 41
Figure 18: Deployment diagram - whole solution ... 48
Figure 19: Partial deployment ... 49

GA-101017441

D2.4 – Conceptual model and reference architecture 5

Executive summary
iHelp aims to early detect and mitigate the risks associated with Pancreatic Cancer applying advanced
Artificial Intelligence (AI)-based techniques to support the actors of the system. Those techniques are
performed on historic data of cancer patients gathered from existing cohorts and biobanks. The models
developed, through the AI-based learning techniques will be useful to identify the risk earlier, and to
elaborate a mitigation plan.

To this end, iHelp will use and extend the paradigm of Holistic Health Records (HHR) [1], in order to
aggregate and re-use data needed by the Artificial Intelligence for developing their model. Several different
sources will feed the common shared informative base, and for achieving this goal, a framework for the
data ingestion will be provided for the pre-elaboration of different data in order to let it flow towards the
shared data model.

The purpose of this deliverable is to provide the consortium with a common high-level view about the whole
solution. The details of each software artefact are delegated to the respective leader and will be described
in the related deliverables.

During the first months, the consortium had several virtual meetings to collect information and to agree
about a common starting point for the architecture. After the first phase of coarse-grained data collection,
some analysis was applied to design an efficient architecture based on the requirement emerged. Other
refinement phases were performed regarding the design patterns to be implemented, provided and
required interfaces, interconnections and protocols.

The common agreement was reached about the general view, the platform will be constituted by
containerised services, both from the data ingestion and the data analysis, with slightly differences
explained in this document.

The input of this deliverable was the D2.1 – State of the art and Requirements Analysis [2], that was
analysed, and from which the needed components and interactions are identified.

This deliverable is being released at M08 of the project, and it will be useful for the T2.3 – Functional and
Non-Functional specifications for defining its purpose, and to all the technical partners as reference
architecture for the whole iHelp solution.

This is the first release of reference architecture; the second and final one will be released at M18: D2.5 -
Conceptual model and reference architecture-II.

GA-101017441

D2.4 – Conceptual model and reference architecture 6

1 Introduction
The purpose of this document is to provide an initial architecture that will drive the interactions among the
different software artefacts developed by the iHelp partners. That is also a basis for the component names
and will offers a preliminary analysis of the possible deployments.

The main purpose of this document is to define some guidelines among the consortium and to share a
common view about the whole platform. The main topics that this version of the document addresses
concern the kind of software artefacts that will be developed, the communication pattern used, the kind of
graphical user interface provided, the infrastructure needed for testing and validation, and the envisaged
deployment.

This design document is the product of the work carried out by the task T2.2 - Reference Architecture
Specifications. Main goal of that task is to analyse the requirements and to mediate with the technical
partners to reach an agreement on which to design a reference architecture able to satisfy the
requirements presents in D2.1 [2]. All the component leaders were involved in the definition, refinement
and agreement on this common reference architecture.

This task ends in M20 and the refinement of this overall architecture is expected in M18 with the second
version of this deliverable D2.5 – Conceptual model and reference architecture-II (M18).

This document does not address the internal design choices of the components, or the different nature of
the data to be ingested or analysed, but it aims to clarify the impact of the gathered requirements onto the
designed components and to highlight and describe some useful interactions.

The organisation of the document is the following:

Section 2 provides a global overview on the adopted architecture definition approach;

Section 3 aims to describe, both for technical and non-technical people, how iHelp fits into the existing
environments, who and how will use the system;

Section 4 is focused to describe what the main functionalities of the system are;

Section 5 recalls the principles and the assumptions made about security and privacy aspects;

Section 6 collects the envisaged software artefacts that will compose the iHelp solution;

Section 7 due to the heterogeneous nature of the pilot partners, this section will depict the infrastructure
needed by iHelp in order to perform its tasks and provide its features;

Section 8 based on the infrastructure identified in the previous section, this section will map the component
envisaged on the identified infrastructure for the actual deploy.

GA-101017441

D2.4 – Conceptual model and reference architecture 7

2 Approach to the architecture definition
The main goal of the reference architecture of iHelp is to design a limited and well-defined set of component
functionalities satisfying the user requirements scheduled for the first period of the project.

The architecture described in this document is the first release and it could be extended by designing new
features according to the consolidation or emergence of new user requirements, which will occur optionally
during the development of the project. The adopted methodology and techniques guarantee a good level
of confidence in the architectural choices made so far; however, the choices made in the current version of
the architecture can change as a consequence of a change of user requirements.

The approach adopted to describe the iHelp top-level architecture is based on the existing literature[3] and
on previous experiences in other EU projects [4][5][6][7].

The architecture reported here has the following objectives:

 It serves as the blueprint both for the system and the project developing it.
 It defines the work assignments, in terms of component functionalities, that must be carried out

by separate design and implementation teams.
 It is a vehicle for early analysis to make sure that the design approach will yield an acceptable

system.
 It is the artifact that holds the key to post-deployment system understanding and/or mining efforts.

The definition of the iHelp architecture follows some goodness principles proposed in the scope of the
NEXOF-RA project[8], which represents a quality model for the architectural design of software systems.
The main quality attributes, considered in evaluating the alternative architectural choices, are the efficiency
and the buildability (i.e. ease of realisation). This means that when multiple architectural alternatives were
analysed, the solution considered most efficient and, in order of priority, the easiest to realise has been
adopted. The most efficient solution for each component is the one that minimizes: (i) the time requested
to perform its tasks, (ii) the amount of disk space requested to store internal data enabling its normal
operation, and (iii) the overhead of communication with other components to exchange requested and
provided data. When the simultaneous minimization of these three parameters has been not possible
because of conflicting conditions, ‘the best’ trade-off among them has been chosen. The criteria to define
the best trade-off assigns the highest priority to the minimization of the execution time requested to
perform the tasks, secondly to the minimization of the overhead of communication with other components,
and finally to the minimization of the amount of disk space required.

Accordingly, when high hardware requirements were expected, like CPU throughput and/or amount of
memory, then it was decided to adopt a dedicated server in order to minimize the execution time even if
such a choice does not optimize the efficiency in terms of communication overhead among distinct
components. For the components designed to be replicable, in case of high load, the dynamic horizontal
scaling has to be taken in account (i.e. for the Ingestion Pipeline Components §6.3). Naturally, when
possible, it was agreed to have more components running on the same server and in the same execution
environment (e.g. virtual machine, Kubernetes node) so to try to improve the communication as well (e.g.
Data analysis components §6.4).

GA-101017441

D2.4 – Conceptual model and reference architecture 8

Other quality attributes have been taken in consideration, like the modifiability of the system, which is one
of the most important quality attributes considered during the design. Indeed, the adopted incremental
approach[9] implies continuous changes to the architecture and a highly modifiable system is strongly
recommended. According to the adopted quality model, the modifiability is a complex attribute measured
in terms of extensibility of capabilities, i.e. the ability to add new functionalities with less impact on the
overall system, the deletion of unwanted capabilities, the portability, i.e. the ability of the system to run
under different executing environment and the restructuring, i.e. the ability to support architectural
configuration changes, such as rationalising system services, modularising, optimising or creating reusable
components.

The reusability of some of the main components is a highly desired aspect for iHelp, even if it is not
mandatory. Thus, one secondary goal of the iHelp architecture is to reduce as much as possible the coupling
between components/micro-services, while keeping each component as cohesive as possible. The
reusability of the components is an aspect that will be further investigated during the next steps of the
project.

The possible constraints of the infrastructure that will host the iHelp trial platform have been tentatively
evaluated in terms of the number of required servers and, for each of them, the amount of the required
computational resources and disk space. Moreover, the technologies needed for the correct operation of
the components have been considered; they are reported in Figure 17: Identified tools. The objective of
such investigation is to verify the feasibility of the demonstrator and to gather any technical requirements
from the infrastructure providers (i.e. the pilots’ infrastructure for the on-premises deployments). The
result of such investigation leads to a gross grained estimation of the hardware requirements to execute
iHelp components, provided by the component owners and submitted to the infrastructure provider for an
acceptance validation. The estimated infrastructure requirements are reported in §7 and in the Annex A -
Infrastructure Discussion.

The whole design phase, instead of focusing on specific tool/language and techniques that development
teams use, or micro-managing the internal architecture of the components/micro-services, concentrates
on the protocols and interactions between the various software artefact and on the health and usefulness
of the system as a whole.

GA-101017441

D2.4 – Conceptual model and reference architecture 9

3 Context
In the iHelp project, a software platform will be developed that will provide several features, interacting
with different actors. From the first version of deliverable D2.1 [2] these kinds of actors emerged:

 Health Care Professional (HCP): the physicians that will take care of the citizens’ health
and risk of developing the Pancreatic Cancer

 Individual: the citizen or patient that will be enrolled in the iHelp project and that can access
its functionalities

 Model Builder: the data scientist that can train the models for better tuning the evaluation
algorithms of the AI

 External Sources: other external system, such as: laboratories, social networks, data bases,
etc.

Figure 1: Actors of the system

The details of the target users and personas envisaged and analysed will be detailed in the scope of the
deliverable produced by the T2.4 – User centred design.

The following diagram (Figure 2) places the actors in the context of the iHelp platform; the diagram will drill
down into the details in the next section (§6.1).

GA-101017441

D2.4 – Conceptual model and reference architecture 10

Figure 2: Context diagram

The big iHelp box, in the middle of the Figure 2, abstracts all the complexity of the platform, that will include:
the ability of the system to accept and transform data from external sources to the common data model;
the components that implement the AI of the system; the services that provide the presentation layer for
rendering the final user applications, the components that will manage the authentication, infrastructure
components, and so on. All those main components will be detailed in the following sections.

GA-101017441

D2.4 – Conceptual model and reference architecture 11

4 Functional Overview
Starting from the deliverable D2.1 [2] it is possible to enumerate the main use cases that drove the design
phase; following their label with a short description of the envisaged behaviours. All details and specific
interaction steps will be detailed in the scope of the task T2.3 – Functional and Non-Functional
specifications.

 Develop Risk Prediction Model: allows the ModelBuilder to develop the prediction model
 Risk Assessment: allows the HCP to perform/trigger a risk assessment for a specific patient
 Request Tests and Samples: allows the HCP to generate a list of Tests that the patient has to

perform
 Elevated Risk Detected: highlights to the HCP that an elevated risk of PC development was

detected
 Ingest Tests and Samples results: allows the ingestion of data coming from a pilot laboratory test
 Risk Mitigation/Treatment planning: allows the HCP to plan a list of task(s) to be communicated

to the patients in order to mitigate or treat the exacerbation of PC
 Advice Review: allows the HCP to endorse the suggestion proposed by the AI
 Risk Mitigation Delivery: provides delivery of messages for the mitigation plan
 Monitoring: allows the automatic monitoring of patient shared data, in order to estimate if their

behaviour is in line with the mitigation plan
 Advice Follow-up: allows the HCP to look at the progress of the mitigation plan
 Caption of profiling characteristics: allows the HCP to input relevant patients’ characteristics into

the platform
 Reporting: shows to the HCP patients data in form of aggregate and elaborate report
 Plan a visit or a remote contact: allows the HCP to define a visit or a remote contact that will be

shared with the patient
 Data Visualisation: is a view on the data present in the project storage, without the elaboration

and aggregation computed by other use cases
 Communication of risk: allows to communicate to the patient the computed risk of developing the

PC

From deliverable D2.1 [2] and analysing this list of use cases, it is clear that the iHelp platform aims to
support both clinicians and patients. The overview of the principal function produced a list of common
requirements, that also impact the overall architecture.

The first need, clear for all the pilot, is the ability of the platform to ingest data, coming from different
sources. Those data, managed following the ethics principles described in deliverable D1.10 [10] are
accepted, formatted, cleaned, mapped and transformed in a common data model; this pipeline will be
better detailed in the scope of the WP3.

Those uniformed data are stored inside the iHelp storage repository, a big data platform, for further
queries; the WP4 is taking care of this process.

The data that comes into the repository, can also come from the Individual, through a mobile
application and its dedicated backend. Those data will feed the repository as well, through the same
ingestion pipeline.

GA-101017441

D2.4 – Conceptual model and reference architecture 12

A ModelBuilder, using its dedicated GUI, will train the AI algorithms on the data present in the
repository, that will support the HCPs in their job.

The same data will be accessed by all the components that provide the AI algorithms, analyses and
aggregations that will be shown to the HCP; those components, model and algorithms will be taken care of
in the scope of WP4 and WP5.

GA-101017441

D2.4 – Conceptual model and reference architecture 13

5 Security and Privacy
The system shall be compliant with the security and privacy requirements expressed in the deliverable D2.1
[2], and all the components are responsible to comply with the Privacy-By-Design and Privacy-By-Default
principles presents in the General Data Protection Regulation (GDPR) [11] and any other privacy constraint
that could emerge from the use cases.

The GDPR is a regulation in EU law on data protection and privacy for all individuals within the European
Union (EU) and the European Economic Area (EEA). It also addresses the export of personal data outside
the EU and EEA areas. The GDPR aims primarily to give control to individuals over their personal data and
to simplify the regulatory environment for international business by unifying the regulation within the EU.
Superseding the Data Protection Directive 95/46/EC, the regulation contains provisions and requirements
pertaining to the processing of personal data of individuals inside the EEA, and applies to an enterprise
established in the EEA or - regardless of its location and the data subjects' citizenship—that is processing
the personal information of data subjects inside the EEA.

The GDPR will apply when there is a “processing” of personal data. The activities that are considered to
constitute a ‘processing’ have not gone through any significant change within the GDPR, which maintains a
very broad scope of application.

Accordingly, the GDPR will apply in case of “any operation or set of operations which is performed on
personal data or on sets of personal data, whether or not by automated means, such as collection,
recording, organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use,
disclosure by transmission, dissemination or otherwise making available, alignment or combination,
restriction, erasure or destruction”.

It goes without saying that iHelp involves processing of personal data within the meaning of the GDPR.
Hence, the various principles and obligations set therein will need to be carefully assessed and complied
with by the stakeholders involved.

The data protection principles are at the core of the processing of personal data. Many of them already
existed under the Data Protection Directive and are now reinforced in the GDPR. Article 5(1) of the GDPR
lists the key principles relating to the processing of personal data (examined in the following six sub-
Sections). Article 5(2) provides for a general principle of "accountability", according to which the controller1
shall be responsible for, and able to demonstrate compliance with, the other six principles.

1 The data controller determines the purposes for which and the means by which personal data is processed. The data
processor processes personal data only on behalf of the controller.[29]

GA-101017441

D2.4 – Conceptual model and reference architecture 14

Figure 3: Overview of data protection principles

 Lawfulness, fairness & transparency
o personal data must be processed lawfully, fairly, and in a transparent manner in relation

to the data subject. The latter "transparency" requirement supplements what already
existed in the Data Protection Directive.

 Purpose limitation
o personal data must be collected for specified, explicit and legitimate purposes; and must

not be further processed in a way incompatible with those purposes
 Data minimisation

o personal data must be adequate, relevant and limited to what is necessary in relation to
the purposes for which they are processed. Also, the period for which the data are stored
should be limited to a strict minimum. Finally, personal data should only be processed if
the purpose of the processing cannot be fulfilled by other means

 Accuracy
o personal data must be accurate and, where necessary, kept up-to-date; every reasonable

step must be taken to ensure that inaccurate personal data, having regard to the purposes
for which they are processed, are erased or rectified without delay

 Storage limitation
o personal data must be kept in a form which permits identification of data subjects for no

longer than is necessary for the purposes for which the personal data are processed.
Personal data may be stored for longer periods insofar as the data will be processed solely

7
principles

Lawfulness,
fairness &

trasparency

Purpose
limitation

Data
minimisation

AccuracyStorage
limitation

Integrity &
confidentiality

Accountability

GA-101017441

D2.4 – Conceptual model and reference architecture 15

for archiving purposes in the public interest, or scientific and historical research purposes
or statistical purposes in accordance with Article 83(1) and subject to implementation of
appropriate technical and organisational measures

 Integrity and confidentiality
o personal data must be processed in a manner that ensures appropriate security of the

personal data, including protection against unauthorised or unlawful processing and
against accidental loss, destruction or damage, using appropriate technical or
organisational measures.

 Data governance and accountability: the principle of accountability, which essentially refers to the
various obligations organisations will have to follow in order to demonstrate compliance with data
protection requirements, is not a new concept but is now expressly included in Article 5(2) of the
GDPR. Hence, with the adoption of the GDPR, it now plays a significant role in the EU privacy
regulatory framework

One of the ways to demonstrate accountability is through adopting the ‘Privacy by design’ measures. This
entails that every component or software artefact must implement appropriate technical and
organisational measures (e.g. pseudonymisation techniques) designed to implement the data protection
principles (e.g. data minimisation). Said measures must be implemented in an effective way so as to
integrate the necessary safeguards into the data processing in order to meet the requirements of the GDPR
and to protect the rights of data subjects. Said obligations must be respected both at the time of the
determination of the means for processing and at the time of the processing itself. Some elements to
consider while implementing the measures are: (i) the state of the art; (ii) the cost of implementation; (iii)
the nature, scope, context and purposes of the processing; and (iv) the risks of varying likelihood and
severity for rights and freedoms of individuals posed by the processing.

The privacy by design requirement should be carefully assessed by both the developers and the pilots (when
initially collecting and processing personal data). The pilots must consider the implementation of
appropriate technical and organisational measures in order to comply with the privacy by design
requirement. As for the solution as such, it is recommended to carefully consider the privacy by design
requirements in order to protect privacy by embedding it into the design specifications. This is done in
particular through the application of pseudonymisation and anonymisation techniques. More detailed
aspects were addressed in the WP1 and reported in the deliverables about the ethical issues and data
management plan [10], [12]–[16].

GA-101017441

D2.4 – Conceptual model and reference architecture 16

6 Software Architecture
In this section the main components that constitute the iHelp platform will be detailed, implementing the
requirements emerged in the deliverable D2.1 [2].

A simple overview of the platform is shown in Figure 4 in which are visible four big blocks as a placeholder
for the more detailed description below.

The Final user applications are the apps (either mobile or web) that are dedicated to the human
actors of the system (i.e. HCP, Individual and ModelBuilder).

The Data Ingestion represents all those components that are able to process data derived from
different sources, also external to the iHelp project, and that can handle data in order to store them,
compliant with the common data model, into the centrral Data Storage.

Symmetrically, the Data Analysis block, abstracts from the AI components that elaborates the data present
in the Data Storage for feeding the Final User Application.

Figure 4: Simple Overview

GA-101017441

D2.4 – Conceptual model and reference architecture 17

6.1 Overall
In Figure 5 we can see a more detailed diagram of the overall architecture of the iHelp platform.

The formalism adopted in this diagram utilises some concepts derived from the UML v2.0 notation[17] (i.e.
lollipops notation for the interfaces), but generally, a standard modelling language was not adopted for this
kind of diagram, for better explaining also to the non-technical partners.

In particular, the shape of the software artefact mainly brings the concept of communication pattern, while
a hexagon denotes the micro-services that communicate asynchronously, using a message broker.

A rectangle defines the components that offer or use an API for asynchronous communication.

The kind of interfaces used (identified with the “socket” glyph) or provided (identified with the “ball” glyph)
are written in the attached label, for example, a REST API or a JDBC. For the component that offers a
GUI we used the symbol for “providing an HTTP interface” (e.g.: the DSS Dashboard).

Other than the functional components, in the diagram some infrastructural components are also shown,
needed for enabling the execution of the solution.

Generically, in microservice architectures, the UI usually connects with multiple microservices. If the
microservices are finely grained, the client(s) may need to connect with lots of microservices, which
becomes challenging. Also, the services, including their APIs, can evolve.

One possible way to solve these issues is to use API Gateway. API Gateway sits between the final user
applications and the iHelp platform and acts as a facade. It can work as a reverse proxy, routing the client
request to the appropriate service. It can also support the client request's fanning-out to multiple
microservices and then return the aggregated responses to the client. It additionally supports essential
cross-cutting concerns (such as authentication, load balancing, dependency resolution, data
transformations and dynamic request dispatching can be handled in a convenient and generic way). In the
iHelp reference architecture the block labelled API Gateway, will dispatch the external invocation to
specific internal services; the consortium agreed with the adoption of Traefik tool [18].

In oreder to allow access only to authorised users, the iHelp solution will adopt an internal
IdentityManger, based on the open source product Keycloak [19], that will take care of the resources
access. iHelp can be configured to support OpenID Connect. OpenID Connect (OIDC) [20] is an
authentication protocol that is an extension of OAuth 2.0. While OAuth 2.0 is only a framework for building
authorization protocols and is mainly incomplete, OIDC is a full-fledged authentication and authorization
protocol. OIDC also makes heavy use of the Json Web Token (JWT) set of standards. These standards define
an identity token JSON format and ways to digitally sign and encrypt that data in a compact and web-
friendly way.

About the internal communication, the possible choices were mainly split into two different branches,
synchronous or asynchronous communication. Although synchronous communication is not a problem in a
monolithic application, due to the simple context (i.e. a client sends a request and waits for a response), in
a scenario where multiple services call each other in a non-trivial way, this can produce a waterfall of failing
calls. Due to that, and for the sake of flexibility toward any further change or improvement of the requests
flow, for the envisaged high demanding process an asynchronous communication pattern was designed.

GA-101017441

D2.4 – Conceptual model and reference architecture 18

Specifically, the constituent components of the data ingestion building block communicate through a
message broker. Nevertheless, to decentralise the coordination, instead of a static orchestration, a
choreography transaction was designed, specifically applied to the SAGA pattern for transactions. With this
choice, each software artefact has a “brain” that can decide, listening to all the other components, if an
action should be taken or not. This approach simplifies the possible refinement of the pipeline without
impacting the single development of the components in the separated teams. The specific flow and the
detailed interactions will be explained better in the scope of the WP3.

Available for all the components, but specifically used inside the pipeline ingestion, iHelp will also use the
Apache Kafka [21], a message broker and stream processor which allows to publish, subscribe, archive and
process streams of records in real time. It is designed to manage data streams from multiple sources by
distributing them to multiple consumers.

Coupled with Kafka, iHelp consortium agreed with the adoption of Kubernetes [22]. Kubernetes (k8s) is an
open source platform that automates Linux container operations. It eliminates many of the manual
processes involved in deploying and scaling containerized applications and allows to manage host clusters
running containers easily and efficiently.

Figure 5: Overall Architecture

The goal and the main envisaged interactions of the components are described below.

GA-101017441

D2.4 – Conceptual model and reference architecture 19

6.2 Final User applications

6.2.1 DSS Dashboard
6.2.1.1 Objective of the software artefact
The Decision Support system will allow physicians and policy makers to analyse data and make decisions
for both individuals and groups of patients. The DSS will be able to analyse data from a relational database
through the execution of SQL statements and also to design more complex analytics through workflows.
The DSS will provide visualization capabilities to present the analytics results. Different types of users will
be considered from data scientists who will define the analytics and their visualization to nurses that may
monitor a patient data.

6.2.1.2 Interactions with other components
Expected interfaces

The DSS interacts with databases and executes analytics on different types of data. The DSS needs JDBC
and Python interfaces to interact with data stores and the different analytical models.

Offered Interfaces

The DSS will provide different interfaces for data scientist and physicians to log into the system, create
federated queries and analytic workflows, and display the results from federated queries and analytics on
different types of charts and dashboards.

Figure 6 shows an example of the login interface to access the different functionalities of the DSS.

Figure 6: Login interface

Figure 7 shows an example of a dashboard that displays the rows of a table from a database selected from
the Database drop-down menu. The first 50 rows stored in the selected table are displayed at the bottom
of the figure.

GA-101017441

D2.4 – Conceptual model and reference architecture 20

Figure 7: Database’s data visualization

Figure 8 and Figure 9 depict two different dashboards where the data returned from SQL queries is
visualized. Figure 8 shows the data of a given patient in text fields and in a bar chart. Figure 9 shows the
results in a pie chart, horizontal bar chart, radar chart, and lines chart.

Figure 8: Individual patient data visualization

Figure 9: Different chart types

Figure 10 shows an example workflow where the data scientist creates federated queries and analytic
workflows and defines the associated dashboards.

GA-101017441

D2.4 – Conceptual model and reference architecture 21

Figure 10: Workflow UI

Technological stack requirements

The DSS will use a core technology Node-Red[23], a flow-based development tool that allows creating
programs by dragging and dropping different nodes and connecting the nodes to create the expected code
flow. Python libraries for analytics like Pandas for data analysis and scikit-learn, Theano and TensorFlow for
machine learning purposes may be included in the DSS.

6.2.2 WebApp for HCP
This component, conceptually separated from the DSSDashboard, will be concretely implemented in the
same DSSDashboard component, but offering different views in order to allow the physicians to better
follow the patients. This conceptual component at this time, is in the progress of definition in the scope of
task T2.4 – User centred design and will be better explained and detailed in the related deliverable.

6.2.3 Mobile App
6.2.3.1 Objective of the software artefact
The Mobile App component is the main user interface for patients/citizens in the various iHelp pilots. As
the name suggests, this component is a mobile application that is available for download from the Google
Play Store2 (for Android users) and the Apple App Store3 (for iOS users). The application (Healthentia) is
already available to download (see links in footnotes).

The Healthentia application is an app that can be used in various trial/study configurations, so the exact
functionality of the mobile app depends on the user who is logged into the application, and the trial/study

2 https://play.google.com/store/apps/details?id=com.innovationsprint.healthentia&hl=en&gl=US
3 https://apps.apple.com/nl/app/healthentia/id1491757656?l=en#?platform=iphone

GA-101017441

D2.4 – Conceptual model and reference architecture 22

in which he/she participates. The type of functionalities offered by the mobile app in iHelp can broadly be
described as:

• Monitor the user’s lifestyle and symptoms through connected sensors, self-reported events and
answering questionnaires from within the app.

• Communicate with the patient’s/citizen’s healthcare professional, either through messages,
teleconferencing, or by receiving notifications directly from the professional.

• Provide virtual coaching to the patient/citizen – offering health education, advice, through
visualisations of measured data, simple feedback messages or in-depth conversations with a digital
virtual coach.

The main objective for this component is to design and develop the functionalities needed to support up to
5 different application configurations linked to the 5 iHelp Pilots. It may be possible to use the same
application configuration for 2 different pilots, or it may be necessary to have 5 different configurations –
this will depend on the details of the pilots as they are being specified. Details of the exact design and
development progress of the mobile application may be found in D5.6 and D5.7.

As background technology, the existing Healthentia application supports a number of functionalities mostly
related to monitoring patients/citizens, as listed here:

• Questionnaires – A set of questions with various supported types (e.g. multiple choice, Visual
Analogue Scales, Likert Scale) that are triggered to be answered by the user at defined time
intervals.

• Physical Activity Monitoring – By connecting an external tracking device, the application can
monitor the user’s daily levels of physical activity.

• Sleep Monitoring – By connecting external tracking devices that support tracking sleep, the
application can monitor the user’s daily sleep patterns.

• Liquid Intake – Through self-reporting, the application allows the user to measure their own liquid
intake during the day.

• Symptom and Event Reporting – Through self-reporting, the application allows the user to report
any number of predefined events or health related symptoms.

In order to satisfy the core objectives of the Mobile App component in supporting the various iHelp Pilots,
the focus will be on adding various types of functionality related to providing feedback and coaching to the
end-users, as further defined in Deliverable 2.1.

6.2.3.2 Interactions with other components
The iHelp Mobile App component is a series of configurations of the Healthentia Mobile App which is
embedded into the Healthentia platform. From a technical perspective, the mobile app is a client to the
Healthentia platform, which means that it is the only component it directly communicates to. In Figure 11
below, we depict the iHelp Mobile App and its direct interactions with the Healthentia Data Service and
the Healthentia Virtual Coach Service. The connections with the Data Service are mostly already in place,
and are used to support the monitoring functionalities of the application (e.g. retrieving data from external
tracking devices, or storing questionnaire data). The connections with the Virtual Coach Service are to be
implemented in the iHelp project, and support the delivery of feedback and personalized healthcare from
other iHelp components (e.g. the - Personalised Advisor see §6.4.4).

GA-101017441

D2.4 – Conceptual model and reference architecture 23

In summary, there are three types of interactions with the mobile app:

 The end-user that will use the Mobile App as their primary GUI.
 The data services that enable collection of data through the app (see §6.3.7 - Secondary Data Pre-

processor).
 The coaching services that enable the delivery of personalized feedback and coaching (see §6.4.4 -

Personalised Advisor).

Figure 11: iHelp Mobile App and its direct interactions with other components. The mobile app collects data (Reports and
Questionnaires) which is stored in the Data Service. At the same time, the app visualizes data from 3rd party sensor providers (e.g.

Garmin, Fitbit) through the same Data Service. The digital virtual coach is powered by a separate service (Virtual Coach Service), which
in turn is controlled through the iHelp Personalised Advisor.

GA-101017441

D2.4 – Conceptual model and reference architecture 24

6.3 Data Ingestion

6.3.1 HHR Importer
6.3.1.1 Objective of the software artefact
The objective of the HHR Importer is to store data received under the HHR format into the Big Data Platform
component of the iHelp platform. During the ingestion process, raw (primary) and aggregated (secondary)
data are mapped and transformed to the common HHR model. At the final stage of the data ingestion
pipeline, the HHR importer takes the transformed data and persistently stores them in the datastore. The
latter has defined a relational schema that is compatible with the E-R conceptual model of HHR and this
software artefact will implement the following two functionalities:

 Transform the HHR entities to various data items that will be stored into data tables of the Big Data
Platform.

 Establish the data connectivity with the datastore and perform all relevant operations in order to
persistently store the produced data items.

The functionality of this component will be packaged as a Java archive and will be either deployed as a static
standalone microservice, or it will be provided as a function to be dynamically deployed via the serverless
platform of the project.

6.3.1.2 Interactions with other components
This component interacts with the other software artefacts involved in the data ingestion pipeline and the
Big Data platform. It will provide an interface that will allow any other software artefact to push any HHR
data compliant with the FHIR format. As a result, the component will be waiting for any other component
to send data that need to be stored in the Big Data Platform. No GUI will be provided for this component.
At this phase of the project, it is not clear whether the interface will be exposed as a REST API that will allow
other components to invoke it, or a much simpler interface will be provided to allow the serverless platform
to pass meta-information parameters, such as data queue specific information. In case of the latter option,
this information will be used internally to connect to a Kafka queue and data will be retrieved by the
specified topic.

The HHR Importer does not produce any output data. The result of its invocation will be a transition of the
state of the Big Data Platform. This transition is the result of a data modification operation (i.e. data
insertion) that is successfully committed in the database layer. The HHR imported will interact with the Big
Data Platform either via the standard JDBC connectivity mechanism, or using one of its provided data
connectors.

6.3.2 Data Gateway
6.3.2.1 Objective of the software artefact
The Data Gateway microservice exposes a REST API through which the iHelp connectors can send their data
to the iHelp platform. The communication is done through HTTPS and the Data Gateway performs two main
actions:

 Message authentication, where the Data Gateway checks the provided security keys in the
message against the ones defined for a specific connector.

GA-101017441

D2.4 – Conceptual model and reference architecture 25

 Message transformation, where the message is sent to the Message Streaming Platform (Kafka) in
the appropriate format.

6.3.2.2 Interactions with other components
The Data Gateway microservice is consumed by the iHelp Data connectors, that is, the connectors send the
primary and secondary data that they gather to the Data Gateway, in order to initiate the ingestion pipeline.
The Data Gateway transforms the REST request received to a Kafka message and relays the data to the next
component without making any other transformations.

6.3.3 Data Harmoniser
6.3.3.1 Objective of the software artefact
Data Harmoniser will be utilized as an integrated microservice in the overall iHelp platform. It seeks to
support and harmonise data coming from heterogeneous sources into a common format. To this end, its
main aim is to provide annotated / correlated health data & harmonize them with the widely used HL7 FHIR
format. The microservice will use its own internal sub-mechanism in order to correlate data resources with
HL7 FHIR resources to be compliant with the HHR model that will be defined in the scope of the task 3.1.

The Primary Mapper sub-component will enable the mapping of primary data, that is the clinical data from
the electronic health records, into the common data format that will be used in the iHelp platform (HHR).
The component will provide the necessary transformation functions that are required to map the primary
data to the holistic health records stored in the iHelp platform.

The Secondary Mapper sub-component will enable the mapping of secondary data (e.g. from mobile,
wearable and social-media platforms) into the data format (schema, model) used in the iHelp platform
(HHR). The component will provide necessary transformation functions that are required to map the
secondary data from heterogeneous sources to the holistic health records stored in the iHelp platform. The
Secondary Mapper will be an integral part of the iHelp platform as it supports the enrichment of typical
health records with the secondary (e.g. lifestyle, social etc) data of the individuals.

6.3.3.2 Interactions with other components
The Data Harmoniser microservice will be utilized dynamically whenever it is selected, or when it is
considered necessary and mandatory by the dataset provider. This microservice will be integrated with the
provided message bus mechanism and it will consume and produce corresponding messages to this. The
message to be consumed should be cleaned data, which will be further harmonised and transformed, hence
an annotated, transformed and HL7 FHIR format aligned message will be the output of this specific
microservice. To this end, the Data Harmoniser microservice has been determined to integrate closely with
the Data Cleaner microservice.

In deeper details, the Data Harmoniser microservice incorporates the use of three (3) integrated sub-
mechanisms, as also presented in the below figure (Figure 12).

GA-101017441

D2.4 – Conceptual model and reference architecture 26

Figure 12: Data Harmoniser

 Automated Translation Mechanism: State-of-the-art techniques and approaches from the field of
Neural Machine Translation (NMT), such as Transformers[24] and Recurrent Neural Networks
(RNNs) based on the seq2seq architecture[25], will be utilized for handling data from different
languages in order to provide multilingual and language-independent solutions.

 Linguistic & Semantic Analysis with NLP: In this second sub mechanism translated data will be
analysed, transformed, and annotated with appropriate metadata and controlled vocabularies will
be identified and designed through the utilization of Semantic Web technologies coupled and
enhanced by the utilization of NLP techniques, such as Named Entity Recognition (NER), Part-of-
Speech Tagging etc.

 Ontology & Structure Mapping: This sub mechanism seeks to interlink annotated and transformed
data with proper identified ontologies from the healthcare domain and in the HL7 FHIR format,
and to correlate datasets among them. Successful annotation, transformation and mapping of data
and corresponding ontologies in terms of semantic and syntactic interoperability of data is one of
the key elements of the Data Harmoniser mechanism.

6.3.4 Data Cleaner
6.3.4.1 Objective of the software artefact
Data Cleaner will be utilized as an integrated microservice in the overall iHelp project and its main objective
is to deliver the software implementation that will provide the assurance that the provided data coming
from several heterogeneous data sources will be clean and complete, to the extent possible. This
microservice will be designed to minimize and filter the non-important data, thus improving the data quality
and importance.

6.3.4.2 Interactions with other components
The Data Cleaner microservice will be utilized for every new incoming dataset in the platform since it seeks
to detect and correct (or remove) inaccurate or corrupted data from the datasets. The input to this
microservice will be provided by the shared message bus which will be utilized in the scopes of the iHelp
project (e.g. Kafka). The topic from which data in the format of messages will be consumed can be set either
dynamically, as a parameter whenever the microservice is called, or statically, based on an agreement in
case that it is preferred. The input message will be the whole dataset in order to allow microservice to
provide all the necessary cleaning actions towards the aim to produce consistent and cleaned data and
datasets.

On top of this, the Data Cleaner service will be comprised of three (3) discrete, but integrated with each
other, sub mechanisms which are listed below.

GA-101017441

D2.4 – Conceptual model and reference architecture 27

 Data Validation: This service will ensure that the other iHelp microservices will operate on clean,
correct and useful data. Therefore, the Data Validation service will perform data validation of the
incoming information data with the purpose of identifying errors based on conformance to a
specific set of constraints.

 Data Cleaning: Entails the main sub mechanism of the Data Cleaner microservice. Its main goal is
to correct or remove all the data elements for which validation errors were raised, considering
missing, irregular, unnecessary, and inconsistent data. Thus, the Data Cleaning sub mechanism will
perform the necessary corrections or removal of errors identified by the Data Validation Service.

 Data Verification: The main objective of this sub mechanism is to check the data elements of a
dataset for accuracy and inconsistencies after the steps of data validation and cleaning are
performed. To this end, it will ensure that all the corrective actions performed by the Data Cleaning
service will be executed in compliance with the data models design of the iHelp platform. To this
end, this service seeks to ensure that data will accurately be corrected or completed, and that the
dataset will eventually be error free.

6.3.5 Data Qualifier
6.3.5.1 Objective of the software artefact
The scope of the Data Qualifier microservice is to automatically categorize both known and unknown data
sources to specific “levels of trustfulness” (i.e. data reliability, provided data type, data source availability)
according to a given threshold, resulting into the adaptive selection of all the available reliable data sources
in order to be connected into the iHelp project. To this end, this microservice seeks to provide a predictive
selection mechanism for achieving data sources reliability during runtime and for providing the decision
whether a connected data source will be considered as reliable or not as a result of the execution.

6.3.5.2 Interactions with other components
The Data Qualifier microservice will be utilized for every new registered data source and every incoming
dataset in the platform because its goal is to enhance and adapt the selection of reliable sources. This
specific microservice will also be integrated with the message bus mechanism provided in the scope of iHelp
project. To this end, the whole dataset and information about the data source should be the input to this
microservice in order to provide the reliability levels of the connected data sources into a message (i.e.
String) format, which will be annotated to the dataset as metadata. This specific microservice has been
identified to integrate with the Data Cleaner microservice in a dynamically modifiable workflow, since these
two microservices may be utilized in different order depending on the type of data, sources, and the
preferences of the data provider. The latter indicates that in terms of safeguarding the good quality of the
incoming data and the reliability of the data sources, there may be the need in one scenario to utilize the
Data Cleaner before the Data Qualifier, in order to provide cleaned data before the qualification of the
dataset and the data, while in another scenario it is preferred to have at first the qualification of the data
source and the dataset and then to perform the Data Cleaner microservice.

6.3.6 Data Connectors
6.3.6.1 Objective of the software artefact
The objective of this type of software artefact is to allow connection with the data providers in order to
retrieve data from the source and send it to the beginning of the data ingestion pipeline. There will be

GA-101017441

D2.4 – Conceptual model and reference architecture 28

different types of data connectors, each one of those will provide different means for connectivity. At this
phase of the project, we envision a connector that can get data stored in static files in an FTP server, another
type of connector that can execute a query statement in a JDBC compatible database and an additional one
that will provide a REST API to allow for secondary data to be pushed. It will be further investigated during
the progress of the project if other types of primary data connectors will be required.

Each of the connectors will be released as Java archives and will be available to the Data Gateway, so that
the latter can make use of the appropriate one to fetch data from the source and start ingesting it to the
data pipeline.

6.3.6.2 Interactions with other components
This set of software artefacts interact with the Data Gateway and the external data sources, that can be of
different types. According to its type, it can read data autonomously or allow for external components to
periodically push data to the connector. For instance, in case of a static or periodic data ingestion (batch
ingestion) the component will read data from the external source, using the corresponding connector. In
case of the secondary data ingestion, the corresponding component (i.e. the Secondary Data Pre-processor)
will expose a REST API to allow the secondary data collector (i.e. a DataConnetor) to periodically retrieve
pre-processed secondary data and send those in a predefined format that needs to be further defined.

Regarding the input data, in case of a batch ingestion processing the input data is the meta-information
regarding the parameters that the corresponding connectors need to know in order to establish the data
connectivity (i.e. URI of the ftp server and the path to read the data). In case of the secondary data ingestion,
the input data will be the aggregated data that the secondary data connector will send, in a format that will
be defined in the forthcoming period of the project.

All primary data connectors will give as output byte buffers that are generic and enclose the data received,
along with the type of the dataset. These connectors are dataset agnostic and therefore they treat all
received information as byte buffers, as their purpose is only to establish the data connectivity, and not to
perform any data processing. At a latter phase, it might be decided that the output of the primary data
connectors can additionally send the schema definition of the dataset in the output.

6.3.7 Secondary Data Pre-processor
6.3.7.1 Objective of the software artefact
The iHelp secondary data is about dynamic data arriving online from sensors or questionnaires, obtained
outside a clinical setting, attempting to describe various aspects of everyday life. These aspects are
expected to be physiological (exercise, nutrition, body signals), psychological, social and environmental, to
be finalised at the requirements collection phase of T2.1. The scope of the Secondary Data Pre-processor
component is to collect this dynamic everyday-life raw data and process it into higher-level information.

Raw secondary data are objective measurements from IoT devices, or subjecting reports and self-
assessments collected using the mobile application (see section 6.2.3). Devices will be integrated utilizing
either APIs or SDKs from their manufacturers for automated measurements. In the API case (most
probable), the integration will be carried out at the Secondary Data Pre-processor component, by
interfacing with the device manufacturers’ servers. In the rarer case where an SDK is provided by the device
manufacturer, the integration functionality of the component has to be moved into the mobile application

GA-101017441

D2.4 – Conceptual model and reference architecture 29

one. Questionnaires will be built in the mobile app. The Secondary Data Pre-processor component will be
collecting all the patient data from the mobile application.

Raw secondary data are also to be processed to yield higher-level information including relationships,
interactions, experiences, habits and behaviours that can influence people's health, design of preventative
measures or risk of developing (chronic) conditions. To do so signal processing and/or machine learning
algorithms will be employed to understand secondary data semantics. These algorithms are also
implemented in the Secondary Data Pre-processor component.

6.3.7.2 Interactions with other components
The Secondary Data Pre-processor component has two types of data input to autonomously get the raw
patient secondary data:

 The interaction with the mobile application is done by offering an API to be used by the mobile
application to push the available data.

 The interaction with the device manufactures’ servers is done via their API. The exact mode of
interaction differs across device manufacturers, e.g. Fitbit provides endpoints to be called ad hoc
to pull data, while Garmin allows the component to register itself and push new data, whenever
available, to the server.

The Secondary Data Pre-processor component serves the raw and the processed higher-level secondary
data to the iHelp platform by interfacing with the Data Connectors component. To this aim it offers an API
to receive requests for data originating from the Data Connectors component.

GA-101017441

D2.4 – Conceptual model and reference architecture 30

6.4 Data analysis

6.4.1 Analytic Workbench
6.4.1.1 Objective of the software artefact
The Analytic Workbench component in the iHelp platform enables the “ingestion” of multiple data analytics
functions / tasks to enable the development of adaptive preventive and intervention models for different
risks and contributing factors associated with Pancreatic Cancer. The Analytic Workbench component
provides a complete information processing framework that will incorporate declarative methods for the
specification of targeted analysis tasks, as well as declarative analytics to include predictive data services
(especially from generic methods such as time series modelling).

The objectives of this component are:

 To define a workbench for analytic functions that can extract meaningful information from
integrated big-datasets

 To facilitate scalable real-time big data management and analytics (including outcomes of analytics
such as models) through an analytics workbench that supports processing across multiple data
analytic functions

6.4.1.2 Interactions with other components
The analytic workbench facilitates openness and usability by allowing any actor (e.g., researcher, healthcare
professional, data provider, etc) to develop on-demand adaptive learning models for different risks based
on the application of advanced AI analytic techniques.

The analytic workbench component uses the following sub-components to materialize the desired
objectives:

 Apache Druid is an open-source, distributed data store designed to quickly ingest massive
quantities of event data, and provide low-latency queries on top of the data. Druid streams data
from message buses such as Kafka and supports the design of workflows that provide fast ad-hoc
analytics, instant data visibility and concurrency to power UIs where an interactive, consistent user
experience is desired

 Apache Superset is an open-source software cloud-native application for data exploration and data
visualization capable of handling data at petabyte scale (big data). Superset is used as a fast,
lightweight and intuitive solution that makes it easy for users of all skill sets to explore and visualize
their data, from simple line charts to highly detailed geospatial charts

 Apache Kafka is a framework implementation of a software bus using stream-processing. Apache
Kafka is used as a distributed event streaming platform that is used to support high-performance
data pipelines, streaming analytics and data integrations

The relationship of Analytic Workbench with other components in the iHelp platform is shown in the
following diagram (Figure 13):

GA-101017441

D2.4 – Conceptual model and reference architecture 31

Figure 13: Interactions of Analytic Workbench component with other iHelp components

Based on the interactions depicted in Figure 13, the Analytic Workbench will provide the necessary
infrastructure (software libraries, scripts, orchestration) that allows the deployment and execution of
analytic applications/services (related to risk identification, predictions etc) in the iHelp platform. In this
respect, the users (i.e. developers of analytic services in the iHelp platform) will interact with the Analytic
Workbench to deploy and execute their services. To support the user engagement, the Analytic Workbench
will provide an administrative dashboard interface that will also allow the monitoring of different analytic
services that are using the workbench.

6.4.2 Personalised Predictor
6.4.2.1 Objective of the software artefact
The Personalised Predictor is responsible to deliver the necessary toolset that enables the usage of
advanced AI learning techniques towards the development of a personalized health model. This tool will
assist in the identification of specific diseases, along with their contributing factors and it will support the
scalability and security needs of personalized health data. For the implementation of the Personalized
Predictor, Deep Neural Networks will be trained, with the goal of modeling associations between the
patient data and the available disease related data (e.g.: disease onset, exacerbation, adverse effects of
therapy, patient compliance, patient risky behaviours, patient lifestyle). Hidden patterns could be
discovered and the extracted knowledge would help the study of the disease.

6.4.2.2 Interactions with other components
The Personalised Predictor will use the HHR records stored in the iHelp repository in order to analyse the
dataset and train the health models that will be developed in accordance with the user needs. The output
will be the trained health models that will be used to identify associations and perform predictions about
the disease. The Personalised Predictor will make use of the infrastructure provided by the Analytics
Workbench and potentially expose an API to the DSS Dashboard depending on the project’s needs.

6.4.3 Predictor and Risk identifier
6.4.3.1 Objective of the software artefact
The goals of the Predictor and Risk Identifier component are to predict Pancreatic Cancer risks in individuals,
as well as perform assessment on the identified risks. The P.R.I component will develop feature extraction
models in order to identify key attributes in the patients’ health records and prediction models that will
take into account the full range of attributes in the HHR records and the output of the feature extraction
models, so that in the end it will identify the risks and their evolution in time.

GA-101017441

D2.4 – Conceptual model and reference architecture 32

6.4.3.2 Interactions with other components
The Predictor and Risk Identifier uses the HHR records for its analysis and training of the necessary models.
These operations can be triggered by an admin user or be schedule-based, considering that the HHR records
will be enriched in the course of time. The P.R.I. component also performs predictions and risk assessments,
so an API will be provided for a user to enter the proper parameters and receive the relevant results,
potentially through the DSS Dashboard.

6.4.4 Personalised Advisor
6.4.4.1 Objective of the software artefact
The Personalised Advisor module is a microservice that makes use of a small set of different microservices
(i.e. a microservice cluster). The main objective of the Personalised Advisor module is to control the advice
messages and dialogues that are presented to the end-users of the Mobile App (see §6.2.3). The component
facilitates this in two different ways:

 Acting as a gateway service for other components to communicate to the mobile app.
 Acting as a smart component that makes decisions on when and what to say to the mobile app

user.

6.4.4.2 Interactions with other components
In Figure 14 below we show the Personalised Advisor module and all related/surrounding components. The
three “cloud” modules depicted are:

 iHelp Personalised Advisor – the core microservice of the cluster – this component serves 2 main
purposes (1) to pass-through recommendations/advice generated by other iHelp components to
the Mobile App and end-user, and (2) to make decisions on which advice to provide to the user at
which point in time.

 WOOL Repository Service – A service that stores WOOL Projects, containing collections of WOOL
Dialogues, which are handcrafted scripted definitions of coaching dialogues (to be developed as
iHelp service and released as an open-source WOOL module).

 WOOL Variable Store Service – A service that stores WOOL Variable values for specific end-users.
WOOL Variables are simple, primitively typed variables that can be used within the definition of
WOOL Dialogues (to be developed as iHelp service and released as open-source WOOL module).

Then, as stated in the objectives of this module, the Personalised Advisor communicates with the
Healthentia Edge Component that is depicted by the following set of components:

 Mobile App – the main user interface for the primary end-users of the iHelp platform (patients or
citizens) – see §6.2.3

 Healthentia Web Portal – a web-based user interface for clinicians, or other (healthcare)
professionals that allows configuration of studies, managing users, viewing detailed data
visualisations, and scheduling coaching actions to primary end-users.

 Healthentia Data Service – an internal back-end platform component dealing with capturing and
providing access to measured data (e.g., sensor data, questionnaires, events, or log data). For
additional details see §6.3.7 - Secondary Data Pre-processor.

 Healthentia Virtual Coach Service – an internal back-end platform component that controls the
delivery of “coaching actions” (e.g., feedback messages, or dialogues) to users of the mobile
application, and possibly professional users of the Web Portal.

GA-101017441

D2.4 – Conceptual model and reference architecture 33

These four components of the Healthentia Edge Component are depicted in Figure 5 in the centre/bottom
of the high-level architecture overview.

Figure 14: Personalised Advisor module and all related/surrounding components. The iHelp Personalised Advisor module is the core

component here, that uses the various WOOL Services to send notifications/messages/dialogue to the Mobile App through the Virtual
Coach Service.

Finally, Figure 14 shows, in the top right, one additional component:

 WOOL Dialogue Editor – A GUI Tool that allows non-technical domain experts to author coaching
dialogues using the WOOL Dialogue language. A working version of the dialogue editor exists as
open source, and improvements will be made to match the iHelp requirements (see §6.4.4.3).

The delivery of personalised healthcare and real-time feedback in iHelp is an interplay between the
Personalised Advisor (a back-end service component) and the Mobile App (the main user
interface component for the end-user). The Personalised Advisor is a smart service to be developed in the
iHelp project, while the Mobile App will be based on the existing Healthentia Mobile application to be
extended to support the various iHelp use cases.

When we are talking about personalised healthcare delivery, we are talking about three key concepts: (1)
visualising measured data, (2) providing simple feedback messages, and (3) engaging the user in a dialogue

GA-101017441

D2.4 – Conceptual model and reference architecture 34

with the digital virtual coach (see also D2.1[2]). As such, these three coaching actions (“show data
visualisation”, “give feedback message”, and “trigger coaching dialogue”) are the three possible outputs of
the Personalised Advisor component. In short: the personalised advisor decides for every iHelp
user when to deliver which one or more of the coaching actions.

The process of delivering such coaching actions is proposed to work in the following way. We explain the
process step-by-step, following the encircled numbers in Figure 14.

1. A health expert authors a coaching dialogue using the WOOL Dialogue specification language,
using the WOOL Dialogue Editor (a graphical user interface tool – Figure 15). In our example, the
health expert authors an interactive dialogue that lets the user agree on a physical activity goal in
cooperation with the iHelp virtual coach.

2. The health expert is logged in with their iHelp credentials, identifying them as the owner of a
specific WOOL Project (e.g., related to Pilot #1). Logged in with the proper authentication, the
health expert can store their WOOL dialogue in the WOOL Repository Service.

3. The WOOL Repository service contains a number of WOOL Projects (collections of WOOL
dialogues), and knows which users have read/write access to those projects.

4. The iHelp Personalised Advisor can retrieve the latest set of WOOL Dialogues relevant to a
specific pilot.

5. The Personalised Advisor makes a decision that a subject should set a physical activity coaching
goal now.

6. The trigger to start the “physical_activity_goal” dialogue for the specified user as soon as possible
(now), is sent to the Healthentia Edge Component.

7. The Healthentia Edge Component retrieves the latest Dialogue definition for the
“physical_activity_goal” dialogue from the WOOL Repository Service.

8. The Healthentia Edge Component retrieves the latest set of WOOL Variables needed to execute
the current dialogue (e.g., $userAge, $userGender, etc..).

9. The Healthentia Edge Component sends a trigger to execute this dialogue to the subject’s mobile
application.

10. When the user sees the notification that the virtual coach has something to say, the mobile
application will execute the dialogue – engaging with the user in the dialogue about physical
activity goal setting.

11. When the dialogue is started (or finished), a notification of delivery is sent back to the
Healthentia Edge Component.

12. The notification of delivery is passed back to the source of the coaching action trigger (i.e., the
Personalised Advisor). In this case, the personalised advisor can know that its triggered advice has
reached the end-user.

13. After the user has finished interacting with the dialogue, any updated or newly set WOOL
Variables are passed back to the Healthentia Edge Component. In this example, the WOOL
dialogue led to a new variable being set: $userActivityGoal = 10000”.

14. The WOOL Variables that need updating are sent to the WOOL Variable Store Service for storage.

6.4.4.3 WOOL Dialogue Editor
WOOL is an Open Source (MIT Licensed) platform for authoring and executing scripted dialogues that was
designed and developed specifically for the purpose of integrated personalized health coaching dialogue
into eHealth applications. WOOL was developed in the context of a previous EU H2020 project called
“Council of Coaches” and is currently maintained by partners of that project Roessingh Research and
Development and Innovation Sprint. WOOL is and for ever will be fully open source and has support for
continuous development from various EU R&D projects for the coming years. For more information see
www.woolplatform.eu.

http://www.woolplatform.eu/

GA-101017441

D2.4 – Conceptual model and reference architecture 35

The WOOL Platform will be used in iHelp to support advice delivery in the form of conversations between
a virtual coach and the end-user. As part of the Personalised Advisor workflow, the WOOL Editor is the tool
that allows professionals to design their own scripted dialogue (see Figure 15 below).

Figure 15: Screenshot of the WOOL Editor Tool, a work in progress graphical user interface for authoring WOOL Dialogues. The

screenshot shows the structure of a collection of WOOL dialogues (left), and the main Dialogue Editing window on the right. Every box
in the dialogue editor window is a step in the conversation, which are linked to other steps as shown by the arrows.

The WOOL Editor will be updated to reflect the needs arising from the various iHelp use cases.

6.4.5 Social Analyser
6.4.5.1 Objective of the software artefact
The Social Analyser component is responsible for the analysis of discussion taking place on the social media
platforms in order to provide insight into the lifestyle trends, mental models, emotions, social interactions
and societal influences on the individuals who either have developed the Cancer or are in the early stage
of risk identification. This type of information about social aspects is important to analyse/evaluate the
impact of the risks, the personalised healthcare and/or the targeted recommendations by the clinical
experts.

The Social Analyser component will use Complex Event Processing (CEP) techniques, in addition to the state-
of-the art Natural Language Processing (NLP), Sentiment Network Analysis (SNA) and AI technologies to
provide a complete toolkit for clinicians and policy makers; allowing them to collect, process and visualize
Cancer related information exchanged on the social media platforms. In this respect, the objectives of the
Social Analyser component (as described in the iHelp DoA are) are:

 To develop mechanisms for real-time analysis of social data and contribution to policy making
activities

GA-101017441

D2.4 – Conceptual model and reference architecture 36

 To define mechanisms for efficient monitoring, alerts and feedback gathering regarding the
personalised recommendations and user-centric healthcare solutions developed in the project

 To evaluate the benefits of AI and personalised healthcare approach developed in the project

In addition to the above, the following objectives are defined for the Social Analyser component:

 To extract iHelp relevant information (e.g., discussions on risk identification, targeted
recommendations etc) from social media discussions and present it to policy makers in an easy to
interpret and easy to understand way

 To integrate the analysis of social media data with relevant HHRs in the iHelp platform
 To present the social media analysis in such a way that policy makers will be able to analyse the

general healthcare trends as well as impact of specific recommendations/policies

The outcome of the Social Analyser engine will be presented to the relevant decision makers as the
feedback loop to the clinicians/policy makers, allowing them to make more informed decisions regarding
targeted recommendations and policies

The Social Analyser component will utilise a number of sub-components, each with a specific purpose that
contributes towards delivering a comprehensive social media analysis and decision support system. The
following sub-components are used by the Social Analyser:

 CEP Engine to develop event patterns and event trends based on expert and machine learning
methodologies. The engine will be extended to enable the inference of probabilistic events suitable
for early risk identification and evaluation of targeted recommendations.

 NLP to analyse, decipher, understand and make sense of the human languages in a manner that is
useful for the objectives of the Social Analyser component

 SNA to analyze social networks on the social media platforms and to extract relevant information
about the structure of the networks, identify clusters or communities and predict new links
between users

 Administrative Dashboard to create alerts by specifying which topics (keywords and phrases) they
are interested in monitoring on specific social media platforms. These topics can relate to the
lifestyle trends, mental models, emotional intelligence, social interactions and societal influences
on the individuals

 Monitoring Dashboard to provide real-time monitoring updates on the pre-specified alerts
through a set of intuitive visualisations. The alerts will show e.g., how many social media posts are
being posted on specific topic(s), from whom, when and the pattern of posts

 MySQL is an open-source relational database management system (RDBMS). It organizes data into
one or more data tables in which data types may be related to each other. MySQL is used to store
data about users of the social media analysis solution

 MongoDB is a document-oriented NoSQL database used for high volume data storage. MongoDB
is used to store the social media data

 Apache Kafka is a system to manage the events’ logs. It is a durable messaging system that send
messages between processes, applications, and servers. Apache Kafka is used as a message
brokering system in the social media analysis component. It is where the messages will be
published for processing by different components in the social media analysis solution

GA-101017441

D2.4 – Conceptual model and reference architecture 37

 Apache ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. ZooKeeper is used to
coordinate and manage different components in the social media analysis solution

6.4.5.2 Interactions with other components
The Social Analyser component will provide intuitive interfaces (as Administrative and Monitoring
Dashboards) to the users, which are perceived to be clinicians and other healthcare related policymakers.
The component doesn’t require input from any other component within the iHelp platform as it gets input
directly from the users (i.e., alerts on specific topics) and social media platforms (i.e., data concerning
discussions taking place related to the alert-topics).

Figure 16: Overview of the Social Analysis component

However, the output of the Social Analyser component will be stored in the iHelp platform e.g., as additional
data type in the HHR structure. In this respect, the Social Analyser will interact with the following
component in the iHelp platform:

 DataConnector - to ingest the social analytic data within the relevant HHRs in the iHelp
platform

6.4.6 Monitoring and Alerting
6.4.6.1 Objective of the software artefact
The main goal of the Monitoring and Alerting module is to track and/or monitor the effect of the
recommendations that are prescribed to the individuals by the clinician/medical experts. The module (and
its sub-modules) will run as a separate service and will observe, check, and aggregate data coming from
secondary data sources (mobile and/or wearable devices), and compare them with personalized targets
issued by the clinicians/medical experts.

The monitoring mechanism will be executed on assigned configurable intervals (daily, weekly, monthly
etc.), will make a quick assessment of progress towards goals, and will decide whether to activate the
alerting submodule. The decisions will be based on comparing certain monitored parameter target values
defined in the personalized advices against real values. Different escalation policies and threshold values
will be considered when generating the proper alert and alert recipient (monitored individual or the
advisor). The alerting functionality may be embedded in the delivery mechanism e.g. mobile or wearable
apps.

6.4.6.2 Interactions with other components
The Monitoring and Alerting module will be packed up in a docker container and will be part of the iHelp
infrastructure. It can be started on certain configurable intervals and work with respect to the FaaS
(Function-as-a-Service) paradigm or it can run continuously depending on the level of granularity of

GA-101017441

D2.4 – Conceptual model and reference architecture 38

achieving the targets, set by the advices, we want to track, the time of reaction and the most appropriate
thresholds and value tolerances we have set.

The Monitoring and Alerting module will use the following simple logic:

1. The service will be started [on certain configurable intervals]

2. It will obtain a list of currently active personal advices from the personal adviser.

3. In the context of each rule: aggregate row data if rule uses comparison of aggregated data against
target

4. It will obtain a list of aggregated data regarding the individuals from the advices

5. It will evaluate actual values vs targets

6. Based on various parameters to be monitored, target value, escalation policy etc. the system will
generate alerts, to be sent to the individual or the clinician

7. Generated alerts are sent to the appropriate person using the delivery mechanism e.g. mobile or
wearable apps.

In order to work properly, the module requires the following interfaces:

 Raw data for evaluation – we need an interface that will provide specified data type for a given
individual in a given period

 Personalised advices - (individual, alert title and content, parameters to be monitored , target value
, escalation policy) from personal adviser will be obtained on certain intervals (daily, weekly , etc)

 Strategy list – obtain a list of strategies defining what actions should be performed if certain target
values have been reached – e.g. notify user twice, if still in warning notify clinician, escalate one
week later.

 Alert distribution / delivery – mechanism to send certain alert to certain individual (achieved
through the Personalized Advisor component, see §6.4.4).

The Monitor and Alerting module will offer the following interfaces:

 Data Aggregator – if required - aggregate raw data for a period – how many steps user has done
in a week

 Alert Evaluation - do we have a match between certain advice target and user results
 Alert Generator – replace placeholders in advice with actual values and send them to alert

distribution interface according to strategy and personal preferences

GA-101017441

D2.4 – Conceptual model and reference architecture 39

6.5 Data storage

6.5.1 Big Data Platform
6.5.1.1 Objective of the software artefact
This software artefact provides the persistent data management layer of the iHelp platform. It will rely on
LXS datastore and its main objectives are the following:

 To allow for data ingestion in very high rates. Based on its internal ultra-scalable transactional
engine of LXS and the sophisticated internal data structures for data indexing, the Big Data Platform
can allow for highly rated data ingestion, avoiding the high contention of traditional relational
datastores, and providing transactional semantics that the NoSQL world sacrifices for the sake of
scalability. This will be used in the data ingestion pipelines that will be established for migrating
data into the iHelp platform, either by batch ingestion (periodic or static), or by sending data over
a stream.

 To allow for efficient query execution for analytical processing over the operational data. The Big
Data Platform provides Hybrid Transactional and Analytical Processing (HTAP) that allows to
perform analytics over the operation data, as data is being ingested, without the need for migrating
historical data into a data warehouse and perform the analytic operations there. This means that
the analytics will always access fresh and not obsolete data and can provide insights over the real
data set. By providing the rich query processing capabilities of the relational datastores, data pre-
processing can be efficiently executed near the data storage, avoiding the need to send the entire
datasets to the analytical processing layer, while the intra-operation parallelism of the query
engine allows for parallel execution of analytical and aggregated operations.

 To allow for federated query processing, combining data that are stored externally to the Big
Data Platform. Using the polyglot capabilities of its query engine, the Big Data Platform can open
connections and push down queries to be processed in other instances that might be deployed
externally. This can be the case where each organization has deployed its own instance of the iHelp
platform, and might need to correlate data that are stored internally, with data that are stored in
another organization. The Big Data Platform can accept such queries over federated datastores,
open connections to the external ones to access data, push the query execution there, retrieve
only result of such execution (without having to move data between the different instances) and
combine those with the data stored internally.

6.5.1.2 Interactions with other components
The Big Data Platform is a central component of the iHelp platform and it interacts with almost all other
software artefacts of the platform. It will be provided as an internal component with a static deployment,
whith scaling capabilities at runtime in order to cope with increased workloads. This component is mainly
used for others to read or to store data and it will only read data autonomously in case of a federated query
execution via its polyglot engine. We categorize its interactions with the other components in two different
types: One used for storing data and one used for reading data.

Inserts:

GA-101017441

D2.4 – Conceptual model and reference architecture 40

The main software artefact that will interact with the Big Data Platform in order to store data is the HHR
Importer. The latter will communicate with the Big Data Platform either by its standard JDBC connectivity
mechanism, or by making use of it is dual SQL/NoSQL interface and its direct API that allows data ingestion
in very high rates. Another option that can be investigated in a latter phase of the project, is the
communication of the HHR Importer with the Big Data Platform, via an intermediate Kafka data queue. In
such a case, the LXS Kafka connector will be used, which inserts data transparently to the datastore. In this
case, the HHR Importer will have to serialize the data to be ingested via an Avro schema registry.

Another category of software artefact that needs to interact with the Big Data Platform to insert data are
the analytical functions that will need to persistently store intermediate of final results, or even store the
training results of their algorithms. They will communicate using the standard JDBC data connectivity
mechanism of the datastore.

Reads:

The first category of software artefacts that need to interact with the Big Data Platform in order to perform
read operations will be the analytical functions. Those functions need to read raw data stored in the data
repository in the common data model coming from either primary or secondary resources. They will either
make use of the standard JDBC data connectivity mechanism of the datastore, or they can also rely on their
own analytical frameworks to perform the pre-processing for their analysis. In case they make use of the
Spark analytical framework, then they can also benefit from the LXS Spark connector.

A second category of software artefacts are the ones that are being involved in the data ingestion process.
There are envisioned cases where some of the intermediate functions of the data ingestion pipeline might
need to read historical data to perform some analysis. They will also make use of the JDBC data connection
mechanism of the Big Data Platform.

Finally, this component will interact with the visual analytic tools in order to visualize the result of the
analysis. Once again, the most appropriate way is to make use of the JDBC standard connectivity mechanism
of the datastore.

GA-101017441

D2.4 – Conceptual model and reference architecture 41

7 Infrastructure
In the context of the iHelp project, UPRC will provide the needed computing and storage capabilities to set-
up the cloud-based infrastructure to serve the project needs and in order for all the needed technologies
and tools to be deployed and managed by project’s partners. Overall, this cloud infrastructure aims to help
data scientists, healthcare professionals and different stakeholders, to analyse a wide plethora of datasets
from different data sources, and facilitate the study of the clinical, physiological, personal and societal
aspect of Pancreatic Cancer conditions and treatments.

Furthermore, the project’s Consortium has identified a list of needed tools that must be provided and be
available to all partners in terms of the overall proposed architecture and the integration and
deployment/management of their solutions/components. On top of this, the CI/CD approach represented
below, that should be followed during the whole lifecycle of iHelp project and the corresponding
technologies/tools have been identified and are shown in Figure 17.

Figure 17: Identified tools.
Moreover, the provided infrastructure will help project’s partners to run computation- or data- intensive
tasks and host online services in virtual machines or Docker containers on IT resources. To facilitate the
cloud provisioning of resources for the project and to collect all the technical needs, UPRC has invited
project members to report technical needs in a shared document. This document, which was introduced
during one of the iHelp consortium meetings organized by the Project Coordinator, is a live document, and
at the date was attached in the Annex A - Infrastructure Discussion.

The aforementioned document is composed of two main sections. In Section 2 (Technical Groups), the
appropriate technical partners should be indicated, who will be responsible for the above presented
tools/technologies of the CI/CD approach. Different technical groups of partners should be organised based
on their expertise, experience, and level of familiarity with these technologies/tools, in order to discuss
activities, approaches, and guidelines and to drive the deployment and maintenance of these
technologies/tools. The latter will be facilitated based on the role assignment shown in Table 4 (see
Appendix), where specific (groups of) partners will be responsible for providing, deploying, and maintaining

GA-101017441

D2.4 – Conceptual model and reference architecture 42

the corresponding technologies/tools. Moreover, in this specific table the needed resources for each tool
should be recorded in order everyone to be aware of the needs and the overall architecture that will be
followed. On top of this, in Section 3 of this shared document (Infrastructure Resources) Table 5 is made
available allowing each partner to provide their needs on Infrastructure Resources for components and
tools deployment.

The envisaged infrastructure will be provided for the technical partners as a testing environment, accessible
remotely and in which every component leader is responsible to test the component and the integration
with the other software artefacts present on the platform.

An identical infrastructure will be provided for the validation of the solution. On this instance all the
components will be deployed, and the pilots will validate the actual operation of the whole platform.

It is important to note that both the testing and the validation infrastructure will not handle real data, but
a set of synthetic data [10] useful only for testing and validation phases.

The pilots, on their premises, will have to provide the defined infrastructure in order to allow the
deployment of the needed iHelp components, otherwise, if needed, they could use the centralised solution,
adopting the Software as a Service approach, in this case, nothing will be deployed on their premises.

The status of the iHelp infrastructure will be further updated in the upcoming deliverable D2.5 – Conceptual

model and reference architecture II, which will be delivered during M18. The total amount of the resources
provisioned by the UPRC will be also presented for supporting the iHelp pilot partners.

GA-101017441

D2.4 – Conceptual model and reference architecture 43

8 Deployment
In this section a description is given of what components (§6) will be deployed on which nodes of the
infrastructure (§7).

Due to some ethical and legal aspects, it could be possible that in some cases data to be ingested cannot
be shared and transferred across the countries. Another aspect to take in account is that not all the pilots
have the same goal or expressed the same use cases, hence not all pilots will need the same iHelp features.

To overcome the former limitation and addressing the latter need, iHelp propose, for the first deployment,
a modular, static and tailored deploy on the hospital premises. As an overview, each pilot holds its own
raw data, and can use iHelp on the ingested data compliant to the common HHR data model

In case it becomes possible to transfer the data, and to use the platform as SaaS, the designed architecture
could be deployed in a remote cloud, and be accessed from the final users.

GA-101017441

D2.4 – Conceptual model and reference architecture 44

Table 1: Traceability matrix (Use Cases / Components)

HHR
Importer

Data
Gateway

Data
Harmoni

ser

Data
Cleaner

Data
Qualifier

Data
Connect

ors

Analytic
Workbe

nch

DSS
Dashboa

rd

Big Data
Platform

Personal
ised

Predicto
r

Predicto
r and
Risk

identifie
r

Mobile
App

Person
alised

Advisor

Social
Analyser

Monitoring
and

Alerting

Secondar
y Data
Pre-

processor

WebApp
for HCP

Develop Risk
Prediction

Model

UNIMAN,
HDM,

MUP, TMU
x ? x ? ? ?

Risk
Assessment

UNIMAN,
HDM,

MUP, TMU
 x x x x x

Request Tests
and Samples

UNIMAN,
HDM,

MUP, TMU
? ? ? ? ? ? x ? ? ? x

Elevated Risk
Detected

UNIMAN,
HDM,

MUP, TMU
 x x x x

Ingest Tests
and Samples

results

UNIMAN,
HDM,

MUP, TMU
x x x x x x x

Risk
Mitigation/Tre

atment
planning

UNIMAN,
HDM,

MUP, TMU
? ? ? ? ? ? x ? x

Advice Review
UNIMAN,

FPG, HDM,
MUP, TMU

 x x

Risk Mitigation
Delivery

UNIMAN,
FPG, HDM,
MUP, TMU

 x x

Monitoring
UNIMAN,

FPG, HDM,
MUP, TMU

? ? ? ? ? ? x x x x x

Advice Follow-
up

UNIMAN,
HDM,

MUP, TMU
 x x

Caption of
profiling

characteristics

UNIMAN,
HDM,

MUP, TMU
x x x x x x x x x

Reporting FPG x
Plan a visit or a
remote contact

FPG ? ? ? ? ? ? x ? x x

GA-101017441

D2.4 – Conceptual model and reference architecture 45

Table 1 shows a traceability matrix that has as main goal to summarise the impact of each use case,
collected and available in the D2.1[2], on the main components defined in this document.

For each use case, the components required for the standard flow are marked with a x, and with a ? the

components possibly involved by optional flows.

The specific flow and invocations will be better detailed in the scope of the task T2.3 – Functional and Non-

Functional Specification.

GA-101017441

D2.4 – Conceptual model and reference architecture 46

Table 2: Traceability matrix (Pilots/Components)

 HHR
Importer

Data
Gateway

Data
Harmoniser

Data
Cleaner

Data
Qualifier

Data
Connectors

Analytic
Workbench

DSS
Dashboard

Big Data
Platform

Personalised
Predictor

Predictor
and Risk
identifier

Mobile
App

Personalised
Advisor

Social
Analyser

Monitoring
and

Alerting

Secondary
Data Pre-
processor

WebApp
for HCP

UNIMAN • • • • • • • • • • • • • • • • •
FPG • • • • • • • • • • • • •
HDM • • • • • • • • • • • • • • • • •
MUP • • • • • • • • • • • • • • • • •
TMU • • • • • • • • • • • • • • • • •

GA-101017441

D2.4 – Conceptual model and reference architecture 47

Table 2 shows the functional dependencies of each use case, and related components, specified per pilot.
That matrix, and its further version, can drive the deployment process in the next phases of the project. In
that table, are summarised the needed components for each pilot. For every pilot a • means that the
component in that column is needed.

The process of requirement refinement is still in progress, but at this time, after the first round discussions
and analysis, the result is that most of the pilots (4/5) needed the full solution deployed on their premises.
For the moment, seems that one pilot will use a subset of iHelp features.

Due to the modular approach, iHelp will be able to customise the final solution to only the needed
components, do to optimise the actual resources. In Figure 18 and Figure 19 two possible on-premises
deployments, the first one with all the identified components, the second with a reduced number of
deployed components.

As mentioned in section 7, the test and validation phases need the deployment of the whole set of features
offered by iHelp, following that, the Figure 18 can also represent the deployment diagram for the testing
and validation phases, with the only exception of that the device in which is available the VM is not on the
hospital premises, but on the iHelp centralised server.

As listed in the section 7, all the backend components are containerised, so they need an execution
environment, like Kubernetes, to be operative.

A different approach was adopted for the AnalyticWorkbench. It uses a container orchestration
platform, developed by ICE and known as DryICE.[26] It provides a data processing pipeline and CEP
capabilities, and offers the possibility for a serverless deployment of the components.

The consortium agreed for the first release of the platform, to perform a tailored, customized, static
deployment of the services and functions involved in the data ingestion data pipeline. Once validated the
features of the system and satisfied the pilots’ requirements, the technical partners will investigate the
possibility to have a “serverless”[27] deployment of such components. That approach will allow to
dynamically instantiate the needed component only on demand. This approach could be useful in case of
components invoked very rarely, that can be suspended for saving resources, and only if needed,
instantiated, and invoked. This approach, and the DryICE solution, will be better detailed in the WP4, and
could impact some components developed in the scope of the WP3.

Another special mention in the deployment diagram is reserved to the BigDataPlatform. This software
artefact, as already explained in §6.5.1, and further detailed in the related deliverable D4.9[28], can provide
polyglot capabilities built in its query engine. This capability allows the final user (e.g.: a ModelBuilder)
of the Pilot A to correlate some data, among a federated network of datastores, with a selection of data
from Pilot B. In this example, we are assuming that both the pilots, i.e. A and B, have the
BigDataPlatform deployed on their premises, and they established a federated datastore. The power
of this feature is that the AI component does not have to know the infrastructural or network detail of the
iHelp platform, but everything is delegated to the BigDataPlatform, invoked using the JDBC API in the
same execution environment. It can be also used in scenarios when pilot A should make use of data coming
from pilot B, but this data cannot live the premises of pilot B. As the BigDataPlatform can access the
data remotely, there is no need to move this data from pilot B to be stored in the infrastructure of pilot A.

GA-101017441

D2.4 – Conceptual model and reference architecture 48

Figure 18: Deployment diagram - whole solution

GA-101017441

D2.4 – Conceptual model and reference architecture 49

Figure 19: Partial deployment

GA-101017441

D2.4 – Conceptual model and reference architecture 50

9 Conclusions
This document provides the initial view of the conceptual overall architecture and model of the iHelp
platform. It highlights the main components, their interconnections, key capabilities and offered some
details about the infrastructure and the approach that will be followed for the deployment of the platform.

All the details, and the internal design of each component, are demanded to the related tasks; based on
this document, instead, is the higher-level image, and how the iHelp solution will be provided to the final
users.

During this period the consortium agreed on some architectural decisions, first of all, the software will be
provided in form of containerised microservices; some of those will use an asynchronous communication
(i.e. Data Ingestion) some other will use the synchronous communication (i.e. Data analysis). The
connection with the iHelp repository will be performed using the various data connectivity mechanisms,
some of such following well known standards, like the JDBC.

Three kinds of GUI will be provided to the application reserved to the clinicians; specifically, a GUI for the
HCP for looking at the specific patient’s data, a GUI for the ModelBuilder, that can allow to train and
tune the AI algorithm implemented in the platform, a GUI for both to elaborate statistics and compute
aggregation on the data present in the platform.

The Individual, will interact with the system using only a mobile application, which can act as an
aggregator of the user data that will be shared within iHelp.

Moreover, a centralised infrastructure will be provided, which can receive the deployment of all the
components for testing and validation phases. This infrastructure will not handle real data, but only
synthetic data. The minimum set of resources needed by the components, that will be provided by the
infrastructure, is still in definition progress, the snapshot of the live document on which the technical
partners are working on is in the annex.

The deployment, for the first phase, will be static for many of the identified components, but customised
on the needs of the pilot, for a more efficient resources allocation.

For the next version of this deliverable, taking into account that the use cases will be more mature and
stable, it is reasonable to expect a further detailed GUI and goal of components. The interconnections could
be updated to reflect the new needs.

The serverless deployment approach will be better analysed to understand if, for the specific pilots’
scenarios, it could be feasible and efficient, for the second release, to move some components toward such
kind of development. The infrastructure discussion will continue, so the live document in the annex will be
updated.

GA-101017441

D2.4 – Conceptual model and reference architecture 51

Bibliography
[1] D. Kyriazis et al., “CrowdHEALTH: Holistic Health Records and Big Data Analytics for Health Policy Making

and Personalized Health.,” Stud. Health Technol. Inform., vol. 238, pp. 19–23, 2017.
[2] iHelp, “D2.1 - State of the Art and Requirement Analysis-I,” 2021.
[3] S. Brown, “Software architecture for developers,” Coding Archit., 2013.
[4] “CrowdHEALTH.” [Online]. Available: https://www.crowdhealth.eu/. [Accessed: 14-Jul-2021].
[5] “MARKOS.” [Online]. Available: https://cordis.europa.eu/article/id/117369-markos-global-integrated-

and-searchable-opensource-software. [Accessed: 14-Jul-2021].
[6] “SkinCancer.” [Online]. Available: http://viewderma.com/. [Accessed: 14-Jul-2021].
[7] “PATHway.” [Online]. Available: https://cordis.europa.eu/project/id/643491. [Accessed: 14-Jul-2021].
[8] NEXOF-RA project, “Quality Model for NEXOF-RA Pattern Design.”
[9] IHelp, “D1.1 - Project Management Handbook,” 2021.
[10] IHelp, “D1.10 - Ethical Issues Related to the Protection of Personal Data,” 2021.
[11] The European Parliament and the council of the European Union, “GDPR.” [Online]. Available:

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN. [Accessed:
07-Jul-2021].

[12] IHelp, “D1.2 - Data Management Plan,” 2021.
[13] IHelp, “D1.9 - Ethical Issues Related to the Involvement of Humans in iHELP,” 2021.
[14] IHelp, “D1.11 - Ethical Issues Related to the Involvement of Non-European Countries,” 2021.
[15] IHelp, “D1.12 - Ethical Issues Related to the Human Cells-Tissues,” 2021.
[16] IHelp, “D1.13 - Ethics Guidelines for Trustworthy AI in iHELP,” 2021.
[17] OMG, “UML.” [Online]. Available: https://www.omg.org/spec/UML/2.0/About-UML/. [Accessed: 07-Jul-

2021].
[18] “Traefik.” [Online]. Available: https://traefik.io/solutions/api-gateway/. [Accessed: 07-Jul-2021].
[19] “Keycloak.” [Online]. Available: https://www.keycloak.org/. [Accessed: 07-Jul-2021].
[20] “OpenId Connect.” [Online]. Available: https://openid.net/connect/. [Accessed: 07-Jul-2021].
[21] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/. [Accessed: 07-Jul-2021].
[22] “Kubernetes.” [Online]. Available: https://kubernetes.io/. [Accessed: 07-Jul-2021].
[23] “Node Red.” .
[24] G. Tiwari, A. Sharma, A. Sahotra, and R. Kapoor, “English-Hindi neural machine translation-LSTM seq2seq

and ConvS2S,” in 2020 International Conference on Communication and Signal Processing (ICCSP), 2020,
pp. 871–875.

[25] P. Bahar, N. Makarov, and H. Ney, “Investigation of transformer-based latent attention models for neural
machine translation,” in Proceedings of the 14th Conference of the Association for Machine Translation
in the Americas (AMTA 2020), 2020, pp. 7–20.

[26] I. Catalyst, “ICE Knowledge Discovery.” [Online]. Available: https://informationcatalyst.com/ice-
knowledge-discovery/. [Accessed: 16-Jul-2021].

[27] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,” in Research Advances in
Cloud Computing, S. Chaudhary, G. Somani, and R. Buyya, Eds. Singapore: Springer Singapore, 2017, pp.
1–20.

[28] iHelp, “D4.9 - Big data platform and knowledge management system-I,” 2021.
[29] European Commission, “What is a data controller or a data processor?” [Online]. Available:

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-
organisations/obligations/controller-processor/what-data-controller-or-data-processor_en. [Accessed:
03-Aug-2021].

GA-101017441

D2.4 – Conceptual model and reference architecture 52

List of Acronyms
AI Artificial Intelligence
API Application Programming Language
CA Consortium Agreement
CEP Complex event processing
D Deliverable
DoA Description of Action
EEA European Economic Area
EU European Union
GDPR General Data Protection Regulation
GUI Graphical User Interface
HCP Health Care Professional
HHR Holistic Health Records
K8S Kubernetes
NLP Natural Language Processing
PC Pancreatic Cancer
REST Representational state transfer
SaaS Software As A Service
SNA Sentiment Network Analysis
T Task
UC Use Case
UML Unified Modelling Language
VM Virtual Machine
WP Work Package

GA-101017441

D2.4 – Conceptual model and reference architecture 53

Annex A - Infrastructure Discussion
Infrastructure & Architecture Discussions
As discussed and agreed during the 2nd & 3rd Virtual Consortium Meeting call of iHelp project, UPRC will
provide the server and appropriate infrastructures in order all the needed technologies and tools to be able
to be deployed and be managed by partners. UPRC can provide the wanted VMs for the project.

Moreover, a list of tools was discussed that need to be provided and be available to all partners in plans of
integration and deployment/management of their solutions/components. On top of this, the below CI/CD
approach that can be followed during the whole lifecycle of iHelp project, and the corresponding
technologies/tools were proposed by Usman (ICE) during the 2nd Virtual Meeting Call of the iHelp Project.

To this end, the below table summarises and indicates the Open Issues and Discussions that have been
raised according to Architecture and Infrastructures during our latest Virtual Meeting.

Table 3: Infrastrucutral open points

Open Discussion Items Description
Technical
Partners
Involved

Use of a container-orchestration
system

UPRC can provide VMs over OpenStack using their
infrastructure. It is recommended the use of a
container-orchestrator system (i.e. Kubernetes)
so that everything can be easy deployed when
needed.

The latter will require:

1. All platform components/tools to be
containerized.

2. Native and locally deployed applications,
also from pilots, might need to be
containerized (that might require the
help of a technical partners) but there

All

GA-101017441

D2.4 – Conceptual model and reference architecture 54

might be always the option for them to
deploy in a separate VM.

Use of a Serverless vs a Static
Microservices Deployment

Most of the technical partners raised the issue of
having a serverless deployment and utilization of
our microservices, in order these microservices
can be triggered and utilized in a dynamic way.
May we have scenarios which do not need all
functions/microservices to be utilized, thus it is
proposed to have a more dynamic deployment. -
During the 3rd Consortium Meeting it was
proposed from Pavlos (LXS) & Sakis (ATC) for the
WP3 components to have static deployments at
least until the 1st Review. It is strongly
recommended to have our deployments on top of
Kubernetes. Hence, there is no need for extra VM
for each component. WP4 components will be
based on serverless implementation based on
DryICE tool provided from ICE.

WP3
components
static
implementation,
WP4
components
serverless
implementation
based on DryICE.

(Any other discussion that should
be raised)

GA-101017441

D2.4 – Conceptual model and reference architecture 55

Technical Groups
As also proposed, the appropriate technical partners should be named/indicated, who will be responsible
for the above presented tools/technologies of the CI/CD approach. Different technical groups of partners
should be organised based on their expertise, experience, and level of familiarity with these
technologies/tools, in order to discuss activities, approaches, and guidelines and to drive the deployment
and maintenance of these technologies/tools. The latter will be facilitated based on the below table, where
specific (group of) partners will be responsible for providing, deploying, and maintaining the corresponding
technologies/tools. Moreover, in the below table the needed resources for each technology/tool to be
deployed should be recorded in order everyone to be aware of the needs and the overall architecture that
will be followed.

For example, Kafka must be deployed on a project’s single VM with a Public IP in order every partner to be
aware and able to connect, produce and consume messages from the appropriate Kafka Topics under this
specific IP. For this deployment, a VM of 4vcores, 8GB RAM and 50GB storage is needed.

Table 4: Infrastructural tools

Technology/Tool Description Responsible
Partner(s)

Needed
Resources

Gitlab

The project’s private GitLab
repository, so that everyone be
able to push and share code. Each
organization must have at least
one account with
admin/maintenance rights, so
that people can administer the
components that their
organization is responsible for.
Each member of the consortium
should have one account there.

UPRC

1 VM with 8
vcores, 32GB
RAM, 1 Public IP
and 100GB
storage.

Central Gitlab
Container Registry

Gitlab container registry, so that it
is feasible to build, upload and
store Docker Images in project’s
own and private repo. Docker
images will be later used by
Kubernetes to create the
containers and orchestrate the
overall deployment.

UPRC

Deployed on top
of Gitlab, thus o
extra resources
are needed.

SonarQube Automatic code quality check is
performed constantly by this tool. ICE

Deployed on top
of Kubernetes,
yaml file. Specify
in the pipelines
through the
Gitlab pipelines.
Components
have to have
their own
libraries. E.g.
Jacoco for Java.

GA-101017441

D2.4 – Conceptual model and reference architecture 56

Technology/Tool Description Responsible
Partner(s)

Needed
Resources

Kubernetes
Kubernetes will be utilized for the
orchestration of the deployments
of the containerized components.

ICE

TBD. Minimum
requirements. 2
Kubernetes
instances were
proposed during
the 3rd
Consortium
Meeting.

Docker Compose/Helm
Chart registry

Will be used for defining and
running multi-container Docker
applications.

UPRC

Deployed on top
of Docker. In
general docker
compose can
easily be
transposed to
Kubernetes
docker.

Rancher Cluster Manager for Kubernetes ICE Deployed on top
of Kubernetes

Kafka

The Message Bus/Broker of the
project. Run time communication
between different components of
the overall pipeline.

LXS

Will be deployed
on top of
Kubernetes.
Needed
resources should
be calculated
along with
Kubernetes
resources.

Serverless
Orchestrator (e.g.
DryICE)

 ICE
TDB

(Any other tool that
should be highlighted)

GA-101017441

D2.4 – Conceptual model and reference architecture 57

Infrastructure Resources
Based on the below table each partner can provide his needs on Infrastructure Resources, in order to deploy
his own components and tools.

Table 5: Infrastructural resources

Partner Description of Actions Needed
Resources

UPRC
T3.4 Standardization and Quality Assurance of
Heterogeneous Data

1VM with
8vcores,
32GB RAM,
50GB
storage

ICE T4.2 Analytic Workbench (DryICE)

TBD.
Minimum
resources
needed.

(Please all partners fill up the table
according to your needs.)

	Executive summary
	1 Introduction
	2 Approach to the architecture definition
	3 Context
	4 Functional Overview
	5 Security and Privacy
	6 Software Architecture
	6.1 Overall
	6.2 Final User applications
	6.2.1 DSS Dashboard
	6.2.1.1 Objective of the software artefact
	6.2.1.2 Interactions with other components

	6.2.2 WebApp for HCP
	6.2.3 Mobile App
	6.2.3.1 Objective of the software artefact
	6.2.3.2 Interactions with other components

	6.3 Data Ingestion
	6.3.1 HHR Importer
	6.3.1.1 Objective of the software artefact
	6.3.1.2 Interactions with other components

	6.3.2 Data Gateway
	6.3.2.1 Objective of the software artefact
	6.3.2.2 Interactions with other components

	6.3.3 Data Harmoniser
	6.3.3.1 Objective of the software artefact
	6.3.3.2 Interactions with other components

	6.3.4 Data Cleaner
	6.3.4.1 Objective of the software artefact
	6.3.4.2 Interactions with other components

	6.3.5 Data Qualifier
	6.3.5.1 Objective of the software artefact
	6.3.5.2 Interactions with other components

	6.3.6 Data Connectors
	6.3.6.1 Objective of the software artefact
	6.3.6.2 Interactions with other components

	6.3.7 Secondary Data Pre-processor
	6.3.7.1 Objective of the software artefact
	6.3.7.2 Interactions with other components

	6.4 Data analysis
	6.4.1 Analytic Workbench
	6.4.1.1 Objective of the software artefact
	6.4.1.2 Interactions with other components

	6.4.2 Personalised Predictor
	6.4.2.1 Objective of the software artefact
	6.4.2.2 Interactions with other components

	6.4.3 Predictor and Risk identifier
	6.4.3.1 Objective of the software artefact
	6.4.3.2 Interactions with other components

	6.4.4 Personalised Advisor
	6.4.4.1 Objective of the software artefact
	6.4.4.2 Interactions with other components
	6.4.4.3 WOOL Dialogue Editor

	6.4.5 Social Analyser
	6.4.5.1 Objective of the software artefact
	6.4.5.2 Interactions with other components

	6.4.6 Monitoring and Alerting
	6.4.6.1 Objective of the software artefact
	6.4.6.2 Interactions with other components

	6.5 Data storage
	6.5.1 Big Data Platform
	6.5.1.1 Objective of the software artefact
	6.5.1.2 Interactions with other components

	7 Infrastructure
	8 Deployment
	9 Conclusions
	Bibliography
	List of Acronyms
	Annex A - Infrastructure Discussion
	Infrastructure & Architecture Discussions
	Technical Groups
	Infrastructure Resources

