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A B S T R A C T

Deep learning methods have become popular among researchers in the field of fault detection. However, their
performance depends on the availability of big datasets. To overcome this problem researchers started applying
transfer learning to achieve good performance from small available datasets, by leveraging multiple prediction
models over similar machines and working conditions. However, the influence of negative transfer limits
their application. Negative transfer among prediction models increases when the environment and working
conditions are changing continuously. To overcome the effect of negative transfer, we propose a novel deep
transfer learning method, coined deep boosted transfer learning, for wind turbine gearbox fault detection that
prevents negative transfer and only focuses on relevant information from the source machine. The proposed
method is an instance-based deep transfer learning method that updates the weights of the source and the
target machine training samples separately. The weights of different source training samples are gradually
decreased to reduce the impact on the final model. The proposed method is verified by the Case Western
Reserve University bearing and real field wind farm datasets. The results show that the proposed method
ignores negative transfer and achieves higher accuracy compared to standard deep learning and deep transfer
learning methods.
1. Introduction

In the past two decades the impact of global warming and climate
change has significantly influenced society and popularized the belief
that a transition to renewables as an alternative energy source to fossil
fuels is a must rather than a choice. As a consequence of this belief
and thanks to technological advances, renewable energy production
is growing increasingly fast with it being predicted to not slow down
anytime soon. Wind energy is one of these booming technologies, hav-
ing a 53% year-over-year growth in the global wind industry in 2020
despite the disrupted supply chain due to the global pandemic [1].
Apart from the fastest growth, renewable energy sources produce 15%
of world total energy consumption. To ensure sustained growth, the
production of renewable energy must be lucrative and reliable. Europe
has a significant interest in offshore wind farms because the ideal
on-shore sites are already populated [2]. It shares 75% of the entire
world offshore installation [3]. The remote and challenging location
of offshore wind farms increases the energy cost due to the extra
logistic cost for installation and maintenance [4], which is expected
to account for 30% of the total cost [5]. Moreover, they also face more
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environmental resistance from strong wind and waves [6,7] and thus
require more maintenance. Therefore, the maintenance cost should be
reduced to make offshore wind farms more expedient [8]. Cost can be
reduced by early fault detection based on available information and
then planning maintenance [9].

The recent advancements in deep learning (DL) achieve enormous
success in many fields [10], ranging from computer vision [11,12] to
speech recognition [13]. Therefore, it is also attracting researchers in
the field of fault detection [14–17]. Compared to other fields however,
fault detection faces a data imbalance problem where most available
data are considered healthy cases with only a very small minority being
data of fault cases [18]. In this study, a method was developed to
build fault detection models over an offshore wind farm by sharing
the learned knowledge among the wind turbines (WTs). Even though
the WTs are practically identical, their behavior differs from each other
due to different environments and working conditions (WCs) [19,20].
The recent progress in the Internet of Things (IoT) allows collecting
data from remote sources. The offshore wind farm operators can collect
different types of data from multiple sensors on higher frequencies.
vailable online 28 July 2022
960-1481/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.renene.2022.07.117
Received 10 December 2021; Received in revised form 10 May 2022; Accepted 25
 July 2022

http://www.elsevier.com/locate/renene
http://www.elsevier.com/locate/renene
mailto:faras.jamil@vub.be
mailto:timothy.verstraeten@vub.be
mailto:ann.nowe@vub.be
mailto:cedric.peeters@vub.be
mailto:jan.helsen@vub.be
https://doi.org/10.1016/j.renene.2022.07.117
https://doi.org/10.1016/j.renene.2022.07.117
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2022.07.117&domain=pdf


Renewable Energy 197 (2022) 331–341F. Jamil et al.
Fig. 1. Transfer Learning allows transferring knowledge on model or data level to
improve the learning of target task.

This research is focused on transfer learning (TL) that allow combining
data over multiple machines. To deal with large datasets and capture
the non-linear trends from different sensors, we need a method like
deep learning instead of using shallow machine learning models. TL
with DL is employed to transfer learned knowledge from extensive fault
history WT to the scarce fault history WT, which is not sufficient to
train traditional machine learning models. [20].

1.1. Transfer learning

The goal of TL is to improve the performance of learners by transfer-
ring knowledge from another related domain whereas, the traditional
machine learning models are based on the assumption that both the
training and testing data belong to the same data distribution. The
idea of TL is inspired by human learning behavior, where humans use
previous related knowledge while learning to solve new problems. For
example, a person learns to drive a car quickly if he knows how to ride a
bike as compared to learning from scratch without any road experience.
As shown in Fig. 1, TL enables machine learning models to transfer
learned knowledge from source domains to a target domain to improve
the performance of the target learning function, while both the source
and target domain have different data distributions [21]. Moreover, the
source domain data samples can be transferred to improve the learning
of the target model [22].

TL is getting popular, and it has been applied in many fields
including fault detection, but there are still some research gaps that
need to be filled out. We will only discuss deep transfer learning
(DTL) fault detection methods because this research is focused on DTL
methods. First, we will give an overview of already available DTL fault
detection methods, and then we will explain our proposed method
to fill the research gaps. DTL fault detection methods transfer the
learned knowledge about faults from a source machine to a target
machine. The currently available methods only use one machine as a
source. Lu et al. [23] propose domain adaption in fault diagnosis to
learn features combined from the source and the target domain, and
then a support vector machine classifier is used to predict faults. A
network-based DTL method was used to predict bearing inner race, ball,
and outer race faults in changing WCs [24]. Li et al. [25] proposed an
improved deep neural network (DNN) optimized by a particle swarm
optimization algorithm [26] and L2 regularization method to classify
gear pitting faults. Data labeling is a difficult task, and fault data is
imbalanced, however, it is also possible to transfer the knowledge to
a target without the labeled data. The maximum mean discrepancy
was used to minimize the difference between the source and the
target domains when the labeled data was not available for the target.
Along with the domain adaptation using maximum mean discrepancy,
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different DL models are used for condition recognition like sparse
autoencoder [27] or convolutional neural network (CNN) [28,29]. Yang
et al. [30] propose a feature-based CNN to extract transferable features
from the raw vibration signals. Then multi-layer domain adaptation is
added to reduce the distribution discrepancy of learned transferable
features, and pseudo label learning [31] is used to train from unlabeled
target domain samples. ImageNet [11] pre-trained network is used to
train a deep learning network for fault classification [32]. The sensors
data is converted to image data by plotting [33] or using wavelet
transformation [34] to obtain a time-frequency distribution to fine-tune
high-level network layers, and the low-level features are extracted from
the pre-trained Imagenet network. The research using the DTL fault
detection methods was validated on lab-generated data like the Case
Western Reserve University(CWRU) bearing dataset [35].

The current state-of-the-art methods do not focus on the aspect
that there are some dissimilarities between the source and the target
machines. The discrepancies referred to as negative transfer may hinder
the performance of the target model. In contrast with the negative
transfer, the valuable information from the source is positive transfer.
Therefore, we can improve the performance of the target machine DTL
fault detection model by only allowing positive transfer while ignoring
the negative transfer [36]. The negative transfer is a topic of interest
in the TL research community, but it is not addressed in fault detection
literature. It is possible to avoid the negative transfer by identifying the
relevant properties in the source machine.

The effect of negative transfer limits the applications of TL methods
where the difference between the source and the target domain is sub-
stantial. The influence of negative transfer increases with the amount
of data, i.e., when the source domain dataset becomes larger, the
performance of the target model decreases. Due to this limitation, the
current state-of-the-art methods only perform better when the number
of samples in the target domain is somewhat equal to the number of
samples in the source domain. The state-of-the-art TL fault detection
methods use 50% [28,30] and 37% [24] target domain training data
corresponding to the source domain data. The research of Zhang et al.
[24] also discusses the impact of negative transfer and demonstrate
that substantial differences between the source and the target machines
deteriorate the performance of the DTL model.

It is also possible to combine DL with TL to train non-linear high-
dimensional DTL models with a small dataset. DTL is classified into four
categories: instance-based DTL, network-based DTL, mapping-based
DTL, and adversarial-based DTL [22]. In order to address the negative
transfer problem, we propose, an instance-based DTL method.

1.1.1. Instance-based deep transfer learning
Instance-based DTL is a weight adjustment DTL approach for both

the source domain and the target domain instances. It is also pos-
sible to drop instances with negative influence instead of adjusting
their weights. An instance-based DTL method identifies the impact
of individual data samples on the model’s performance and adjusts
their weights accordingly. The weight adjustment of instances helps to
avoid negative transfer in the DTL model. It is different from the most
common network-based DTL in which only learned weights from the
source model are transferred to the target model, and then the model
is fine-tuned on target domain data samples. A modified version of
network-based DTL is used to identify and remove the instances that
contribute to the lower performance of the model [37,38]. However,
the source domain introduces negative transfer and dropping the target
domain instances can result in model overfitting. The proposed method
transfer the learned knowledge while ignoring the negative transfer.
Deep boosted transfer learning (DBTL) assigns weights to the instances
of both the source and the target domains based on their relevance.
The most related source domain data samples that improve the target
model get high weights, and the least relevant data samples get low
weights to avoid the negative transfer. In contrast, the weights of the

target domain samples that were wrongly predicted are increased to
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Fig. 2. Sketch map of instance-based DTL proposed method. The cross (x) and plus (+) signs respectively represent the source and the target domain instances. The size of
instances corresponds to their weights that contributes toward the training of the deep learning model.
allow the model to learn new features different from the source domain.
The sketch map of the instance-based DTL proposed method is shown
in Fig. 2.

The contributions of our research are summarized below.

1. We propose a novel method that significantly prevents nega-
tive transfer in DL models when transferring fault detection
knowledge from the source machine to the target machine.

2. The prediction accuracy of the proposed algorithm improves
when the source domain data samples are increased whilst the
target domain data is limited, it allows using all the available
source domain data.

3. The proposed method shows improvements even in transferring
fault detection knowledge between more dissimilar machines,
where a DTL method shows deterioration as compared to the
simple DL method.

2. Proposed transfer learning fault detection method

We need data from two different but related domains to train a
DL model using TL. A source domain that has more data samples
as compared to the target domain and the knowledge is transferred
from the source domain to the target domain. Our proposed method
is based on DL, and we use Instance-Based DTL to allow positive
transfer while ignoring negative transfer. We propose deep boosted
transfer learning (DBTL) that assigns weights to the source and the
target domain instances. The DL model is required to train on the
same dataset for multiple epochs. DBTL transfers knowledge from the
source to the target domain by updating the weights of the same
dataset’s samples between each epoch. It uses the TrAdaBoost [39]
weight updating mechanism to update the weights of the source and
target domain data samples. DBTL has a low computational complexity
compared to TrAdaBoost and allows for multi-class classification. It
combines the source and the target domain data samples to train a
DL model. Specifically, 𝑇𝑠 and 𝑇𝑡 are the training data that represent
the source and target domains respectively. The instance space is 𝑋 =
𝑋𝑠(1,… , 𝑚) ∪ 𝑋𝑡(1,… , 𝑛), and 𝑌 is a set of labels, 𝑚 and 𝑛 are the
sizes of 𝑇𝑠 and 𝑇𝑡 respectively. After each batch update of the neural
network, which we call an epoch, if a source training sample is predicted
wrong, it is the most dissimilar from the target domain and it can cause
negative transfer. Therefore, to reduce its impact in the subsequent
epochs, its weight is decreased by applying a fixed multiplier 𝛽 =
1∕(1 +

√

2 log 𝑛∕𝐸) where 𝐸 is the number of epochs [39]:

𝑤𝑖 = 𝑤𝑖𝛽|
ℎ(𝑥𝑖)−𝑦𝑖| (1)

where ℎ(𝑥𝑖) is the predicted label and 𝑦𝑖 is original label. In contrast,
the weights of the target domain samples that were wrongly predicted
are increased according to the weight updating mechanism of AdaBoost
[40]:

𝑤 = 𝑤 𝛽−|ℎ(𝑥𝑖)−𝑦𝑖| (2)
333

𝑖 𝑖 𝑒
The 𝛽𝑒 is calculated based on the error 𝜖𝑒 calculated during each epoch:

𝛽𝑒 =
𝜖𝑒

1 − 𝜖𝑒
(3)

where 𝜖𝑒 is calculated as follows:

𝜖𝑒 = 𝛴𝑛+𝑚
𝑖=𝑛+1

𝑤𝑒
𝑖 ⋅

|

|

ℎ𝑒(𝑥𝑖) − 𝑦𝑖||
𝛴𝑛+𝑚
𝑖=𝑛+1𝑤

𝑒
𝑖

(4)

Algorithm 1: DBTL
Input: Source 𝑇𝑠(1, ..., 𝑛) and Target 𝑇𝑡(1, ..., 𝑚) training dataset.

Maximum number of epochs 𝐸.
DNN Learning algorithm.

Initialize: Initial weight vector 𝑤1 = (𝑤1
1, ..., 𝑤

1
𝑛, 𝑤

1
𝑛+1, ..., 𝑤

1
𝑛+𝑚)

𝑤1
𝑖 =

1
𝑛
, 1 ≤ 𝑖 ≤ 𝑛

𝑤1
𝑖 =

1
𝑚
, 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚

𝛽 = 1
(1 +

√

2 log 𝑛∕𝐸)
for e = 1, ... , E do

𝑝𝑒 = 𝑤𝑒

𝛴𝑛+𝑚
𝑖=1 𝑤𝑒

𝑖
; /* Weights normalization */

Train the DNN on 𝑇𝑠 and 𝑇𝑡 with normalized weight
distribution 𝑝𝑒 and get the prediction on 𝑋 = (𝑇𝑠, 𝑇𝑡)
ℎ𝑒 ∶ 𝑋 → 𝑌

Calculate the error of ℎ𝑒 on 𝑇𝑡: 𝜖𝑒 = 𝛴𝑛
𝑖=1

𝑤𝑒
𝑖 ⋅

|

|

ℎ𝑒(𝑥𝑖) − 𝑦𝑖||
𝛴𝑛
𝑖=1𝑤

𝑒
𝑖

;

/* where ℎ𝑒(𝑥𝑖) is predicted label 𝑦𝑖 is original
class label */

𝛽𝑒 =
𝜖𝑒

1 − 𝜖𝑒
Update weights:
𝑤𝑒+1

𝑖 = 𝑤𝑒
𝑖 𝛽
|ℎ𝑒(𝑥𝑖)−𝑦𝑖|, 1 ≤ 𝑖 ≤ 𝑚

𝑤𝑒+1
𝑖 = 𝑤𝑒

𝑖 𝛽
−|ℎ𝑒(𝑥𝑖)−𝑦𝑖|
𝑒 , 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛

end
A DNN trained on the source and the target domain.

A formal description of the DBTL is given in algorithm 1. A com-
bined training dataset 𝑇 ⊆ {𝑋, 𝑌 } is used to train a DL model that
predicts new unseen samples from the target domain. The training data
𝑇 along with the number of epochs and a DL model is passed as an
input to the algorithm. It requires initial weights to start training, and
they can be initialized based on the problem. It is also possible to start
with equal weights for both the source and the target domains training
samples. However, we give high weights to the target domain training
samples over the source domain training samples. Moreover, the sample
weights can be initialized using prior knowledge about the source and
the target domains. After initializing the weights, the following steps
are repeated for each epoch:
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Table 1
The DNN network detail structure with the configuration of each layer with respective
output for the CWRU and real-world wind farm data.

Layer (type) CWRU Wind Farm

Configurations Output Configurations Output

Input [32, 1, 400] [8, 1, 40]
Conv1d-1 ch:16, k:3 [32, 16, 398] ch:16, k:3 [8, 16, 38]
BatchNorm1d-1 ch:16 [32, 16, 398] ch:16 [8, 16, 38]
ReLU-1 [32, 16, 398] [8, 16, 38]
MaxPool1d-1 k:8, s:4 [32, 16, 98] k:4, s:2 [8, 16, 18]
Dropout-1 d:0.5 [32, 16, 98] d:0.5 [8, 16, 18]
Conv1d-2 ch:32, k:3 [32, 32, 96] ch:32, k:3 [8, 32, 16]
BatchNorm1d-2 ch:32 [32, 32, 96] ch:32 [8, 32, 16]
ReLU-2 [32, 32, 96] [8, 32, 16]
MaxPool1d-2 k:8, s:4 [32, 32, 23] k:4, s:2 [8, 32, 7]
Dropout-2 d:0.5 [32, 32, 23] d:0.5 [8, 32, 7]
Conv1d-3 ch:64, k:3 [32, 64, 21] ch:64, k:3 [8, 64, 5]
BatchNorm1d-3 ch:64 [32, 64, 21] ch:64 [8, 64, 5]
ReLU-3 [32, 64, 21] [8, 64, 5]
MaxPool1d-3 k:4, s:2 [32, 64, 9] k:2, s:1 [8, 64, 4]
Dropout-3 d:0.5 [32, 64, 9] d:0.5 [8, 64, 4]
Conv1d-4 ch:128, k:3 [32, 128, 7] ch:128, k:3 [8, 128, 2]
BatchNorm1d-4 ch:128 [32, 128, 7] ch:128 [8, 128, 2]
ReLU-4 [32, 128, 7] [8, 128, 2]
MaxPool1d-4 k:4, s:2 [32, 128, 2] k:2, s:1 [8, 128, 1]
Dropout-4 d:0.5 [32, 128, 2] d:0.5 [8, 128, 1]
Flattening [32, 256] [8, 128]
Linear-1 n:256 [32, 128] n:128 [8, 64]
ReLU-5 [32, 128] [8, 64]
Dropout-5 d:0.5 [32, 128] d:0.5 [8, 64]
Linear-2 n:128 [32, 64] n:64 [8, 32]
ReLU-6 [32, 64] [8, 32]
Dropout-6 d:0.5 [32, 64] d:0.5 [8, 32]
Linear-3 n:64 [32, 6] n:32 [8, 2]
Output n:6 [32, 6] n:2 [8, 2]

• Normalize weights before passing to the DL model.
• Train the DL model on instance space 𝑇 sampled from both the

source and the target domains and then predict using the trained
model to identify wrongly predicted instances.

• Calculate the epoch error 𝜖𝑒 as given by Eq. (4) from the predicted
and actual labels of the target domain.

• Calculate 𝛽𝑒 from 𝜖𝑒 as given in Eq. (3)
• Update the instance space 𝑇 weights using Eqs. (1) and (2) for

the source and the target domains training samples.

The output is a DL model trained from the source and the target
omains that can predict new unseen samples from the target domain
hile ignoring negative transfer. Whilst DL works better when trained
n large datasets, this research focuses on achieving good results from
L models by using a small dataset using TL. The implementation of
BTL is similar to a simple DL model, but it requires calculating the
eights of the source and the target domain data samples after each
poch. The difference between the computation time of the DL and
he DBTL model is negligible if trained on the same number of data
amples. DBTL does not require a specific DL architecture, and it can
e adopted by any DL architecture. We use a simple feedforward CNN
ased architecture. The training samples are 1-dimensional therefore,
e use 1-dimensional convolutional (Conv1D) layers. The Conv1D-
ased DL models showed better results when compared with other DL
rchitectures on an open-source benchmark study [41].

The DNN structure used to train on the CWRU dataset for DL, DTL,
nd DBTL is shown in Fig. 3. We used the same Conv1D based DNN
tructure for wind farm data but due to different input and output sizes,
ome parameters are different. The detailed DNN structure for both the
WRU bearing dataset and real-world wind farm data is provided in
able 1.
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Table 2
DL Hyperparameters the batch size 32 and 08 was
used for the CWRU and wind farm datasets.

Hyperparameters Value

Epochs 100
Learning rate (LR) 0.001
LR decay 0.00001
Batch size 32 & 08

Table 3
CWRU bearing dataset source and target domains WCs for transfer learning. WC1 is
the source domain and WC2, WC3, and WC4 are the target domains.

WC1 WC2 WC3 WC4

Fault diameter (inches) 0.007 0.021 0.021 0.021
Motor speed (rpm) 1797 1797 1730 1730
Frequency (kHz) 48 48 48 12
Training samples 930/37226 375 375 375
Testing samples – 38109 144855 36021

3. Experiments

The proposed method is validated on the Case Western Reserve
University (CWRU) bearing dataset, which is a standard benchmark
in the context of fault detection [35]. Furthermore, the method is
also demonstrated on annotated failure data from 2 wind turbines in
the field. To compare the performance of the proposed method and
identify the effect of negative transfer we use a simple DL method
and network-based DTL method. The network-based DTL method is
inspired by the fault detection method in Zhang et al. [24], where
trained weights of the source Deep Neural Network (DNN) model are
passed to the target DNN model. The used DL method is the baseline
traditional machine learning method without TL and DNN trained on
target machine data without any prior knowledge. Furthermore, the
state-of-the-art TL methods were validated on datasets with a limited
number of source domain training samples because they were lacking
the ability to avoid the negative transfer. To validate DBTL on the
standard of the current state-of-the-art methods and demonstrate the
true potential of the proposed method we performed two types of
experiments with scarce and extensive source domain training samples
respectively.

The DNN hyperparameters are provided in Table 2. The same hy-
perparameters are used for all DL, DTL, and DBTL experiments except
the batch size. The batch size was 32 and 8 respectively for the CWRU
bearing dataset and the real-world wind farm dataset experiments.
Moreover, each experiment was performed for 10 different seed values,
and the results are calculated based on the mean and standard deviation
over 10 repeated experiments. The performance analysis of DL methods
is based on model prediction accuracy on testing data and training
loss [42].

4. CWRU bearing fault case study

4.1. CWRU experiment setup

The CWRU experiment equipment is shown in Fig. 4. A 2 hp
Reliance Electric motor and SKF bearings were used in the experiments.
To observe the faulty behavior in the bearings single point fault with 7
mils, 14 mils, and 21 mils (1 mil equals 0,001 inches) diameters were
introduced using electro-discharge machining. Accelerometers attached
on the 12 o’clock position at both the drive and fan end of the motor
housing using magnetic bases were used to collect the vibration data.
Table 3 depicts the detail of the CWRU dataset. We use WC1 as a
source domain and WC2, WC3, and WC4 are used as target domains
where the difference increases from WC2 to WC4. The source domain
WC1 (fault diameter 0.007 inches, motor speed 1797 rpm, and the

sample frequency 48 kHz) is distinct from WC2 based on the fault
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Fig. 3. DNN structure trained on the CWRU dataset for DL, DTL and DBTL, each Conv1D layer is followed by Batch normalization, relu activation function, max-pooling, and
dropout(50%) respectively. Moreover, each linear layer is also followed by an activation function relu and dropout(50%).
Fig. 4. CWRU experiment equipment [35].

diameter (0.021 inches). WC3 is different based on motor speed (1730
rpm) including fault diameter (0.021 inches), and WC4 is the same
as WC3 with a change in sample collection rate (sample frequency
12 kHz). The size of the training dataset is increased using the data
augmentation technique as it helps DL models to avoid overfitting [43].
A sliding window of length 400 with a step size of 20 [24] is used to
create multiple overlapping training samples from the available raw
signal as shown in Fig. 5. Two different experiments are performed.
The first experiment uses 930 training samples of the source domain,
while the second experiment uses all (37226) samples. However, the
target domain training samples are fixed at 375 for all experiments to
assess the impact of the size of source domain datasets.

4.2. CWRU bearing dataset results

Two experiments are performed using scarce and extensive source
domain samples on CWRU bearing dataset. The target domains (WC2,
WC3, WC4) variations increase with the source domain (WC1) from
WC2 to WC4, which increases the potential of having negative transfer.

4.2.1. Transferring from scarce source samples
The results of all three methods are shown in Fig. 6 when the knowl-

edge is transferred from scarce source samples. The detailed results for
all methods are provided in Table 4. The mean and standard deviation
335
Table 4
CWRU bearing dataset mean accuracy with the standard deviation of DL, DTL, and
DBTL methods when knowledge is transferred from a scarce source domain. The
improvement of DTL and DBTL from the base case DL method is given in parentheses
of the respective cell.

Model WC1 to WC2 WC1 to WC3 WC1 to WC4

DL 84.55 ± 0.81 82.35 ± 1.02 89.45 ± 1.03
DTL 87.66 ± 1.12 (3.11) 85.24 ± 0.96 (2.88) 90.29 ± 1.06 (0.85)
DBTL 89.71 ± 1.49 (5.16) 87.32 ± 1.88 (4.96) 94.48 ± 1.20 (5.04)

Table 5
CWRU bearing dataset mean accuracy with the standard deviation of DL, DTL, and
DBTL methods when knowledge is transferred from an extensive source domain. The
improvement and deterioration of DTL and DBTL from the base case DL method is
given in parentheses in respective cells.

Model WC1 to WC2 WC1 to WC3 WC1 to WC4

DL 84.55 ± 0.81 82.35 ± 1.02 89.45 ± 1.03
DTL 91.56 ± 0.44 (7.01) 83.12 ± 0.98 (0.77) 88.23 ± 1.06 (−1.22)
DBTL 96.64 ± 0.38 (12.09) 92.70 ± 0.43 (10.34) 99.24 ± 0.09 (9.79)

are calculated over 10 repeated experiments, and the improvement is
observed in DTL and DBTL from the base case DL. The DTL method
observes notable deterioration when the source domain is significantly
different from the target domain and shows better results when there
are more similarities between the source and the target domains. WC2,
which is most similar to WC1, observes a 3.11% improvement from the
base case DL, whereas WC3 and WC4 which are less similar, observe a
2.88% and 0.85% improvement with respect to the base case, respec-
tively. However, the DBTL shows more consistent results by reducing
the negative transfer from the source domain. The improvement from
the base case DL method is significant when comparing with the DTL
method. The improvement from the base case DL method for WC2,
WC3, and WC4 is 5.16%, 4.96%, and 5.04% respectively.

4.2.2. Transferring from extensive source samples
The following results help us understand the effect of negative

transfer and potential of DBTL. The results when transferring from
the extensive source samples are shown in Fig. 7, and the detailed
results are provided in Table 5. The DTL method improved from 3.11%
to 7.01% when the source domain training samples are increased
because the target domain (WC2) is most similar to the source domain.
However, it observes the deterioration due to negative transfer in the



Renewable Energy 197 (2022) 331–341F. Jamil et al.
Fig. 5. Data augmentation over raw vibration signal with frame length 400 and step size 20.
Fig. 6. The results of CWRU bearing dataset, when knowledge is transferred from the scarce source domain.
remaining two experiments. The DTL method observes deterioration
from 2.88% to 0.77% when more dissimilarities are introduced in the
target domain (WC3). Moreover, the most dissimilar target domain
(WC4) observes deterioration from +0.85% to −1.22% and also shows
deterioration from the base case DL method instead of showing any
improvement. In contrast, the DBTL observes significant improvements
in all cases from both the base case DL, DTL, and previous scarce
source sample experiments due to the ability to reduce negative transfer
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from the source domain while allowing positive transfer. The proposed
method, DBTL, improves 12.09% from base case DL when the target
domain (WC2) is most similar, which is also a significant improve-
ment from previous experiments by only increasing source domain
training samples. When transferring to more distinct target domains
WC3 and WC4, the DBTL observes a 10.34% and 9.79% improvement
with respect to the base case DL respectively, which is a significant
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Fig. 7. The results of CWRU bearing dataset, when knowledge transferring from the extensive source domain.
Table 6
CWRU bearing dataset mean accuracy with the standard deviation of DL, DTL, and DBTL methods when knowledge is transferred from WC1
to WC4 by gradually increasing source domain data samples. The improvement of DTL and DBTL from the base case DL method is given in
parentheses of the respective cell.

Model 930 1875 3750 7500 37226 (all)

DL 89.45 ± 1.03 89.45 ± 1.03 89.45 ± 1.03 89.45 ± 1.03 89.45 ± 1.03
DTL 90.29 ± 1.06 (0.85) 91.10 ± 1.20 (2.05) 90.33 ± 1.10 (1.28) 89.53 ± 1.54 (0.48) 88.23 ± 1.06 (−1.22)
DBTL 94.48 ± 1.20 (5.04) 96.60 ±0.51 (7.55) 97.65 ± 0.57 (8.60) 98.34 ± 0.20 (9.29) 99.24 ± 0.09 (9.79)
improvement compared to the previous experiments with a smaller
source dataset.

4.3. Sensitivity study

To further demonstrate the strength of the proposed method, a
sensitivity study is performed on the CWRU bearing dataset when
transferring from WC1 to WC4 to identify the performance of each
of the methods on gradually increasing source domain data samples.
WC4 is selected as a target domain for the sensitivity study because
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it is the most distinct and acquires the most negative influence from
the source domain WC1. The results when transferring from WC1
to WC4 by gradually increasing the source domain data samples are
shown in Fig. 8, and the detailed results are provided in Table 6. The
performance of the DTL method gradually declines after increasing the
number of source domain data samples due to the increase in negative
influence from the source domain. The accuracy drops from 91.10%
to 90.33% and 89.53% when the source domain data samples increase
from 1875 to 3750 and 7500 respectively. The DTL model observes

further deterioration from the base case DL method by 1.22 when
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Fig. 8. The sensitivity study results of CWRU bearing dataset, when transferring from
WC1 to WC4 by gradually increasing the data samples of the source domain.

Fig. 9. Offshore wind farm.

using all 37226 source domain data samples. On the other hand, the
proposed DBTL method consistently improves when the source domain
data samples increase. The accuracy improves from 94.48% to 99.24%
when the source domain data samples increase from 930 to 37226. This
sensitivity study thus clearly shows the limitations of the DTL method
by not avoiding negative transfer and not fully utilizing the available
source domain datasets. The proposed DBTL can circumvent negative
transfer and increases its accuracy when using the complete source
domain dataset. It has an improved model accuracy for both the scarce
and extensive source domain data samples when compared to DL and
DTL.

5. Wind farm case study

5.1. Real-world wind farm dataset

The proposed method is evaluated on an offshore wind farm’s
dataset as depicted in Fig. 9. The data was collected from the gearbox of
two WTs. However, instead of using raw vibration signals to train, the
DL models are trained using statistical features calculated from the raw
vibration signals because the raw signals are highly complex containing
high levels of process noise and multiple interfering vibration sources
whilst also being strongly non-stationary due to continuously changing
operating conditions. Moreover, each component has different behavior
that produces different signals, bearing signals are stochastic, whereas
gears or shafts signals are deterministic [44,45]. The statistical features
are based on the indicators detailed in Peeters et al. [46] research.

In the first step, the noise of other components was removed from
the raw vibration signal. In the following step, six statistical indica-
tors are calculated on the filtered signals: Root Mean Square, Crest
factor, Kurtosis, Moors kurtosis, Peak-to-Peak and Peak Energy Index.
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Table 7
Wind farm dataset overview.

WT1 WT2

Healthy period (days) 517 1069
Unhealthy period (days) 407 226
Sample Frequency (kHz) 20 20
Sensor Sensitivity (mV/g) 100 100
Source training samples 82/214 82
Target training samples 24 24
Testing samples 190 58

Table 8
Real-world wind farm dataset mean accuracy with the standard deviation
of DL, DTL, and DBTL methods when knowledge is transferred from a
scarce source domain. The improvement and deterioration of DTL and
DBTL from the base case DL method is given in parentheses in respective
cells.

Model WT1 to WT2 WT2 to WT1

DL 90.75 ± 0.23 89.66 ± 0.25
DTL 91.19 ± 0.23 (0.44) 89.52 ± 0.24 (−0.13)
DBTL 94.58 ± 0.16 (3.84) 92.67 ± 0.09 (3.02)

WT bearings data have been used for fault detection experiments, as
bearings are the most critical components. [47].

Both WTs observed an inner raceway generator bearing fault at the
drive-end side. The history of the WTs is provided in Table 7, and it
depicts that the unhealthy period is low. The healthy and unhealthy
classes are used for the wind farm dataset. It is different from the CWRU
bearing dataset that has six classes, five types of bearing faults and one
healthy behavior class. A balanced dataset of healthy and unhealthy
samples was selected for experiments. The raw vibration signal sam-
pling rate is 20 kHz. A single statistical feature is calculated from 10 s
of raw signal every 2 days, and therefore, there are approximately 150–
200 measurements for each WT in one year. A sliding window of length
40 and step size 1 is used to get training samples from the statistical
features by applying the data augmentation. A small window for the
wind farm dataset is used because the statistical features are aggregated
over multiple timestamps from the raw signal. The DL, DTL and DBTL
models are trained separately on each feature of a sensor, and then the
average is calculated over the features results. Two types of experiment
were performed on the wind farm dataset, firstly, using 82 and then
all (214) available training samples of the source domain. The target
domain training samples are fixed at 24 for all experiments.

5.2. Wind farm dataset results

The proposed method is validated on a real-world wind farm dataset
of two different WTs. The WTs are distinct based on different environ-
ments and WCs. However, the exact difference between the WTs is not
known, in contrast to the experiments on the CWRU bearing dataset.
This is particularly interesting, as in reality, it is generally unclear how
different WTs in fact are in terms of operating conditions and failure
modes. Therefore, it is necessary for transfer learning methods to be
able to deal with this uncertainty. The following results include both
the scarce and extensive source domain training samples experiments.
For this case, no sensitivity study is performed since the actual dif-
ference between wind turbines is unknown in a real-life wind farm
dataset.

5.2.1. Transferring from scarce source samples
In the first experiment, we consider a small training dataset for the

source of 82 samples (see Table 7). The results are shown in Fig. 10.
The detailed results and the improvement and deterioration is provided
in Table 8. The DTL observes a 0.44% improvement when transferring
from WT1 to WT2, and it deteriorates with 0.13% when transferring
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Fig. 10. The results of real-life wind farm dataset, when knowledge transferring from the scarce source domain.
Fig. 11. The results of real-life wind farm dataset, when knowledge transferring from the extensive source domain.
Table 9
Real-world wind farm dataset mean accuracy with the standard deviation
of DL, DTL, and DBTL methods when knowledge is transferred from a
extensive source domain. The improvement of DTL and DBTL from the
base case DL method is given in parentheses in respective cells.

Model WT1 to WT2

DL 90.69 ± 0.25
DTL 91.78 ± 0.15 (1.10)
DBTL 96.35 ± 0.10 (5.67)

from WT2 to WT1 from base case DL. The influence of negative transfer
is more notable in real-world data, which results in significant deteri-
oration even when transferring knowledge from scarce source domain
training samples. Nevertheless, the DBTL observes 3.84% and 3.02%
improvement in both cases when transferring from WT1 to WT2 and
WT2 to WT1 respectively.
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5.2.2. Transferring from extensive source samples
Due to the limitation of available data, only one experiment is per-

formed when transferring from WT1 to WT2, not vice versa. The results
when transferring from extensive source domain training samples are
shown in Fig. 11, and the detailed overview is provided in Table 9. Both
TL-based methods improve from the base case DL method and previous
experiments with scarce source domain training samples. The DTL and
DBTL respectively improve from 0.44% to 1.10% and 3.84% to 5.67%
by increasing the training samples of the source domain.

6. Discussion

The results of the experimental analysis indicate an excellent per-
formance of the proposed DBTL method. It outperforms conventional
deep learning and deep transfer learning on two different datasets, the
public dataset of the Case Western Reserve University (CWRU) and an
experimental real-world wind farm dataset. The current state-of-the-art
fault detection DTL methods are mostly validated on the CWRU dataset.
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The proposed method significantly reduces the impact of negative
transfer by leveraging the data over multiple similar machines. It makes
the DBTL more robust for real-world data. In general fault detection
methods are particularly developed for raw signals or the derived
features from raw signals. The implementation of DBTL is similar to
deep learning models and flexible to train on any dataset. The differ-
ence is that it requires updating data samples weight after each epoch
which makes the difference between the DL and DBTL computation
time negligible if trained on the same size dataset. Furthermore, it
can be adapted to any deep learning architecture. Therefore, DBTL is
validated on both the raw signals and the features. The ability of DBTL
to identify the data samples with negative transfer and reduce their
weights allows utilizing all available data from the source machine.
To exhibit this strength two different experiments are conducted on
each dataset with scarce and extensive source domain data samples.
The proposed method depicts better fault prediction accuracy over the
base case DL and the state-of-the-art DTL method for all experiments.
The DTL method deteriorates when transferring from a more distinctive
source machine with extensive data samples however, the DBTL depicts
enhancement in all cases by reducing negative transfer. DBTL observes
a 9.79% improvement from base case DL when transferring from WC1
to WC4 most distinctive source in CWRU bearing fault dataset where
the normal DTL deteriorates by 1.22%. Similarly for the wind farm
dataset when transferring from WT2 to WT1 the DBTL improves 3.02%,
whereas the DTL method deteriorates by 0.13% from base case DL. The
DBTL utilizes all the available data from the source by distributing the
weights from high to low for the most significant to least significant
data samples. It enables the proposed method to perform better in every
case by avoiding overfitting. The proposed method is not applicable
when transferring from already trained models as in the network-
based DTL method, however, if the data is available a new model
can be trained by combining the source and the target machine data.
Researchers identified the importance of TL in the fault detection
field, and the impact of negative transfer is addressed in this research.
However, transferring from multiple sources is still an interesting topic
for future research.

7. Conclusion

In this work, a new deep transfer learning method is proposed,
coined deep boosted transfer learning (DBTL), for automated fault
detection. It is a transfer learning approach for deep learning (DL) mod-
els to avoid negative transfer from the source domain. Furthermore,
it allows for transferring learned knowledge to more machines with
distinct behavior, thereby better utilizing all available source domain
data. The effectiveness of the proposed method is validated on two
different datasets. The CWRU bearing dataset and a real-life wind
farm dataset. Moreover, two types of experiments on the CWRU and
the wind farm datasets are performed by using scarce and extensive
source domain training samples. The results show that the proposed
method exhibit significant improvements for each test case compared
to the base case DL and deep transfer learning (DTL) methods. In some
experiments, the DTL method deteriorates from the simple DL method
when the source domain is too different from the target domain, which
the DBTL did not suffer from.
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