

Euphresco

Final Report

Project title (Acronym)

Rapid identification of plant-health related bacteria by MALDI-TOF mass spectrometry (MALD-ID)

Project duration:

Start date:	2019-02-01
End date:	2022-03-31

Contents

1.	Research consortium partners	3
2.	Short project report	4
2.1.	Executive summary	4
2.2.	Project aims	4
2.3.	Description of the main activities	5
2.4.	Main results	6
2.5.	Conclusions and recommendations to policy makers	8
2.6.	Benefits from trans-national cooperation	9
3.	Publications	LO
4.	Open Euphresco data	11

1. Research consortium partners

Coordinator – Par	tner 1								
Organisation									
Name of Contact (incl. Title)	Dr Perrine Portier Gender:								
Postal Address	42 rue Georges Morel, CS60057, 49070 Beaucouzé Cedex,	42 rue Georges Morel, CS60057, 49070 Beaucouzé Cedex, France							
E-mail	perrine.portier@inrae.fr								
Phone	+33 2 41 22 57 19								
Partner 2	1								
Organisation	Netherlands Institute for Vectors, Invasive plants and Plant h	nealth (NIVI	P)						
Name of Contact (incl. Title)	Jeroen van der Bilt	Gender:	М						
Postal Address	Postbus 9102, 6700 HC, Wageningen, The Netherlands								
E-mail	j.l.j.vandebilt@nvwa.nl								
Phone	+31 (0) 88 223 03 12								
Partner 3									
Organisation	Julius Kühn-Institut (JKI)								
Name of Contact (incl. Title)	Dr Annette Wensing	Gender:	F						
Postal Address	Schwabenheimer Str. 101 69221 Dossenheim								
E-mail	annette.wensing@julius-kuehn.de								
Phone	+49 (0)6221 868 05 10								

Additional expert							
Organisation	urich University of Applied Sciences, Switzerland (ZHAW)						
Name of Contact (incl. Title)	Dr Joël F. Pothier	Gender:	Μ				
Postal Address	Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland						
E-mail	joel.pothier@zhaw.ch						
Phone	+41 58 934 53 21						

2. Short project report

2.1. Executive summary

The Matrix Assisted Laser Desorption Ionization - Time of Flight (MALDI-TOF) mass spectrometry is an analytical method that can be used as a diagnostic tool to identify microorganisms. The method is rapid (less than 1h from sample preparation to results) and accurate and it is widely used in other fields, such as human health and animal health.

Mass spectrometry allows to obtain a unique molecular (mainly proteins) fingerprint of the sample analyzed, the mass spectrum, that can be used to characterize and eventually identify the sample through comparison with reference spectra of known samples. The quality and completeness of the reference databases is crucial for an accurate and reliable identification. The commercial reference databases available to support MALDI-TOF mass spectrometry identification are not specialized for plant-pathogenic bacteria. This precludes the use of MALDI-TOF mass spectrometry for the identification of plant-pathogenic bacteria.

In this framework, the aim of the Euphresco project 2018-A-271 'Rapid identification of planthealth related bacteria by MALDI-TOF mass spectrometry (MALD-ID)' was i) to build a reference database that can support the identification of selected plant-pathogenic bacterial genera and ii) to evaluate the possibility to use the MALDI-TOF mass spectrometry method as a diagnostic tool. The project gathered three partners from JKI (Germany), NIVIP (The Netherlands), and INRAE (France). The project allowed to produce 117 reference spectra for the identification of bacterial strains from eight genera: *Clavibacter, Curtobacterium, Erwinia, Pantoea, Pectobacterium, Pseudomonas, Ralstonia, and Xylophilus.* These strains were chosen to represent the known diversity of each genus or to better distinguish between regulated and not regulated in a same genus. These reference spectra, compatible with the Bruker System, are freely available from a public repository on the following url: <u>https://doi.org/10.57745/70JNOO</u>.The project also allowed to validate the use of MALDI-TOF mass spectrometry for the analysis of more strains from these genera and to determine the accuracy and reliability of the tests.

The project showed that MALDI-TOF mass spectrometry allows to correctly identify plantpathogenic bacterial strains at the genus level in all cases. For *Erwinia*, *Pantoea*, *Ralstonia*, and *Xylophilus* MALDI-TOF mass spectrometry is even able to correctly identify strains at the species level. However, the method is unable to discriminate accurately at the intra-specific level in all cases. In plant-pathology, strain identification should often be performed at intraspecific level. Consequently, MALDI-TOF mass spectrometry alone is not sufficient for a complete diagnosis. However, MALDI-TOF mass spectrometry can reliably identify the genus of the isolates and can be used as a rapid first screening that can help to further choose the most relevant test for a precise identification.

2.2. Project aims

MALDI-TOF (Matrix Assisted Laser Desorption Ionisation - Time of Flight) mass spectrometry (MS) has become a high-throughput and rapid method for routine microorganism identification. This method is based on the ionization of intracellular proteins from an isolate and separation of the ions according to their mass-to-charge ratio (m/z). This results in a unique fingerprint of the isolate named mass spectrum. This mass spectrum is then compared with reference spectra, which permits to identify the isolate.

A crucial point of the mass spectrometry-based identification lies on the quality and completeness of databases of reference spectra. MALDI-TOF mass spectrometry is now widely used for diagnostics in human medicine. For this reason, the databases provided with

the MALDI-TOF devices by the two main providers (Bruker and BioMérieux) are clinicallyoriented and the spectra of plant-pathogenic bacteria are underrepresented. Thus, the possibility to obtain an accurate identification of plant-pathogenic bacteria is impaired.

However, MALDI-TOF mass spectrometry has been proved to be useful for the identification of plant pathogenic bacteria. For example, the method has sufficient discriminatory power to allow to distinguish members of the genus *Clavibacter* from the related *Curtobacterium* genus, and to distinguish the different subspecies (now elevated as separate species) of *Clavibacter michiganensis* from each other (Zaluga *et al.* 2011). Thus, the development of in-house reference spectra allows to overcome the limitations of the commercial databases.

The objectives of the MALD-ID project were, firstly to produce in-house reference mass spectra of plant-pathogenic bacteria to supplement the commercial databases. And secondly, to evaluate the use of MALDI-TOF mass spectrometry for the diagnosis of plant-pathogenic bacteria. The project gathered partners from INRAE (France), JKI (Germany), NIVIP (The Netherlands) and ZHAW (Switzerland).

The project focused on a limited list of plant-pathogenic bacteria taxa (*Clavibacter*, *Curtobacterium*, *Erwinia*, *Pantoea*, *Pseudomonas syringae*, *Pectobacterium*, *Ralstonia* and *Xylophilus*) to which the partners had access to relevant biological resources. Then each partner worked to produce reference spectra for one or several taxa, following its expertise. Finally, some partners exchanged spectra to test the feasibility of data exchange.

2.3. Description of the main activities

2.3.1. Choice of technical solution for MALDI-TOF

Two main companies are providers of MALDI-TOF mass spectrometers: Bruker and BioMéerieux. The spectra produced by the two machines are not completely equivalent, and the softwares and procedures are also different. This makes the two only commercially available mass spectrometers on the market incompatible with each other. As all active partners had access to a Bruker mass spectrometer, the project activities were conducted on this machine. This solution allows to build additional databases of reference spectra to complete the commercial database provided with the mass spectrometer.

2.3.2. Biological resources

Considering the resources of the project, only a fraction of the plant-pathogenic bacterial genera could be assessed over the course of the project, a selection was made. Partner INRAE focussed on *Curtobacterium, Pantoea, Pectobacterium, Pseudomonas* spp. (syringae lineage), and *Xylophilus*. Partner NIVIP focussed on *Clavibacter* and *Ralstonia*. Partner JKI focussed on *Erwinia*.

2.3.3. Standardization of culture procedure

The MALDI-TOF mass spectrometer gives information on the proteins produced by the bacteria. Thus, different cell culturing methods can influence the outcomes of the mass spectrometry analysis because media and cell culture conditions influence the metabolic status of cells, including the expression of proteins.

For this reason, the partners decided to standardize the cell culturing protocols in order to ensure that results are repeatable and reproducible (see § 2.4.1).

2.3.4. Sample preparation

For sample preparation, two methods are available. The most streamlined approach consists in transferring the bacterial ooze from a Petri dish directly onto the MALDI-TOF MS plate. Direct

transfer is suitable for most plant pathogenic bacteria, especially Gram-negative bacteria. The bacterial ooze is then overlaid with a saturated solution of a matrix, generally α -cyano-4-hydroxycinnamic acid (HCCA), and the solvent is allowed to evaporate prior to the test. However, for some taxa (*i.e.* Gram-positive bacteria) it is necessary to disrupt the bacterial cell wall to release the proteins before the matrix is applied and the test performed. In this case, formic acid is added to the bacterial ooze on the MALDI-TOF MS plate; after the addition of the matrix and solvent evaporation, the test is performed. This method is the recommended method for the production of reference spectra (Main Spectra Profiles or MSP). Moreover, it can be used for biosecurity reasons (regulated organisms moved between facilities) or for storage. INRAE used the alternative method, the other partners used the direct transfer method for routine analysis. For reference spectra production, the formic-acid or the alternative method were used.

2.3.5. Production of reference spectra

For each genus, the partners determined the most relevant strains for reference spectra production. These strains were chosen either to represent the diversity of the considered taxa, or because they displayed specific features, such as representative of a particular subgroup or displaying specific antibiotic resistance. In the end, the project permitted the production of 117 reference spectra.

2.3.6. Exchange of reference spectra between partners

INRAE and NIVIP tried to exchange a few of reference spectra. This worked well, the new spectra were integrated into their respective in-house databases and could be used along with the commercial database or along with the other in-house databases for analysis purposes.

2.3.7. Validation of MALDI-TOF mass spectrometry for bacterial identification

To validate the use of MALDI-TOF mass spectrometry for the identification of plant pathogenic bacteria, a large panel of strains representing the diversity of the considered taxa, or belonging to other taxa more or less closely related to the considered taxa were analysed. The results for the identification of these known strains were compared with the expected results. This allowed to assess the diagnostic specificity of the tests.

2.3.8. EPPO standard

An EPPO Standard on the use of the MALDI-TOF mass spectrometry for the identification of plant pathogenic bacteria is being written following this project.

2.4. Main results

2.4.1. Standardized procedures for strain cultivation

Table 1: Recommended media, growing temperature and culturing time for bacteria to be analyed with MALDI-TOF mass spectrometry to ensure the best fit with the provided reference spectra.

Bacteria	Growth conditions						
	Medium	MediaDive	Time	Temperature			
	Medium	reference *	(days)	(°C)			
Clavibacter sepedonicus	avibacter sepedonicus Yeast Peptone Glucose Agar (YPGA)		2-5	21			

<i>Clavibacter</i> <i>michiganensis</i> subsp. <i>michiganensis</i>	Nutrient Agar (NA)	MediaDive 1	2-4	28
Curtobacterium spp.	Tryptone Soy Agar (TSA)	MediaDive 535	2	25
Erwinia amylovora	Nutrient Agar (NA) or Lysogeny broth (LB)	MediaDive 1 or MediaDive 381	1-2	28
<i>Pantoea</i> spp.	Tryptone Soy Agar 10%	MediaDive 535	2	25
<i>Pseudomonas</i> spp. (<i>syringae</i> lineage)	King's B	In progress	1	25
Pectobacterium spp.	King's B	In progress	1	25
Ralstonia	Yeast Peptone Glucose Agar (YPGA)	MediaDive 1015	2-3	28
<i>Xylophilus</i> spp.	Yeast Peptone Glucose Agar (YPGA)	MediaDive 1015	4	25

*: The MediaDive database is accessible here: https://mediadive.dsmz.de/Data acquisition

2.4.2. Data acquisition

The reference spectra were obtained for 117 strains (*Curtobacterium* spp.: 14, *Clavibacter* spp.: 5, *Erwinia* spp.: 24, *Pantoea* spp.: 12, *Pectobacterium* spp.: 25, *Pseudomonas* spp.: 29, *Ralstonia* spp.: 6, *Xylophilus ampelinus*: 2) (complete list in Annexe 1) with these, a significative number of other strains were analyzed to check the reliability of the technique used as identification method of plant-pathogenic bacteria. At INRAE, 462 known strains were analyzed in total, usually done in duplicate or triplicate.

2.4.3. Validation of MALDI-TOF mass spectrometry for bacterial identification

For each genus, the partners evaluated the ability of the method to correctly identify the strains. It was noted that for a reliable identification, the database should cover the whole known diversity of the considered taxa, including strains representatives of all the different subgroups if such subgroups exist. When the database complies to this criterion, the identification is reliable and correct in all studied cases. However, the limits of a reliable identification varied genera from genera. In some cases, the test can discriminate effectively between species, but for some other genera closely related species are not differentiated. In any case, the method is not able to discriminate at pathovars or subspecies level.

Table 2: Validation of MALDI-TOF MS-based identification at the genus, genus sub-division, species and intra-specific levels. The discrimination limit of the test depends on the considered genus.

	Genus ID	Genomic group ID	Species ID	Subspecies/ pathovar ID
Clavibacter	Yes	na		No
Curtobacterium	Yes	na	*	No
Erwinia	Yes	na	Yes	na

Pantoea	Yes	na	Yes	No
Pectobacterium	Yes	na	No	na
<i>Pseudomonas</i> (<i>syringae</i> lineage)	Yes	No	No	No
Ralstonia	Yes	No	Yes	No
Xylophilus	Yes	na	Yes	na

Na: not applicable.

*: The species *Curtobacterium flaccumfaciens* corresponds to a species complex (Goncalvez *et al.*, 2019; Osdaghi *et al.*, 2022). The discrimination by MALDI-TOF MS of these not-yet described species is currently not possible.

2.4.4. Reference spectra

All 117 reference spectra generated in the framework of this project had been exported from the MALDI-TOF systems they were produced on. They have been gathered, and they have been placed on the public archive of the French ministry for research and available at the following url: <u>https://doi.org/10.57745/70JNOO</u>. The reference spectra produced in the framework of the project are only compatible with the Bruker system. These data can be used as reference, to complete the commercial database, to help the identification of plant-pathogenic bacteria.

2.5. Conclusions and recommendations to policy makers

The aims of the MALD-ID project were to i) build a database of reference spectra for reliable identification of plant-pathogenic bacteria and to ii) validate the use of MALDI-TOF MS as a diagnostic method in plant-pathology.

During the MALD-ID project, 117 reference spectra were obtained using the Bruker mass spectrometer. The number of reference spectra proved to be sufficient, when used alongside the commercial database provided by Bruker, to reliably identify bacteria from the eight studied taxa (*Clavibacter, Curtobacterium, Erwinia, Pantoea, Pectobacterium, Pseudomonas* spp. (*syringae* lineage), *Ralstonia* and *Xylophilus*). However, the efficiency of the method to identify strains differs from genera to genera. MALDI-TOF MS is reliable to identify *Pantoea, Ralstonia* and *Xylophilus* at species level, but it is not precise enough to discriminate between closely related species for *Curtobacterium, Pectobacterium* and *Pseudomonas*. For these three latter genera, the identification at the genus level is correct in any case.

A correct diagnosis in plant-pathology is crucial to implement the correct phytosanitary measures. Often, the relevant taxonomy level for the diagnosis is at the intra-specific level. An example is the *Pantoeae stewartii* subsp. *stewartii*, that is classified as quarantine pest while but *Pantoeae stewartii* subsp. *indologenes* is not. An incorrect diagnostic at this precise taxonomic level can have great consequences for growers and importers. The MALDI-TOF MS allows to correctly identify *Pantoea stewartii* at species level but will not allow to discriminate between strains of the two subspecies.

The MALDI-TOF MS method allows to reliably correctly assign the genus of a given isolate, or even the species in some cases. The method is comparable to the sequencing of 16S rRNA gene, which allows to define the genus, and sometimes the species, of given isolates. The advantage of the MALDI-TOF technique over 16S rRNA gene sequencing is that it is much more rapid, as results can be obtained in about 1 hour. Thus, MALDI-TOF MS can be a powerful tool to be used as a screening method, By allowing to determine the genus of the bacterium, and to help choose the most relevant test for the identification of the pathogen at a

lower level. MALDI-TOF MS can also be used as a screening tool to identify bacterial isolates that are potentially plant-pathogenic.

Therefore, the partners of the MALD-ID project recommend that MALDI-TOF MS is used as a first step in the process of diagnostic. It is recommended to use the reference spectra produced in the framework of this project, or other reference spectra obtained from relevant strains to complete the commercial database provided by the manufacturers.

2.6. Benefits from trans-national cooperation

The project allowed to develop useful data based on strains available in the laboratories of the project partners. This greatly enhanced the diversity of strains, thus allowing a better characterization.

Beyond the data generated in the framework of the project, the collaboration allowed the three partners to enhance their ability to use MALDI-TOF MS for the diagnosis of bacteria. Two training sessions were organized at INRAE, which allowed to train two students. It is hoped that the collaboration started during this project will continue in the future.

References cited in this report

- Gonçalves RM, Balbi-Peña MI, Soman JM, Maringoni AC, Taghouti G, Fischer-Le Saux M, Portier P (2019). Genetic diversity of *Curtobacterium flaccumfaciens* revealed by multilocus sequence analysis. *Eur J Plant Pathol* 154: 189-202
- Osdaghi E, Taghouti G, Dutrieux C, Taghavi SM, Fazliarab A, Briand M, Le Saux MF, Portier P, Jacques MA (2022). Whole Genome Resources of 17 *Curtobacterium flaccumfaciens* Strains Including Pathotypes of *C. flaccumfaciens* pv. betae, *C. flaccumfaciens* pv. oortii, and *C. flaccumfaciens* pv. poinsettiae. *Mol Plant Microbe Interact* **35**(4): 352-356
- Zaluga J, Heylen K, Van Hoorde K, Hoste B, Van Vaerenbergh J, Maes M, De Vos P (2011). GyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic *Clavibacter. Syst Appl Microbiol.* 34(6): 400-7

3. Publications

3.1. Article(s) for publication in the EPPO Bulletin

None.

3.2. Article for publication in the EPPO Reporting Service

None.

3.3. Article(s) for publication in other journals

None.

3.4. Other mean of communication

The project activities and results were/will be presented as follows:

- Cécile Dutrieux, Géraldine Taghouti, Audrey Lathus, Claire Darrigo, Perrine Portier. MALDI-TOF technique for identification of plant-pathogenic bacteria: Building of the reference database and evaluation MALD-ID Project. Oral presentation. ICPPB, 14th International Conference on Plant Pathogenic Bacteria. Assisi (Italy) 3-8 July, 2022
- Cécile Dutrieux, Géraldine Taghouti, Audrey Lathus, Léa Vannier, Tatiana Amelon, Perrine Portier. MALDI-TOF technique for identification of plant-pathogenic bacteria: Building of the reference database and evaluation of the method. Poster. IHC, 31st International Horticulture Congress. Angers (France) 14-20 August, 2022
- Cécile Dutrieux, Géraldine Taghouti, Audrey Lathus, Claire Darrigo, Perrine Portier. Mass spectrometry applied to identification of plant-associated bacteria: Matrix Assisted Laser Desorption Ionisation Time Of Flight. Poster. 16° rencontres plantes-bactéries. Aussois (France) 20-24 March, 2023

4. Open Euphresco data

The reference spectra obtained during this project have been deposited on the public repository of the French Ministry for Research 'data.gouv.fr' and are available at the following url: <u>https://doi.org/10.57745/70JNOO</u>.

Annex 1. List of the strains used for the production of reference spectra

Pantoea spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
CFBP 2239			Pantoea agglomerans		raindeer	1983	USA	
	Gardan L.	PD 128, NCPPB	Pantoea agglomerans		Gypsophila			
CFBP 4341	11141	3091	py gysophilae	Pathotype	paniculata	1978	Netherlands	
		ICMP 6772,	Pantoea agglomerans		Wisteria			
CFBP 3615		NCPPB 2519	pv. miletiae	Pathotype	floribunda	1976	Japan	
	R-27856, PPPPB						South	
CFBP 8207	BD390	LMG 24248	Pantoea alii	Туре	Onion	2004	Africa	
		ICMP 1850,	Pantoea ananatis pv.					
CFBP 3612		NCPPB 1846	ananatis	Туре	Ananas comosus	1965	Brazil	
		ICMP 351,						
		NCPPB 800,	Pantoea ananatis pv.					
CFBP 3171		ATCC 19321	uredovora	Pathotype	Puccinia graminis	1954	USA	
CFBP 6627		CECT 5260, ATCC 700886	Pantoea cedenensis	Туре	Olea europaea	1998	Spain	
		ICMP 1591,						
		NCPPB 3004,						
		ATCC 29267,						
CFBP 3613		LMG 2657	Pantoea cypripedii	Туре	Cypripedium sp.	<1995	USA	
CFBP 2238			Pantoea sp		human	1983	USA	
CFBP 6916		IBSBF 1825	Pantoea sp.		<i>Eucalyptus</i> hib.	2002	Brazil	
	ARC 212, Ayome 4,							
CFBP 8383	Blitta 8-2		Pantoea sp.		Oryza sativa L.	2013	Тодо	

	ICMP 77, LMG						
	2632, NCPPB	Pantoea stewartii subsp					
CFBP 3614	2280	indologenes	Туре	Setaria italica	<1995	India	

Pectobacterium spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
					Solanum			
			Pectobacterium		Tuberosum			
CFBP 7370	C331		actinidiae		(Diamant)	2004	Syria	
	A212-S19-		Pectobacterium		environment/fres			
CFBP 8637	A16	NCPPB 4640	aquaticum	Туре	h water	2016	France	
		LMG2417,						
		NCPPB929,						
		PDDCC1522,						
		Dye EC4,	Pectobacterium		Zantedeschia		South	
CFBP 8168		Hayward B493	aroidearum	Туре	aethiopica	1959	Africa	
		LMG2417,						
		NCPPB929,						
		PDDCC1522,						
	Kelman A.	Dye EC4,	Pectobacterium		Solanum		United	
CFBP 1526	SR55	Hayward B493	atrosepticum	Туре	tuberosum	1957	Kingdom	
		NCPPB 2795,						
		ATCC 43762,						
		CIP 105193,						
		ICMP 4226,						
	Vitanza B.	LMG 2466,	Pectobacterium		Beta vulgaris cv.			
CFBP 1539	Ur7	CFBP 2122	betavasculorum	Туре	Saccharata	1972	USA	
	Duarte							
	BPBB_212,				Solanum			
	De Boer S.H.		Pectobacterium		tuberosum cv.			
CFBP 6617	Ecbr_212	IBSBF 1692	brasiliense	Туре	Elvira	1999	Brazil	

				1			1 1	
		NCPPB 3849,						
		ATCC 49481,						
		ICMP 11136,	Pectobacterium	-	Carnegiea	1011		
CFBP 3628		DSM 21821	cacticida	Туре	gigantea	1944	USA	
		NCPPB 312,						
		ATCC 15713,						
		CIP 82.83, DSM						
		30168, HAMBI						
		1429, ICMP						
		5702, LMG	Pectobacterium		Solanum			
CFBP 2046		2404	carotovorum	Туре	tuberosum	1952	Danemark	
CFBP 8629	M022	LMG30744	Pectobacterium fontis	Туре	fresh water	2013	Malaysia	
		LMG 5863, CIP						
		103762, ICMP						
		11533, NCPPB	Pectobacterium					
CFBP 1878		3839	odoriferum	Туре	Cichorium intybus	1978	France	
	RNS 08-42-		Pectobacterium		Solanum			
CFBP 8475	1A	LMG29774	parmentieri	Туре	tuberosum	2008	France	
					Solanum			
CFBP 8630	s0421		Pectobacterium parvum	Туре	tuberosum	2004	Finland	
					Solanum			
CFBP 8603	NIBIO1006	NCPPB 4611	Pectobacterium polaris	Туре	tuberosum	2010	Norway	
			Pectobacterium		Solanum			
CFBP 8604	SS95	LMG30622	punjabense	Туре	tuberosum	2017	Pakistan	
		NCPPB 3387,	Pectobacterium		Solanum			
CFBP 6051	De Boer 21	ICMP 9168	versatile	Туре	tuberosum	<2001	Netherlands	
		ICMP 9121,						
		ATCC 43316,						
		CIP 105194,						
		DSM 18074,	Pectobacterium					
CFBP 3304		NCPPB 3701	wasabiae	Туре	Eutrema wasabi	1985	Japan	

			Pectobacterium					
CFBP 8805	A477-S1-J17	LMG 32181	quasiaquaticum	Туре	Fresh water	2017	France	
	Samson R.							
	SL145-		Pectobacterium		Solanum			
CFBP 5834	CIP009	CIP 009	peruviense		tuberosum	1977	Peru	
	Lemattre M.		Pectobacterium					
CFBP 1357	7'3		zantedeschiae		Zantedeschia sp.	1964	France	
					Solanum			
					tuberosum cv.			Pectobacterium "sp
CFBP 5380			Pectobacterium sp		Diamant	1997	Netherlands	14"
		NCPPB 3413,			Solanum			
CFBP 6070	De Boer 380	ICMP 9195	Pectobacterium sp		tuberosum	<2001	USA	
	A143-S20-							
CFBP 8736	M16		Pectobacterium sp		Fresh water	2016	France	
	Burkholder	ATCC 12286,			Nicotiana			
CFBP 797	W.H. SR23	NCPPB 550	Pectobacterium sp		tabacum	1951	USA	
	A644-MFV-							
CFBP 8739	A17		Pectobacterium sp		Fresh water	2017	France	
	Gardan L.							
	11941,							
	GRISP							
	93.2608,							
	Dufeol D.							
	LNPV-UB						Martinique	
CFBP 6588	3.24		Pectobacterium sp		<i>Musa</i> sp.	1993	(France)	

Pseudomonas spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
	Scortini M.	ICMP 17001,	Pseudomonas syringae					Pseudomonas
CFBP 7149	592	NCPPB 4273	pv. coryli	Pathotype	Corylus avellana	1995	Italy	cannabina

					Broussonetia			
		ICMP 13650,			<i>kazinoki</i> Sieb.X			
		MAAF 810036,	Pseudomonas syringae		Broussonetia			Pseudmonas
CFBP 5140		CFBP 5525	pv. Broussonetiae	Pathotype	<i>papyrifa</i> Vent.	1980	Japan	amygdali
		NCPPB 1873,						
	Robbs C.F.	ICMP 2855,	Pseudomonas					Pseudomonas
CFBP 3204	ENA378	DSM 21109	caricapapayae	Туре	Carica papaya	1966	Brazil	caricapapayae
		NCPPB 1437,						
		CIP 106140,	Pseudomonas					
	Klement Z.	ICMP 2823,	cannabina pv					Pseudomonas
CFBP 2341	L01	LMG 5096	cannabina	Туре	Cannabis sativa	1957	Hungary	cannabina
		NCPPB 4619,						
		CECT 8095,	Pseudomonas					Pseudomonas
CFBP 8664	LLPA 221	LMG 26898	asturiensis	Туре	Glycine max	2001	Spain	asturiensis
		NCPPB 2995,						
		ATCC 19322,						
		ICMP 5795,	Pseudomonas syringae		Prunus			Pseudomonas
CFBP 2351		LMG 5075	pv. morsprunorum	Pathotype	domestica	<1984	USA	avellanae
		ICMP 7118,						
		LMG 5668,						
		ATCC 33544,	Pseudomonas syringae					Pseudmonas
CFBP 2897	Ogimi C. MR1	NCPPB 3143	pv. myricae	Pathotype	Myrica rubra	1978	Japan	amygdali
	Psallidas P.G.							
	F11, Gardan	NCPPB 3487,						
	L. 10963,	BPIC 631, ICMP	Pseudomonas					Pseudomonas
CFBP 4060	11144	9746	avellanae	Туре	Corylus avellana	1976	Greece	avellanae
			Pseudomonas syringae		Cunninghamia			Pseudmonas
CFBP 4218		ICMP 11894	pv. cunninghamiae	Pathotype	lanceolata	<1997	China	amygdali
		NCPPB 1106,						
	Lelliott R.A.	ICMP 2844,	Pseudomonas syringae		Lycopersicon		United	Pseudomonas
CFBP 2212	T44	LMG 5093	pv. tomato	Pathotype	esculentum	1960	Kingdom	avellanae
		NCPPB 225,	Pseudomonas syringae		Dysoxylum		New	Pseudomonas
CFBP 2356	Dye D.W. Py5	ATCC 19863,	pv. Dysoxyli	Pathotype	spectabile	1949	Zealand	syringae

		ICMP 545, LMG						
		5062;						
	Neto J.R.		Pseudomonas syringae					"Pseudomonas
CFBP 3228	IBBF160	ICMP 5809	pv. oryzae		Oryza sativa	1983	Japan	coronafaciens"
		NCPPB 600,						
		ICMP 3113,	Pseudomonas syringae				United	"Pseudomonas
CFBP 2216		LMG 5060	pv. coronafaciens	Pathotype	Avena sativa	1958	Kingdom	coronafaciens"
		NCPPB 943,						
		ATCC 10857,						
		ICMP 5707,						Pseudomonas
CFBP 2101		LMG 2162	Pseudomonas cichorii	Туре	Cichorium endivia	1929		cichorii
		NCPPB 635,						
		ATCC 13223,						
		CIP 106699,						
		DSM 11124,						
		ICMP 2848,	Pseudomonas					Pseudomonas
CFBP 2107		LMG 2352	viridiflava	Туре	Phaseolus sp.	1927	Switzerland	viridiflava
			Pseudomonas syringae					Pseudmonas
CFBP 8878		ICMP7840	pv. photiniae	Pathotype	Photinia glabra	1976	Japan	amygdali
		NCPPB 1427,						
	Klement Z.	ICMP 2835,	Pseudomonas syringae		Nicotiana			Pseudmonas
CFBP 2106	H59	LMG 5393	pv. tabaci	Pathotype	tabacum	1959	Hungary	amygdali
			Pseudomonas syringae					Pseudmonas
CFBP 4217		ICMP 9419	pv. castaneae	Pathotype	Castanea crenata	1977	Japan	amygdali
	Prunier J.P.	NCPPB 4290,	Pseudomonas syringae					Pseudomonas
CFBP 3846	cc13-6	ICMP 14479	pv. avii	Pathotype	Prunus avium	1991	France	avellanae
	Takikawa Y.		Pseudomonas syringae		Prunus X			Pseudomonas
CFBP 6109	M9501	ICMP 17524	pv. cerasicola	Pathotype	yedoensis	1995	Japan	avellanae
								Pseudomonas
CFBP 8305		LMG 28609	Pseudomonas cerasi	Туре	Prunus cerasus	2007	Poland	cerasi
	Behrendt U.	CIP 108180,	Pseudomonas					Pseudomonas
CFBP 7019	P538/23	DSM 14939,	congelans	Туре	Graminaea	1994	Germany	congelans

	P		escaren eboramadio					
		LMG 21466						
		ICMP 19117						
	takikawa Y.							
	KW11,							
	Gardan L.	ICMP 9617,	Pseudomonas syringae					Pseudomonas
CFBP 4909	11325	NCPPB 3739	pv. actinidiae	Pathotype	Actinidia deliciosa	1984	Japan	avellanae
		ATCC 13522,						
		NCPPB 639,	Pseudomonas					
		ICMP 4352,	savastanoi pv.					Pseudmonas
CFBP 1670		LMG 2209	savastanoi	Pathotype	Olea europaea	<1976	Yugoslavia	amygdali
		NCPPB 2488,						
	Bradbury J.F.	ICMP 4091,	Pseudomonas syringae					Pseudomonas
CFBP 1694	B5063	LMG 5090	pv. tagetis	Pathotype	Tagetes erecta	1972	Zimbabwe	caricapapayae
		NCPPB 1879,						
		ICMP 529, LMG	Pseudomonas syringae				New	Pseudomonas
CFBP 2215		5381	pv.delphinii	Pathotype	Delphinium sp.	1957	Zealand	avellanae
		ICMP 9756,						
		ATCC 49212,	Pseudomonas syringae		Rhaphiolepis			Pseudmonas
CFBP 4220		NCPPB 3618	pv. rhaphiolepidis	Pathotype	umbellata	1980	Japan	amygdali
			Pseudomonas syringae					Pseudomonas
CFBP 5524	Ozaki 8605	MAFF 211266	pv. spinaceae	Pathotype		<2001	Japan	avellanae
			Pseudomonas syringae					Pseudomonas
CFBP 8039	LSV 38.26		pv. actinidifoliorum	Pathotype	A. deliciosa	2011	France	avellanae

Curtobacterium spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
			Curtobacterium					Genomic Group III
		LMG 7238,	flaccumfaciens pv.				United	(Goncalvez et al.,
CFBP 3401		PDDCC 4735	betae		Beta vulgaris	<1994	Kingdom	2019)
			Curtobacterium					Genomic Group III
		LMG 3596,	flaccumfaciens pv.				United	(Goncalvez <i>et al</i> .,
CFBP 3509		ICMP 2594,	betae	Pathotype	Beta vulgaris	1955	Kingdom	2019)

		LMG 3596,						
		NCPPB 374						
			Curtobacterium					Genomic Group II
			flaccumfaciens pv.		Phaseolus			(Goncalvez <i>et al</i> .,
CFBP 3406		LMG 7243	flaccumfaciens		vulgaris	<1994		2019)
		NCPPB 1446,						
		ICMP 2584,	Curtobacterium					Genomic Group II
	Klement Z.	LMG 3645,	flaccumfaciens pv.		Phaseolus			(Goncalvez <i>et al</i> .,
CFBP 3418	E1429	CFBP 3456	flaccumfaciens	Pathotype	vulgaris	1957	Hungary	2019)
			Curtobacterium					Genomic Group III
			flaccumfaciens pv.		Phaseolus			(Goncalvez <i>et al</i> .,
CFBP 3419		NCPPB 1597	flaccumfaciens		vulgaris	1954		2019)
			Curtobacterium					Genomic Group III
		NCPPB 2344,	flaccumfaciens pv.		Phaseolus			(Goncalvez et al.,
CFBP 3423		ATCC 23827	flaccumfaciens		vulgaris	1957	USA	2019)
_			Curtobacterium		_			Genomic Group I
	CANO-3191,		flaccumfaciens pv.		Brassica Napus			(Goncalvez <i>et al</i> .,
CFBP 8391	Strain 673		flaccumfaciens		L.	2013	Brazil	2019)
								Genomic Group III
			Curtobacterium					(Goncalvez et al.,
CFBP 8879		ICMP 2608	flaccumfaciens pv. illicis	Pathotype	llex opaca Ait.	1960	USA	2019)
		NCPPB 2113,						
	Maas	ATCC 25283,						Genomic Group III
	Geesteranus	ICMP 2632,	Curtobacterium					(Goncalvez <i>et al</i> .,
CFBP 1384	H.P. B360	LMG 3702	flaccumfaciens pv. oortii	Pathotype	Tulipa gesneriana	1967	Netherlands	2019)
								Genomic Group III
			Curtobacterium					(Goncalvez et al.,
CFBP 3399		PD 915	flaccumfaciens pv. oortii		Tulipa sp.	1987	Netherlands	2019)
			Curtobacterium		Zantedeschia			
CFBP 3400		PD 1751	flaccumfaciens pv. oortii		aethiopica	1990	Netherlands	At the species limit
			Curtobacterium					Genomic Group I
			flaccumfaciens pv.		Euphorbia			(Goncalvez <i>et al</i> .,
CFBP 3415		LMG 7321	poinsettiae		pulcherrima	<1994	USA	2019)

		ICMP 2566,	Curtobacterium					Genomic Group I
	Starr M.P.	ATCC 9682,	flaccumfaciens pv.		Euphorbia			(Goncalvez <i>et al</i> .,
CFBP 2403	Cp2	NCPPB 854	poinsettiae	Pathotype	pulcherrima	<1994	USA	2019)
			Curtobacterium					Genomic Group I
			flaccumfaciens pv.		Euphorbia			(Goncalvez <i>et al</i> .,
CFBP 3438		NCPPB 844	poinsettiae		pulcherrima	1958	USA	2019)

Xylophilus spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
		NCPPB 2217,						
		ICPB Xa138,						
		ICMP 4298,						
		ATCC 33914,						
		LMG 5949,						
	Panagopoulos	DSM 3584,			Vitis vinifera cv.			
CFBP 1192	C.G. 48	CFBP 3674	Xylophilus ampelinus	Туре	Sultana	1966	Greece	
	Ridé M.				Vitis vinifera cv.			
CFBP 2098	P6131	LMG 514	Xylophilus ampelinus		Grenache	1979	France	

Clavibacter spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
							Czech	
PD 5069	RICP 12/5/98		Clavibacter insidiosus		Medicago sativa	-	Republic	
			Clavibacter					
			michiganensis subsp.		Solanum			
PD 7217			michiganensis		lycopersicum	2016	Netherlands	
			Clavibacter					
PD 174			nebraskensis		Zea mays	1979	USA	
			Clavibacter		Solanum			
PD 330		LMG 6385	sepedonicus		tuberosum	1982	Norway	

		ATCC 33566;					
		ICMP 7221,					
	Vidaver	PDDCC 7221;					
PD 336	78181	LMG 7294	Clavibacter tesselarius	Туре	Triticum aestivum	1982	

Ralstonia spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
			Ralstonia					
PD 7243	R292	NCPPB 4012	pseudosolanacearum		Morus	≤1997	China	phylo I
	Baigent							
	PU21;							
	Hayward	LMG 9673;						
	B509; UQRS	ICMP 769;	Ralstonia		Pelargonium			
PD 1940	461	NCPPB 1029	pseudosolanacearum	Туре	capitatum	1961	Reunion	phylo III
	SMT 44,	NCPPB 3985;			Solanum			
PD 3272	CIP312, R578	CFBP 4612	Ralstonia solanacearum		melongena	1989	Peru	phylo II
	ICMP 10002;		Ralstonia syzygii subsp.				South	
PD 7244	T394X	NCPPB 3727	celebesensis		Musa	≤1990	Sulawesi	phylo IV
			Ralstonia syzygii subsp.		Syzygium			
PD 2889	B8719a	NCPPB 3219	indonesiensis		aromaticum	1980	Indonesia	phylo IV
			Ralstonia syzygii subsp.		Syzygium		Java,	
PD 7246	S442 (R002)	NCPPB 3445	syzygii		aromaticum	≤1985	Indonesia	phylotype IV

Erwinia spp.

		Name in		Туре		Isolation	Country of	Comment about
Strain name	Other names	collections	Taxonomy	strain?	Isolation host	year	origin	taxonomy
		NCPPB 683,						
		ATCC 15580,					United	
CFBP 1232		CCM 1114	Erwinia amylovora	Туре	Pyrus communis	1959	Kingdom	
					Crataegus			
CFBP 1430			Erwinia amylovora		oxyacantha	1972	France	

IL6			Erwinia amylovora					rubus strain
					Crataegus		United	
NCPPB 660			Erwinia billingiae		oxycantha	1959	Kingdom	
		DSM 17872,					United	first described as
NCPPB 661		LMG 2613	Erwinia billingiae	Туре	Pyrus communis	1959	Kingdom	Erwinia gerundensis
								first described as
EM 486			Duffyella gerundensis					Erwinia gerundensis
					Pyrus communis			
		CFBP 8471,			cv. Winter Nellis,			
EM 595		LMG 28990	Duffyella gerundensis	Туре	Leaf	1994	Spain	
		NCPPB 2851,						
		ATCC 29573,						
		ICMP 5705,			Mallotus			
CFBP 2503		LMG 2708	Erwinia mallotivora	Туре	japonicus	1975	Japan	
								strains of E.
								persicina and E.
								rhapontici are
					Opring reasons			sometimes
CFBP 5189		NCPPB 4294, DSM 16540	Erwinia nanavaa	Tuno	<i>Carica papaya</i> cv. local	1995	Martinique (France)	intermixed in databases
CFDF 3109		ATCC 35998,	Erwinia papayae	Туре		1995	(France)	ualabases
		CIP 105199,						
		ICMP 12532,						
		LMG 11254,			Lycopersicon			
CFBP 3622		NCPPB 3774	Erwinia persicina	Туре	esculentum		Japan	
01 01 0022				190	Pyrus communis		oupun	
CFBP 5888			Erwinia piriflorinigrans	Туре	var. Ercolini			
IVIA 2055			Erwinia piriflorinigrans	51				
		NCPPB 3555,		1				
CFBP 3627		ICMP 8426	Erwinia psidii	Туре	Psidium guajava		Brazil	
							Republic of	
DSZM 12393	Ep8/95		Erwinia pyrifoliae		Pyrus pyrifolia		Korea	

Ejp546	1		Erwinia pyrifoliae					
	5 4/00						Republic of	strains of E. persicina and E. rhapontici are sometimes intermixed in
DSM 12162	Ep 1/96		Erwinia pyrifoliae		Pyrus pyrifolia		Korea	databases
					Rheum		United	
CFBP 3163	CFBP 3618		Erwinia rhapontici	Туре	rhabarbarum		Kingdom	
Et1/99		CFBP 7177, DSM 17950, NCPPB 4357, CIP 109463	Erwinia tasmaniensis	Type	Malus sp.	1000	Australia	
		CIP 109403		Туре	ivialus sp.	1999	Australia	
Et2/99		DSM 17949	Erwinia tasmaniensis		pear flowers	1999	Australia	
		LMG 25843, NCPPB 4475,			<i>Pyrus communis</i> L cv. La France			
NCPPB 4475		YPPS 951	Erwinia uzenensis	Туре	(European Pear)		Japan	

Supplementary strains for comparison of wt strains vs Sm mutants

CFBP 1430Sm		Erwinia amylovora			
Ejp546Sm		Erwinia pyrifoliae			
Ep 1/96 Sm		Erwinia pyrifoliae			
Et1/99 Sm		Erwinia tasmaniensis			