# Global maps of agricultural expansion potential at a 300 m resolution This repository contains data from “Global maps of agricultural expansion potential at a 300 m resolution” study. ## Abstract: The global expansion of agricultural land is a leading driver of climate change and biodiversity loss. However, the spatial resolution of current global land change models is relatively coarse, which limits environmental impact assessments. To address this issue, we developed global maps representing the potential for conversion into agricultural land at a resolution of 10 arc-seconds (approximately 300 m at the equator). We created the maps using Artificial Neural Network (ANN) models relating locations of recent past conversions (2007-2020) into one of three cropland categories (cropland only, mosaics with >50% crops, and mosaics with <50% crops) to various predictor variables reflecting topography, climate, soil and accessibility. Cross-validation of the models indicated good performance with Area Under the Curve (AUC) values of 0.88-0.93. Hindcasting of the models from 1992 to 2006 revealed a similar high performance (AUC of 0.83-0.91), indicating that our maps provide representative estimates of current agricultural conversion potential provided that the drivers underlying agricultural expansion patterns remain the same. Our maps can be used to downscale projections of global land change models to more fine-grained patterns of future agricultural expansion, which is an asset for global environmental assessments. ## Data description: We provide here raster maps of suitability for agricultural expansion into three categories of agriculture - (i) cropland only, (ii) mosaics with >50% crops, and (iii) mosaics with <50% crops. The source for delineating categories was the ESA CCI land cover data. ESA CCI land cover data recognizes additional categories of agricultural land, however some of them have limited spatial coverage. For that reason, we merged the rainfed cropland and irrigated cropland categories into a single category - cropland only, where a grid cell is largely dominated by crops. Rainfed croplands account for 87% of the this category, while irrigated croplands account for the remaining 13%. Mosaic categories were defined in the same way as in the ESA CCI land cover dataset. Numerical designations of these categories in the ESA CCI land cover dataset are 10, 20, 30, and 40 for rainfed, irrigated, mosaics with >50% crops, and mosaics with <50% crops, respectively. Global suitability maps are provided at the spatial resolution of 10 arc-seconds (~300 meters at the equator). These files are available for three categories in the main folder with the filename prefix "Agri_potential_mosaic_*". The numerical value in the file name refers to the agricultural category type (10 - cropland only, 30 - mosaics with >50% crops, and 40 - mosaics with <50% crops). In addition to the 10 arc-second layers, we provide aggregated layers with the spatial resolution of 30 arc-seconds, 5 and 10 arc-minutes, for coarse-grained applications and less computationally-intensive analyses. We provide the aggregated layer maps for the minimum, median, mean/average, and maximum values of the aggregated 10 arc-seconds values within the coarser cells. There are in total 9 files provided for each of the aggregated spatial resolutions. ## Repository content: ### Full resolution layers: - “Agri_potential_mosaic_10.tif” is the global raster map for cropland only category at the spatial resolution of 10 arc-seconds. - “Agri_potential_mosaic_30.tif” is the global raster map for mosaics with >50% crops category at the spatial resolution of 10 arc-seconds. - “Agri_potential_mosaic_40.tif” is the global raster map for mosaics  with <50% crops category at the spatial resolution of 10 arc-seconds. - "readme.txt" is the text file with the basic description and the metadata for the repository. ### Aggregated layers: This folder contains files with a different spatial resolution (30s, 5m, 10m; see argument "RESL" below). File names for the aggregated maps of global land suitability contain the following information: “Agri_potential_aggregated_RESL_TYPE_CATG.tif” - "RESL" is the spatial resolution of the layer. Value is either "30s", "5m", or "10m", corresponding to spatial resolution of 30 arc-second, 5 arc-minutes, and 10 arc-minutes. - "TYPE" is the type of aggregated values. Value is either "min", "avg", "med", or "max", corresponding to the minimum, mean, median, and maximum values of the aggregated 10 arc-seconds values within the coarser cells. - "CATG" is the category of agricultural land. Value is either "10", "30", or "40", where category 10 is cropland only, category 30 is mosaics with >50% crops, and category 40 is mosaics with <50% crops. ### Raster metadata: Driver: GTiff Projection proj4string: +proj=longlat +ellps=WGS84 +no_defs ## Notes on use: Our conversion potential maps are useful for researchers and practitioners interested in downscaling projections of global land change models to a more fine-grained patterns of future agricultural expansion, or interested in assessing the locations and effects of future agricultural expansion, for example in integrated assessment modelling or biodiversity impact modelling. When coupling outputs with integrated assessment models, our maps need to be combined with estimates of the expected future demands for agricultural land per socio-economic region. In such a coupled approach, our global conversion potential maps can be used to spatially allocate the additional agricultural land demands. In this context, it is important to note that the modelled relationships between the agricultural conversions and our set of predictors may result in non-zero probabilities also in areas that are highly unlikely to be converted into agriculture, such as urban areas or strictly protected nature reserves. This implies that users of our maps may need to implement an additional map layer that masks areas unavailable for agricultural expansion. We also stress that our maps represent agricultural conversion potential conditional on the predictor variables that we included, implying that our maps do not capture the possible influences of other potentially relevant predictors. For example, our conversion potential models and maps do not account for permafrost, which may pose significant challenges to possible agricultural expansion to higher latitudes in response to climate change.