
DistRDF2ML - Scalable Distributed In-Memory
Machine Learning Pipelines for RDF Knowledge Graphs
Carsten Felix Draschner

carsten.draschner@uni-bonn.de
University of Bonn
Bonn, Germany

Claus Stadler
cstadler@informatik.uni-leipzig.de

University of Leipzig
Leipzig, Germany

Farshad Bakhshandegan
Moghaddam

farshad.moghaddam@uni-bonn.de
University of Bonn
Bonn, Germany

Jens Lehmann
jens.lehmannn@cs.uni-bonn.de

jens.lehmannn@iais.fraunhofer.de
University of Bonn / Fraunhofer IAIS

Bonn / Dresden, Germany

Hajira Jabeen
hajira.jabeen@uni-koeln.de

University of Cologne
Cologne, Germany

ABSTRACT
This paper presents DistRDF2ML, the generic, scalable, and dis-
tributed framework for creating in-memory data preprocessing
pipelines for Spark-based machine learning on RDF knowledge
graphs. This framework introduces software modules that trans-
form large-scale RDF data into ML-ready fixed-length numeric
feature vectors. The developed modules are optimized to the multi-
modal nature of knowledge graphs. DistRDF2ML provides aligned
software design and usage principles as common data science stacks
that offer an easy-to-use package for creating machine learning
pipelines. The modules used in the pipeline, the hyper-parameters
and the results are exported as a semantic structure that can be
used to enrich the original knowledge graph. The semantic rep-
resentation of metadata and machine learning results offers the
advantage of increasing the machine learning pipelines’ reusability,
explainability, and reproducibility. The entire framework of Dis-
tRDF2ML is open source, integrated into the holistic SANSA stack,
documented in scala-docs, and covered by unit tests. DistRDF2ML
demonstrates its scalable design across different processing power
configurations and (hyper-)parameter setups within various experi-
ments. The framework brings the three worlds of knowledge graph
engineers, distributed computation developers, and data scientists
closer together and offers all of them the creation of explainable
ML pipelines using a few lines of code.

CCS CONCEPTS
• Computer systems organization → Distributed architectures;
• Software and its engineering → Software libraries and repos-
itories; • Computing methodologies → Semantic networks;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3481999

Artificial intelligence;Machine learning approaches; • Informa-
tion systems → Extraction, transformation and loading.

KEYWORDS
Machine Learning, Knowledge Graphs, Distributed Computing,
Explainable AI, Scalable Semantic Processing, RDF, Preprocessing
ACM Reference Format:
Carsten Felix Draschner, Claus Stadler, Farshad Bakhshandegan Moghad-
dam, Jens Lehmann, and Hajira Jabeen. 2021. DistRDF2ML - Scalable Dis-
tributed In-MemoryMachine Learning Pipelines for RDFKnowledge Graphs.
In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD,
Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3459637.3481999

1 INTRODUCTION
In recent years, an increasing variety of linked open data and RDF
knowledge graphs have emerged (wiki data [26], YAGO [24], DB-
pedia [13] and more generally the LOD cloud1). These are exciting
data representations for various applications and enable data in-
tegration through semantic web[1] standards via IRIs [19]. The
data sizes of real-world linked open knowledge graphs are often
infeasible to process in main memory of a single computer, as the
data volume often exceeds the available main memory resources
by far. A single computer cannot be arbitrarily scaled in perfor-
mance regarding the number of processor cores and the amount of
main memory. Additionally, specialized components with higher
performance become more expensive as they are not in demand by
the common consumer market, resulting in disproportionate costs.
Cluster computation can solve this problem in terms of available
main memory and required CPU processing power by combining
the performance of multiple servers as nodes within a cluster. Many
distributed computing frameworks have been developed in recent
years and are in productive use, like Apache Spark [8, 15] and
Apache Flink [6]. In the area of machine learning, pipelines, frame-
works, and libraries that realize both modular pipeline creations
and explainable AI have become very popular. These libraries and
frameworks are open source and available to interested parties

1https://lod-cloud.net

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4465

https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1145/3459637.3481999
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3481999&domain=pdf&date_stamp=2021-10-30

through web-hosted examples. Creating pipelines based on generic
transformers (scikit-learn [21], Spark MLlib [15]) opens up the pos-
sibility for a wide range of software developers, data scientists,
and knowledge engineers to develop machine learning models for
their data. While the usual machine learning models implemented
in Spark MLlib (BigDL [4], Analytics Zoo2) assume fixed length
numeric feature vectors, a holistic framework for developing dis-
tributed machine learning pipelines is missing for handling large
scale RDF knowledge graphs. Such a framework can empower the
already existing Apache Spark clusters to operate natively on RDF
knowledge graph data. SANSA (Semantic Analytics Stack) [14]
uses the scalable processing capability of Apache Spark to allow
distributed RDF processing. However, it did not offer a pipeline
for ML solutions. Knowledge graphs do not provide a native rep-
resentation that fits these requirements. Therefore, there are two
possibilities: First, latent embeddings can be computed or learned
(TransE [2], DistMult [27], RDF2Vec [22]). Alternatively, relevant
features can be extracted and digitized. Targeted feature extraction
can be implemented in a distributed fashion and has the advantage
of being able to generate explainable feature vectors. Explainability
means that the individual indices of a feature vector can be assigned
to the original features. This possibility is significant for several
applications and institutions developing data analytics and machine
learning pipelines. These initial explainable ML pipelines also pro-
vide an essential comparative reference to evaluate the capabilities
of less explainable latent embedding driven ML pipelines. Also,
latent embeddings lose locatable information such as the numerical
annotation stored in literals, e.g., salary of colleagues, timestamp of
buying a certain item, runtime of a movie. The loss of such numeric
or timestamp features in multi-modal knowledge graphs should
be avoided in many use cases, especially those that use RDF for
data integration and use such features. Especially when a special
requirement of a machine learning pipeline is its explainability,
disentangled feature vectors should be used.

In conclusion, in this paper, we propose a framework that en-
ables the intuitive creation of RDF knowledge graph-based machine
learning pipelines in multiple areas. Our framework, which is na-
tively executable on Apache Spark clusters, enables many machine
learning applications to scale with data size and computation per-
formance.

The contributions of this work are as follows:

• An open source framework for distributed machine learning
pipelines on RDF knowledge graphs

• Generic modules for the creation of explainable and context
preserving feature vectors

• Various sample machine learning pipelines documented and
testable within Databricks3 notebooks, executable sample
classes, and unit tests

• A software architecture which its semantic data machine
learning pipelines is aligned with pipelines in established
data analytics libraries

• Reproducibility over semantic annotation of pipeline meta-
data and processed results

2https://analytics-zoo.readthedocs.io/en/latest/
3https://databricks.com/

The rest of the paper is organised as follows: Section 2 defines
technological and conceptual terms used within this paper. Section
3 gives an overview of Related Work. In section 4 the DistRDF2ML
architecture is presented as well as the concept of modules. Sec-
tion 5 presents the framework as a resource and especially tar-
gets its Novelty (Sect. 5.1), Availability (Sect. 5.2), Utility (Sect. 5.3)
and Predicted Impact (Sect. 5.4). Section 6 and Section 7 evaluated
the performance and scalability of the framework among multi-
ple (hyper-)parameter while Section 8 concludes the paper and
highlights a few future directions (see Sect. 8.1).

2 PRELIMINARIES
RDF - Resource Description Framework: is a standard to represent

metadata and designed as a core technology for building a web of
data with the envisioned goal to realize the Semantic Web [1, 19].

Scala: is a functional and object-oriented programming language.
Scala uses static types to reduce bugs in complex applications4. It is
also possible to use Java libraries as Scala is being executed within
the Java Virtual Machine (JVM) [18].

Apache Spark: is a framework for cluster computing [8]. It is
available under the Apache Open Source License. Apache Spark
encapsulates software modules that optimize the execution of big
data analytics pipelines. These pipelines can be executed distributed
and in-memory on Spark clusters. Apache Spark MLlib [9] adapts
the ideas of well-known python library scikit-learn5 to provide
standard interfaced transformers that allow high modular and
generic machine learning pipeline construction [15]. They operate
on DataFrames, which are tabular-typed representations of data.
The advantage of Apache Spark MLlib compared to libraries like
scikit-learn is that it can be operated in distributed processing en-
vironments.

Apache Jena: is an open sourceApache framework [7] programmed
in Java to develop Linked Data, RDF Data, and Semantic Web pro-
grams.

Machine Learning: (abbreviation ML) is one approach to imple-
ment artificial intelligence. The primary approach is to use existing
datasets to build training and test datasets. These datasets are fed
to algorithms that abstract the pattern and correlations of the given
data to a generalized solution.

ML Preprocessing: describes the process of transforming raw
data into the required representation the machine learning models
operate on. Many standard machine learning models expect for
each sample a fixed size numeric feature vector/tensor.

SANSA - Semantic Analytics Stack: is an open source framework
to process large scale RDF data based on Apache Spark, Apache
Flink, and Apache Jena, within various tasks like: semantic data
representation, querying, inference, and analytics.

4https://www.scala-lang.org
5https://scikit-learn.org

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4466

3 RELATEDWORK
Linked open data, especially semantic data in RDF format, is a rich
source for baseline datasets6 [10, 13, 26] to perform data analytic
pipelines and machine learning approaches on. Also, in times of
big data, frameworks have been developed which can deal with
this large-scale data on distributed systems. However, there are
no solutions to bring the linked data world together with building
distributed explainable machine learning pipelines. On the algo-
rithmic level, diverse approaches transform the knowledge graph
entities into fixed-length feature vectors [3, 11, 12, 20]. The fixed-
length feature vectors are either retrieved via SPARQL or over
latent embedding creation. Latent embeddings can be created by
tensor factorization methods such as Distmult [27]. Alternatively,
they can be generated over learning feature vectors by optimizing
initial random vectors against a loss function (e.g., TransE [2]) and
the respective follow-up approaches. Another option for creating
latent embeddings is graph walk approaches like RDF2Vec [22]. In
general, none of them are available in the Spark world. Within the
Apache Spark stack, there are multiple frameworks and libraries
which offer standard machine learning models such as Apache
Spark MLlib [15] contains models such as Regression7, Clustering8,
Support Vector Machines, and Multi-Layer Perceptrons. More com-
plex are the approaches of BigDL [4] and Analytics Zoo9 which
offer more complex neural network models but are currently not
up to date with the most recent version of Apache Spark 3.x. The
only approach that provides native RDF knowledge graph-based
machine learning approaches within the Scala-based Apache Spark
framework is developed within the SANSA framework. However,
there are multiple layers for reading, querying, OWL, and similarity
assessment [5]. There are no generic transformers in the respective
ML layer to handle multi-modal features retrieved over SPARQL
queries. Our approach introduces these models and transformers
and also fully integrates them into the SANSA stack. These modules
make use of the Literal2Feature [17], an automatic SPARQL gener-
ation module, which creates a feature fetching SPARQL queries for
the users. Advanced users can also update the designed SPARQL
queries to desired purposes.

4 DISTRDF2ML ARCHITECTURE
4.1 Pipeline
The proposed DistRDF2ML framework offers the construction of
end-to-end Apache Spark 3.x pipelines (see Figures 1, 2, 3). The
principal pipeline contains the following modules:

• Knowledge graph reader
• SPARQL creation
• SparqlFrame feature extractor
• SmartVectorAssembler
• Spark MLlib machine learning
• Semantification of machine learning results and metadata
• Result exporter

6https://lod-cloud.net
7http://spark.apache.org/docs/latest/ml-classification-regression.html
8http://spark.apache.org/docs/latest/ml-clustering.html
9https://analytics-zoo.github.io/master/

Read in knowledge graph: read in of data is performed over the
SANSA framework within the RDF layer10. This layer supports mul-
tiple RDF formats and can read from Hadoop File System (HDFS11)
to incorporate large-scale RDF data. Besides n-triples, SANSA also
supports concurrent ingestion of the turtle and trig RDF formats.

Figure 1: DistRDF2ML Pipeline Overview

4.2 SparqlFrame
SPARQL creation: In pipelines constructed with DistRDF2ML

(see Figure 2), we offer three variants to create a SPARQL query
that extracts relevant features. The first option is that a knowledge
graph expert manually crafts the desired SPARQL query. The second
option, is to let the Literal2Feature [17] module create a SPARQL
query automatically. Literal2Feature is a generic, distributed, and
scalable software framework that is able to automatically trans-
form a given RDF dataset to a standard feature matrix (also dubbed
Prepositionalization) by deep traversing the RDF graph and ex-
tracting literals to a given depth. The result of Literal2Feature is a
SPARQL query that will extract the features. The third option is
the hybrid approach, where first Literal2Feature is used to propose
a query which is then manually post-processed. The third option
saves much time designing a syntactically clean SPARQL query and
allows restriction to the most relevant features. A possible small
sample feature extracting SPARQL query created by the hybrid
Literal2Feature model is shown in Listing 1. The projection variable
names are automatically generated and offer insights about how
the respective feature is reached within the RDF knowledge graph.

1 SELECT
2 ?movie
3 ?movie__down_genre__down_fi lm_genre_name
4 ? mov i e__down_ t i t l e
5 ?movie__down_runtime
6 ?movie__down_actor__down_actor_name
7 WHERE {
8 ?movie < h t t p : / /www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − rd f − syntax −ns#

type > <h t t p : / / d a t a . l inkedmdb . org / movie / f i lm > .
9 OPTIONAL { ?movie < h t t p : / / pu r l . org / dc / terms / t i t l e > ?

mov i e__down_ t i t l e . }
10 OPTIONAL { ?movie < h t t p : / / d a t a . l inkedmdb . org / movie /

runt ime > ?movie__down_runtime . }
11 OPTIONAL { ?movie < h t t p : / / d a t a . l inkedmdb . org / movie /

a c t o r > ?movie__down_actor . ? movie__down_actor <
h t t p : / / d a t a . l inkedmdb . org / movie / actor_name > ?
movie__down_actor__down_actor_name . }

10https://github.com/SANSA-Stack/SANSA-Stack/tree/develop/sansa-rdf
11https://hadoop.apache.org/docs/

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4467

12 OPTIONAL { ?movie < h t t p : / / d a t a . l inkedmdb . org / movie /
genre > ?movie__down_genre . ?movie__down_genre <
h t t p : / / d a t a . l inkedmdb . org / movie / f i lm_genre_name >
?movie__down_genre__down_fi lm_genre_name . } }

Listing 1: Sample SPARQL query from hybrid usage of
Literal2Feature and manual edit

SPARQL based feature extraction: SparqlFrame is a high-level
transformer that allows for easy and intuitive execution of SPARQL
queries on RDF knowledge graphs in order to create the Spark
DataFrames that are suitable input to conventional ML pipelines.
SparqlFrame bundles SANSA query execution engines (Sparqlify[23]
and Ontop12) together with a novel schema mapper that was cre-
ated as part of this work. While execution of SPARQL queries in
SANSA yields a Spark RDD of SPARQL bindings, the schema map-
per analyses the set of bindings (especially the used data types)
and computes a target schema and a mapping. Upon applying a
schema mapping, the target schema becomes the schema of the
resulting Spark DataFrame, whereas the mapping is used to convert
each binding to a row in the target DataFrame. The schema map-
per supports mapping XSD types13 to appropriate Spark ones and
also allows for custom extensions. For example, if a feature query
retrieves features about people such as their name, income, and
birthday, the columns would be of type14 StringType, DoubleType,
and TimeStampType. If a feature has multiple annotated datatypes,
a separate column is created for each data type, and this is mapped
in the column name. For every unknown RDF literal datatype, a
variable is bound to a separate column and will be allocated as
usual, however the column type will fall back to StringType, and it
will receive the lexical forms of those literals.

1 val d a t a s e t : Da t a s e t [T r i p l e] = [. . .]
2 val s p a r q l S t r i n g : S t r i n g = [. . .]
3 val spa rq l F rame = new Sparq lF rame ()
4 . s e t Spa rq lQue ry (s p a r q l S t r i n g)
5 . s e tCo l l ap sByKey (true)
6 . setCol lapsColumnName (" movie ")
7 val e x t r a c t e d F e a t u r e sD f = spa rq l F rame
8 . t r an s f o rm (d a t a s e t)
9 / / s eman t i c r e p r e s e n t a t i o n o f t r a n s f o rm e r
10 spa rq l F r ame
11 . g e t S eman t i cT r an s f o rme rDe s c r i p t i o n ()

Listing 2: Sample usage of SparqlFrame transformer

Figure 2: DistRDF2ML SPARQL specification options

12https://ontop-vkg.org
13https://www.w3.org/TR/xmlschema11-1/
14https://spark.apache.org/docs/latest/sql-ref-datatypes.html

Feature type identification and collapsing: In the next step, a va-
riety of feature characteristics are collected. These are relevant
for the appropriate selection of digitization techniques. The fea-
tures must be available for common ML approaches as fixed-length
numeric feature vectors. The initial features that are not numeric
must therefore be transformed into a numeric representation. For
strings, there are various approaches, such as string indexing or
Word2Vec [16] transformation. The selection of the appropriate
method depends on the feature characteristics. For example, it
is relevant for text respective StringType columns whether they
are categorical elements or natural language elements. Due to the
transformer, a DataFrame is available in which the relevant feature
characteristics are also mapped in the column names, which are
relevant for selecting the correct digitization strategy. It is also
optional to generate a collapsed DataFrame. A collapsed DataFrame
means that there is exactly one row in which all relevant features
are contained for each sample. So there can also be columns of type
Array[String], e.g., if we query features of a movie via SPARQL and
a feature is the list of names of the playing actors. Regarding the
feature characteristics, the following information is collected:

• featureType: A string representing the major information
needed for the respective digitization strategy that is also
annotated within the column name aggregated from auto-
matically retrieved feature characteristics.

• nullable: Whether this feature may be null.
• datatype: What is the datatype given by SparqlFrame feature
extraction.

• numberDistinctValues: How many distinct values are given
for this feature. This feature characteristic is important to
decide, e.g., if a feature is categorical.

• isListOfEntries: This provides the information if a feature
could be a list of information for a certain sample entity like
the mentioned example of a list of actors.

• availability: The ratio of null values is important for some
feature weighting techniques.

• isCategorical: Whether the feature qualifies as categorical. A
heuristic is used to compute this attribute from the value dis-
tribution, the ratio of distinct values, and the overall dataset
size.

The feature metadata is stored in an object that can be passed to
other components of a processing pipeline.

4.3 SmartVectorAssembler
Digitization and assembling of features: This transformer con-

verts all features corresponding to their feature type into numeric
representations. These numerical representations are relevant for
the required fixed-length feature vectors as an input for standard
machine learning models. For a variety of combinations of fea-
ture properties, corresponding transformation pipelines are im-
plemented. The featureType, which decides over the follow-up
SVA strategy, is gathered by SparqlFrame and is also denoted in
the SparqlFrame output column name, that can also be manually
set. For example, non-categorical strings are transformed into the
Word2Vec representation. Alternatively, lists of categorical strings
are transformed into lists of indices. A second example is the treat-
ment of timestamp typed columns. These columns are digitized over

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4468

representing by multiple digit columns transforming the datetime
information into: year, month, dayOfYear, dayOfMonth, dayOfWeek,
hour, minute, second. Especially enriching the feature vector by
information like dayOfWeek offer further opportunities to predict
periodic patterns. The type of transformation is noted in the column
name. After this step, all feature columns are available in a numeric
representation with column names containing the original feature
name and the transformation strategy in brackets.

1 val smar tva = new Smar tVec torAssemble r ()
2 . s e tEn t i t yCo lumn (" movie ")
3 . se tLabe lCo lumn (" movie__down_runtime [. . .] ")
4 val assembledDf : DataFrame = smar tva
5 . t r an s f o rm (e x t r a c t e d F e a t u r e sD f)
6 / / e x p l a i n f e a t u r e v e c t o r
7 val f e a t u r eD e s c r i p t i o n s = smar tva
8 . g e t F e a t u r eV e c t o rD e s c r i p t i o n ()
9 / / s eman t i c r e p r e s e n t a t i o n o f t r a n s f o rm e r
10 val svaMetaGraph = smar tva
11 . g e t S eman t i cT r an s f o rme rDe s c r i p t i o n ()

Listing 3: Sample usage of SmartVectorAssembler

Pooling - Aligning number of incorporated features: Some feature
columns are available after the digitization step in variable-length
numeric feature representations. The final numeric feature vector
for standard machine learning models must have a fixed length
across all samples. Therefore, the strategy for the variable-length
numeric feature is to aggregate them by min, max, average, and
stddev which are order invariant pooling techniques. After this
step, the DataFrame contains one row for each sample with a fixed
number of numerical features.

Vector Assembler: After the Vector Assembler transformer, all
numeric feature columns are combined into one explicit column,
which is of type Array of Doubles. This assembled feature vec-
tor is the required representation for all following common ma-
chine learning models. However, due to the unique preprocessing
pipeline, every single value of the feature vector can be assigned to
the original feature (see Listing 3 Line 7). This feature vector indices
description enables explainability for machine learning pipelines
over knowledge graph embedding-based feature vectors. The result-
ing Dataframe can be used natively in Apache Spark MLlib [15]. A
sample resulting DataFrame from SmartVectorAssembler is shown
in Listing 4.

1 +−−−−−−−−−−−−−−−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−−−+
2 | e n t i t y ID | l a b e l | f e a t u r e s |
3 +−−−−−−−−−−−−−−−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−−−+
4 | h t t p : / / d a t a . l i n k e . . . | 1 0 1 | [− 0 . 0 1 , 9 , 3 . 3 4 , 8 . . . |
5 | h t t p : / / d a t a . l i n k e . . . | 8 3 | [− 0 . 0 6 , 6 , 9 . 7 2 , 4 . . . |
6 | h t t p : / / d a t a . l i n k e . . . | 9 7 | [0 . 0 2 7 , 5 , 5 . 1 6 , 0 . . . |
7 | h t t p : / / d a t a . l i n k e . . . | 9 2 | [− 0 . 0 0 , 7 , 7 . 1 1 , 4 . . . |
8 | h t t p : / / d a t a . l i n k e . . . | 2 5 | [0 . 0 2 1 , 2 , 2 . 9 2 , 0 . . . |
9 +−−−−−−−−−−−−−−−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−−−+

Listing 4: Sample output of SmartVectorAssembler

4.4 Machine Learning Models
In the distributed big data processing within Apache Spark, some li-
braries have been developed, which provide many needed machine
learning models which can be executed over Scala and Python and

Figure 3: DistRDF2ML feature vector creation pipeline
through SparqlFrame and SmartVectorAssembler

executed on an Apache Spark cluster [15]. For the most common
downstream machine learning tasks, we can use Apache Spark
MLlib15. If we need the opportunities to use more complex neural
networks than Multi-Layer Perceptrons, the framework BigDL [4]
provides further artificial neural network functionalities16. Avail-
able machine learning models within the Spark MLlib 3.1 are for
example: Logistic Regression, Random Forest, Multilayer Percep-
tron, and Linear Support Vector Machine, which can be used for
Classification and Regression tasks17. The MLlib machine learn-
ing models can directly operate on the output of the DistRDF2ML
pipeline (see Examples within [25]). This offers end-to-end machine
learning pipelines operating on Apache Spark clusters. Hence, Dis-
tRDF2ML serves as an enabler to process large-scale RDF data
through downstream ML tasks in a distributed fashion.

Figure 4: Semantically annotated ML result in original KG

Semantification of Results: The machine learning computations
of the DistRDF2ML framework are available in the tabular form
through the native Spark MLlib algorithms. For prediction tasks,
a table is created containing the URI of the sample in the entityId
column (see Listing 4) and the corresponding annotation in the
prediction field. In the case of similarity estimations, two columns
are used for the pair of the URIs and one for the corresponding sim-
ilarity value. Our ML2Graph module can be used as a transformer.
It creates an RDF knowledge graph based on these tabular results
15https://spark.apache.org/docs/latest/ml-guide.html
16https://bigdl-project.github.io/master/
17http://spark.apache.org/docs/latest/ml-classification-regression.html

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4469

using NodeFactory from Apache Jena. The resulting graph can be
exported in common RDF data format to complete the initial input
knowledge graph with the predictions (see Figure 4). The trans-
formers provide semantic representations of their hyper-parameter
configuration, enriching the ML pipeline results with metadata that
helps to reproduce results and support interpretation. They serve
as hints for further ML pipeline optimization.

1 val p r e d i c t i o n : Dataframe = someMLmodel
2 . t r an s f o rm (d f)
3 val ml2Graph = new ML2Graph ()
4 . s e tEn t i t yCo lumn (" e n t i t y ID ")
5 . se tValueColumn (" p r e d i c t i o n ")
6 val metagraph : RDD[T r i p l e] = ml2Graph
7 . t r an s f o rm (p r e d i c t i o n)
8 metagraph
9 . s a v eA sNT r i p l e s F i l e (" / out / put / path ")

Listing 5: Semantification of machine learning results

5 DISTRDF2ML AS A RESOURCE
The DistRDF2ML framework proposes modules to preprocess RDF
knowledge graph data for state-of-the-art artificial intelligence,
data mining, and data analytics pipelines. The framework is fully
available for the community as an open source GitHub release [25]
and as an extension of the holistic SANSA stack to materialize big
RDF data. DistRDF2ML enables various domains to empower their
distributed Apache Spark clusters to process ML pipelines on RDF
data. The performance and scalability of the framework have been
evaluated on various (hyper-)parameter setups to present the ad-
vantages of the efficient data processing pipelines in data-intensive
computing (see Section 6). The lack of existing extensions for pro-
cessing RDF data within Spark MLlib pipelines was a significant
motivation to develop this framework. The feature extraction over
semi-automated query execution by Literal2Feature [17] and Spar-
qlFrame modules also enable non-native semantic developers to
construct explainable feature extraction pipelines. The feature and
knowledge extraction based on queries and processed through the
SmartVectorAssembler allow multi-modal content preserving rep-
resentations of feature vectors. Within various partner projects, the
framework shows its enabling nature to create with few lines of
intuitive code ML pipelines for various domains.

5.1 Novelty
DistRDF2ML brings for the first time a generic preprocessing pipeline
of RDF knowledge graphs to the Apache Spark world. The mod-
ules are easy to use as transformers and create explainable feature
vectors. The extended SANSA stack provides end-to-end semantic
ML pipelines for RDF knowledge graphs. This framework brings
multiple complex technology stacks together, such as semantic
data processing, distributed scalable computing, generic machine
learning, and data science pipelines.

5.2 Availability
All the introduced building blocks of the DistRDF2ML pipeline are
integrated into the SANSA framework within the machine learning

layer18. The framework is also published as a Release19 with attach-
ments like the fat jar and data for the evaluation. DistRDF2ML is
integrated into the SANSA Stack, an open source GitHub repository
under Apache 2.0 license (see SANSA licensing).

5.3 Utility
The modules are fully documented on the code level20 but also on
how to use level21. The modules are implemented as a transformer
to align with the structure of Apache Spark MLlib. All of the pa-
rameter adjustments have to be made on transformer level [25].
This is shown in Listings 2,3. We made multiple sample pipelines
available as an example class or as a Databricks Notebook [25]
s.t. the try-out hurdle is majorly reduced. The common pipeline
interface should offer users from the three domains: semantic web
developers, data scientists/ML engineers, and Apache Spark data
analysts, an easy structure to build desired ML pipelines. The cen-
tral idea is that this framework acts as an enabler between different
technological worlds. We have appended the referred data and fat
jar directly to the corresponding DistRDF2ML GitHub release for
the reproducibility of results.

5.4 Predicted Impact
The DistRDF2ML framework allows data scientists and semantic
web developers to implement their ML pipelines with few lines
of code. Apache Spark supports to scale them among Big Data re-
quirements. This resource brings together the strengths of multiple
domains and offers the interface between those. This resource is
a part of the SANSA stack, which is constantly being developed,
and additional features are being added. The framework has six-
month release cycles. All modules are covered by unit tests which
are executed for every pull request within GitHub actions s.t. prob-
lems or errors become apparent pretty fast and are resolved by the
SANSA development team. With its usability over Databricks, the
framework targets a large group of developers who want to de-
velop end-to-end Spark ML pipelines operating on RDF knowledge
graphs. Due to the increase of available and the usage of RDF data
in the context of knowledge graphs and data integration, and the
increase of data set sizes in general, the availability of a scalable
framework offering accessible, hands-on opportunities to port ideas
directly within the SANSA framework is an important resource
contribution.

5.5 Use Cases
Generic scalable distributed preprocessing pipeline for RDF knowl-
edge graphs are needed in almost all common downstreammachine
learning and data analytics tasks which have to be operated on ex-
plainable feature vectors. The EU Horizon 2020 project PLATOON
(Platform for Tools in Energy)22 uses this framework to analyze
large-scale energy RDF data analytics tasks. The database of the
PLATOON project was made available for data integration from
many data sources in RDF, which especially contain timestamp,
18https://github.com/SANSA-Stack/SANSA-Stack/tree/develop/sansa-ml
19https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML
20https://sansa-stack.github.io/SANSA-Stack/
21https://github.com/SANSA-Stack/SANSA-Stack/blob/develop/sansa-
ml/README.md
22https://platoon-project.eu

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4470

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML

categorical and numerical features. The data is of a large scale that
individual systems can no longer process. Many use cases require
convenient learning pipelines that cover various predictive models
like regression and classification. Moreover, the project Simple-
ML23 plans to use the framework DistRDF2ML for processing RDF
datasets. The significant advantage is the easy alignment of inter-
faces to other libraries like scikit-learn and the native operation on
RDF data. SANSA is also an integral part of the data analysis in
the Opertus Mundi24 project. In addition, there is an application
in the field of accident analytics in the Smart City area, in which
the technologies presented here are used to prepare considerable
amounts of data for the further processing of standard ML models.

6 EVALUATION
6.1 Data Description
For the evaluation and reproducibility of DistRDF2ML usage, we use
the openly available Linked Movie Database[10] which introduces
a movie knowledge graph with information about movies, titles,
runtimes, actors, genre, producers, origin country information, and
muchmore. This LMDB data is interesting because it shows the high
diversity of possible multi-modal data within a knowledge graph
like the NLP of the title, categorical lists of String representing
the movie genres. Alternatively, even the countries population, the
movie’s runtime as digit features can be incorporated into data
analytics and ML pipelines. Figure 5 shows a small extract from the
knowledge graph as a plot (extract from N-Triple file are available
in the release data set section [25]).

Figure 5: Sample graph snippet from Linked Movie Data-
base

6.2 Description Evaluation Dimensions
A major aspect of this contribution is the usage of Apache Spark to
allow distributed execution of machine learning pipelines starting
from semantic data. This offers scalability in memory and process-
ing power, which would not be available in single system imple-
mentations. Also, processing power, feature extracting SPARQL
complexity, and Spark cluster configuration influence the needed
processing time. In this section, we offer an overview of the effect
of these different (hyper-)parameters on the respective processing
time. The plots in Figures 6, 7, 8, 9 present the processing times
of the most complex software modules as stacked bar charts. The
dark green lower part of each full bar corresponds to the Sparql-
Frame transformer, and the light blue upper part corresponds to the
SmartVectorAssembler. The height of the bars always corresponds
to the execution time in seconds.
23https://simple-ml.de
24https://www.opertusmundi.eu

6.3 Processing Power vs Processing Time
The following paragraph shows how the available computational
resources majorly influence the processing time. The substantial
decrease of processing time over an increase of processing power
allows high scalability among higher-performing clusters. For use
cases where the processing time is critical, it is even possible to
reduce the processing time by increasing the number of execut-
ing cores, showing the high effective parallelism and distributed
approach of DistRDF2ML.

Figure 6: Processing power vs processing time

6.4 SPARQL Complexity vs Processing Time
The starting point of creating the feature vectors is the respective
SPARQL query. This query could have a considerable variety of com-
plexity. The complexity is adjustable by the number of projection
variables and the number of features. Additionally, the complexity
is influenced by the traversal depth to reach a specific projection
variable respective feature level and the type of used feature. In
our example of linked movie database where a movie has assigned
an arbitrarily long feature list of actors’ names, but also a single
digit feature of the movie’s runtime, the feature processing steps
for a variable length string feature like the actors is more memory-
intensive than the single digits representation of the runtime. We
also compared the local execution of this pipeline compared to the
cluster setup. Even in the more minor SPARQL queries, we perceive
how fast the cluster usage outperforms a local Computer (6-Core,
16GB Ram, MBP 16 2019). All of the used hyper-parameters are
available on the GitHub page as all of the code is there available
fully open source to allow a higher reproducibility of the exper-
iments and find respective recommendations for other use cases
[25].

6.5 Dataset Size vs Processing Time
DistRDF2ML is also evaluated in terms of the scalability of different
data sizes. This evaluation includes both local executions on a single
local consumer notebook (6-Core, 16GB Ram, MBP 16 2019) and
distributed on a three node Apache Spark cluster (each having
64 cores and 256GB RAM). The data was generated synthetically
compared to the other experiments that were based on LMDB. The
synthetic datasets ensure that the data’s exponential growth is

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4471

Figure 7: SPARQL complexity vs processing time

achieved with consistent data and feature density. The evaluation
shows that DistRDF2ML scales even with exponentially increasing
data sizes. Also, it can be seen that for small data up to 103 movies, a
local execution is faster than a distributed execution. This behaviour
is because the data size does not justify the overhead of network
communication and distributed execution management. However,
it can be seen that from 104 movies, cluster computation offers
not only performance-wise advantages, but also from 105 movies,
there are advantages of having sufficient main memory available
that prevent out of memory problems (see figure 8, see section
1). The case of out-of-memory was due to the sheer number of
unique features that had to be indexed via Word2Vec embeddings
and label encoding. The memory load can be reduced by setting
min counts to greater than 1. We decided to use the worst edge
case to measure an upper bound. The data used for the evaluation
can be downloaded in full from the framework release page. The
interval in which data sizes are visualized was chosen based on
breakpoints. These breakpoints are the transition points at which
cluster computation is superior both performance and RAM-wise
to the local execution.

Figure 8: Dataset (-size) and number movies on cluster and
local execution vs processing time

6.6 Spark Setup vs Processing time
In the Spark setup, we can configure over the spark-submit a distri-
bution of executors and their assigned executor cores and executor
memories. In a cluster of nodes, each having 64 cores and 256GB
RAM, we can decide to allow the spark to have up to 60 cores and
240GB RAM. We do not use all capacities to allow background
processes and spark overhead to use the remaining capabilities.
Now we have to decide which adjustment executors we want to
make. The two edge cases are 3 Executors, each having 60 cores
and 240GB of RAM called fat executors, or we can go for the other
edge case of 180 executors, each having one core and 4GB of RAM.
Figure 9 depicts the optimization of execution time by balancing
between fat and micro executors (best configuration in 4th bar: 15
executors each having 12 executor cores).

Figure 9: Spark setup vs Processing time

6.7 Sample DistRDF2ML pipelines
For demonstration purposes, we developedmachine learning pipelines
on RDF knowledge graphs and made those available within the
SANSA stack GitHub repository and over Databricks notebooks[25].
Within the documentation, one can find:

• Generic Random Forest Regression ML pipeline to predict
LMDB movie runtimes

• Generic RF Classification ML pipeline to predict LMDB
movie genres

• Generic K-Means ClusteringML pipeline to group LMDB
movies

7 DISCUSSION
Advantages of distributed processing: In the experiments, we ob-

serve that the development and use of Apache Spark as one funda-
mental backbone offer high scalability far beyond the capabilities
local computers can achieve. The significant advantage, in addition,
is that the same code can be used on any spark cluster instance
and will make use out of the available resources. In Figure 7 we
have shown the first-hand-on guideline to optimize the spark setup,
which can improve performance.

Limits of local computation: In a multitude of experiments in
which we compared local and distributed cluster computation, we

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4472

measured that CPU-processing wise the cluster scales far better
than local execution. Also very important, the cluster can easily
be configured with more RAM and can more easily handle much
more complex in-memory processing tasks without getting out-of-
memory issues.

Scalability of approach: The experiments show the scalable na-
ture of Apache Spark and its modules. We stuck to Apache Spark
design principles when creating the transformers. This program-
ming principle paid off with excellent scalability behaviour among
various (hyper-)parameters (see section 6).

Generality of Approach: Within paragraph 6.7, DistRDF2ML shows
its various application opportunities as enabler and glue between
large scale RDF knowledge graphs and existing numeric feature-
based Apache Spark MLlib machine learning approaches. The usage
of DistRDF2ML within the examples of Clustering, Classification,
and Regression shows how easily applicable and adjustable these
transformers are. These transformers will majorly decrease the
entry hurdle for creating baseline Apache Spark RDF ML pipelines.
If the transformer does not suit the users’ purpose, it can be used
as starting point for further development cause of its fully open
source nature.

8 CONCLUSION
DistRDF2ML provides the first end-to-endApache Spark framework
of generic modules to create explainable machine learning pipelines
for knowledge graphs. DistRDF2ML can cover the requirements of
a large set of use cases. The strengths lie in the high-level interface
via transformers to build an intuitive creation of explainable feature
vectors for machine learning models. By incorporating modules of
the SANSA stack, Apache Spark and Apache Jena, DistRDF2ML op-
erates natively on large-scale RDF data sets. Also, by providing the
Literal2Feature function, the entry-level into the creation of feature
extracting SPARQL is majorly simplified. We have evaluated the
scalability of the approach. Through the results of experiments, it
can be observed that by increasing resources (number of CPU cores,
see Figure 6), the processing time is reduced. Also, a distributed
environment with the increased allocation of memory can be per-
ceived as capable of significantly processing more extensive data
sets (see Figure 8). The variety of documentation from Scala docs
over example pipelines to the mapped functionalities in the unit
tests allows a quick start in using the framework [25]. The align-
ment to the standard interfaces of Spark MLlib and transformer
(see Listings: 2, 3) also makes working with large-scale RDF data
possible for a large number of data scientists who have less experi-
ence with working on semantic, linked open data, or Apache Spark.
The availability of open source also makes necessary customization
by users possible.

8.1 Future Work
We will keep track of the DistRDF2ML and SANSA stack user
needs and will update desired features corresponding to upcoming
requirements. DistRDF2ML will become part of the next regular
SANSA release. Also, we plan to extend the pipeline to include
the possibility of knowledge graph embeddings. We also plan to

make graph native machine learning and linked data analytics ap-
proaches part of the framework. We will facilitate the opportunities
of DistRDF2ML to develop applied projects which solve prediction
and data analytic problems.

ACKNOWLEDGEMENT
This work was partly supported by the EU Horizon 2020 project
PLATOON (Grant agreement ID: 872592). We would also like to
thank the SANSA development team for their helpful support.

REFERENCES
[1] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The semantic web.

Scientific american 284, 5 (2001), 34–43.
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Neural Information Processing Systems (NIPS). NIPS, South Lake Tahoe,
1–9.

[3] Weiwei Cheng, Gjergji Kasneci, Thore Graepel, David H. Stern, and Ralf Herbrich.
2011. Automated feature generation from structured knowledge. In Proceedings
of the 20th ACM Conference on Information and Knowledge Management, CIKM
2011, Glasgow, United Kingdom, October 24-28, 2011. ACM, 1395–1404. https:
//doi.org/10.1145/2063576.2063779

[4] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang
Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li, et al. 2019. Bigdl:
A distributed deep learning framework for big data. In Proceedings of the ACM
Symposium on Cloud Computing. ACM, Santa Cruz CA USA, 50–60.

[5] Carsten Felix Draschner, Jens Lehmann, andHajira Jabeen. 2021. DistSim-Scalable
Distributed in-Memory Semantic Similarity Estimation for RDF Knowledge
Graphs. In 2021 IEEE 15th International Conference on Semantic Computing (ICSC).
IEEE, Laguna Hills, California, 333–336.

[6] Apache Flink Foundation. 2021. Apache Flink. https://flink.apache.org.
[7] Apache Jena Foundation. 2021. Apache Jena. https://jena.apache.org/index.html.
[8] Apache Spark Foundation. 2021. Apache Spark. https://spark.apache.org.
[9] Apache Spark Foundation. 2021. Apache Spark MLlib. https://spark.apache.org/

mllib/.
[10] Oktie Hassanzadeh and Mariano P Consens. 2009. Linked Movie Data Base.

openreview.net, no adress.
[11] Venkata Narasimha Pavan Kappara, Ryutaro Ichise, and O. P. Vyas. 2011. LiDDM:

ADataMining System for Linked Data. InWWW2011Workshop on Linked Data on
the Web, Hyderabad, India, March 29, 2011 (CEUR Workshop Proceedings, Vol. 813).
CEUR-WS.org. http://ceur-ws.org/Vol-813/ldow2011-paper07.pdf

[12] M.A. Khan, G.A Grimnes, and A. Dengel. 2010. Two pre-processing operators
for improved learning from semanticweb data. In First RapidMiner Community
Meeting And Conference (RCOMM 2010).

[13] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo NMendes, Sebastian Hellmann, MohamedMorsey, Patrick Van Kleef, Sören
Auer, et al. 2015. Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic web 6, 2 (2015), 167–195.

[14] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler,
Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad Saleem, Axel Cyrille
Ngonga Ngomo, and Hajira Jabeen. 2017. Distributed semantic analytics using
the SANSA stack. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10588 LNCS, iii
(2017), 147–155. https://doi.org/10.1007/978-3-319-68204-4_15

[15] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[17] Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann,
and Hajira Jabeen. 2021. Literal2Feature: An Automatic Scalable RDF Graph
Feature Extractor. In Proceedings of the 17th International Conference on Semantic
Systems, SEMANTICS 2021, Amsterdam, The Netherlands, September 6-9, 2021.

[18] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in scala. Artima
Inc.

[19] Jeff Z Pan. 2009. Resource description framework. In Handbook on ontologies.
Springer, 71–90.

[20] Heiko Paulheim and Johannes Fürnkranz. 2012. Unsupervised generation of data
mining features from linked open data. In 2nd International Conference on Web
Intelligence, Mining and Semantics, WIMS ’12, Craiova, Romania, June 6-8, 2012.
ACM, 31:1–31:12. https://doi.org/10.1145/2254129.2254168

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4473

https://doi.org/10.1145/2063576.2063779
https://doi.org/10.1145/2063576.2063779
https://flink.apache.org
https://jena.apache.org/index.html
https://spark.apache.org
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
http://ceur-ws.org/Vol-813/ldow2011-paper07.pdf
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1145/2254129.2254168

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[22] Petar Ristoski and Heiko Paulheim. 2016. Rdf2vec: Rdf graph embeddings for
data mining. In International Semantic Web Conference. Springer, Kobe, Japan,
498–514.

[23] Claus Stadler, Gezim Sejdiu, Damien Graux, and Jens Lehmann. 2019. Sparklify:
A Scalable Software Component for Efficient Evaluation of SPARQL Queries over
Distributed RDF Datasets. In The Semantic Web – ISWC 2019, Chiara Ghidini, Olaf
Hartig, Maria Maleshkova, Vojtěch Svátek, Isabel Cruz, Aidan Hogan, Jie Song,
Maxime Lefrançois, and Fabien Gandon (Eds.). Springer International Publishing,

Cham, 293–308.
[24] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[25] SANSA team. 2021. DistRDF2ML Release. https://github.com/SANSA-Stack/
SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML.

[26] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[27] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 arXiv:1412.6575 (2014), 1–12.

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4474

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 DistRDF2ML Architecture
	4.1 Pipeline
	4.2 SparqlFrame
	4.3 SmartVectorAssembler
	4.4 Machine Learning Models

	5 DistRDF2ML as a Resource
	5.1 Novelty
	5.2 Availability
	5.3 Utility
	5.4 Predicted Impact
	5.5 Use Cases

	6 Evaluation
	6.1 Data Description
	6.2 Description Evaluation Dimensions
	6.3 Processing Power vs Processing Time
	6.4 SPARQL Complexity vs Processing Time
	6.5 Dataset Size vs Processing Time
	6.6 Spark Setup vs Processing time
	6.7 Sample DistRDF2ML pipelines

	7 Discussion
	8 Conclusion
	8.1 Future Work

	References

