
M

C
P
a

b

c

1
d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

B

Contents lists available at ScienceDirect

Ecological Complexity

journal homepage: www.elsevier.com/locate/ecocom

Original research article

Integrals of life: Tracking ecosystem spatial heterogeneity from space
through the area under the curve of the parametric Rao’s Q index
Elisa Thouverai a,∗,1, Matteo Marcantonio b,1, Jonathan Lenoir c, Mariasole Galfré a,
Elisa Marchetto a, Giovanni Bacaro d, Roberto Cazzolla Gatti a, Daniele Da Re b,

ichele Di Musciano a,e, Reinhard Furrer f, Marco Malavasi g, Vítězslav Moudrý h,
Jakub Nowosad i, Franco Pedrotti j, Raffaele Pelorosso k, Giovanna Pezzi a, Petra Šímová g,

arlo Ricotta l, Sonia Silvestri m, Enrico Tordoni n, Michele Torresani o, Giorgio Vacchiano p,
iero Zannini a,q,r, Duccio Rocchini a,g

BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126 Bologna, Italy
Evolutionary Ecology and Genetics Group, Earth & Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
UMR CNRS 7058, Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, F–80037 Amiens Cedex
, France
Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100, L’Aquila, Italy
Department of Mathematics and Institute of Computational Science, University of Zürich, Zürich, Switzerland
Department of Chemistry, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Krygowskiego 10, 61-680 Poznan, Poland
University of Camerino, Camerino, Italy
DAFNE Department, Tuscia University, 01100 Viterbo, Italy
Department of Environmental Biology, Sapienza University, Piazzale Moro, 5, 00185, Rome, Italy
Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126 Bologna, Italy
Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
Libera Università di Bolzano - Freie Universität Bozen, Bolzano/Bozen, Italy
Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
LifeWatch Italy, Lecce,
Plant Data – Interuniversity Research Centre for Plant Biodiversity and Big Data, Department of Biological, Geological and Environmental Sciences, University of
ologna, Bologna, Italy

A R T I C L E I N F O

Keywords:
Biodiversity
Ecological informatics
Modelling
Remote sensing
Satellite imagery

A B S T R A C T

Spatio-ecological heterogeneity is strongly linked to many ecological processes and functions such as plant
species diversity patterns and change, metapopulation dynamics, and gene flow. Remote sensing is particularly
useful for measuring spatial heterogeneity of ecosystems over wide regions with repeated measurements in
space and time. Besides, developing free and open source algorithms for ecological modelling from space is
vital to allow to prove workflows of analysis reproducible. From this point of view, NASA developed programs
like the Surface Biology and Geology (SBG) to support the development of algorithms for exploiting spaceborne
remotely sensed data to provide a relatively fast but accurate estimate of ecological properties in vast areas
over time. Most of the indices to measure heterogeneity from space are point descriptors : they catch only
part of the whole heterogeneity spectrum. Under the SBG umbrella, in this paper we provide a new R function
part of the rasterdiv R package which allows to calculate spatio-ecological heterogeneity and its variation
over time by considering all its possible facets. The new function was tested on two different case studies,
on multi- and hyperspectral images, proving to be an effective tool to measure heterogeneity and detect its
changes over time.
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1. Introduction

The concept of spatiotemporal heterogeneity is crucial in ecolog-
ical modelling to link spatial patterns to the generating processes
and to the functional networking among organisms (Borcard et al.,
1992). In ecological research, the search for new methods underly-
ing spatiotemporal patterns in ecosystem heterogeneity has been a
recurring theme (Rocchini and Ricotta, 2007; Atluri et al., 2018).
Spatio-ecological heterogeneity, in this paper considered as the degree
of non-uniformity in vegetation, land cover, and physical factors (soil,
topography, microclimate and topoclimate; Stein et al. (2014)), has
been proven to be strongly linked to many ecological processes and
functions such as plant species diversity patterns and change (Roc-
chini et al., 2018), metapopulation dynamics (Fahrig, 2007), and gene
flow (Lozier et al., 2013). Indeed, an increase of spatial heterogeneity
means an increase in the availability of ecological niches, provision
of refuges at relatively short distances and opportunities for spatial
isolation and local adaptation (Stein et al., 2014). As a consequence,
species coexistence, persistence and diversification are generally in
strict relation with the degree of environmental heterogeneity available
within the landscape (Stein et al., 2014; Tews et al., 2004). The devel-
opment of new methods for measuring spatio-ecological heterogeneity
is also fundamental to make estimations of its change in time in order
to improve conservation planning (Skidmore et al., 2021).

In this context, NASA developed programs like the Global Ecosystem
Dynamics Investigation (GEDI, https://gedi.umd.edu/) or the Surface
Biology and Geology (SBG) mission (https://science.nasa.gov/earth-
science/decadal-sbg) exploiting spaceborne remotely sensed data to
provide a relatively fast but accurate estimate of spatio-ecological
heterogeneity in vast areas over time. In fact, spectral heterogeneity of
an optical image – associated with the reflectance values of the pixels –
can be a proxy of the spatio-ecological heterogeneity (Rocchini, 2007).
Hence, the variation of spatio-ecological heterogeneity in space and
time (e.g., phenological cycles) can be effectively inferred using remote
sensing (Schneider et al., 2017).

Therefore, the measure of ecosystem heterogeneity over time from
satellite through Free and Open Source Software and algorithms allows
robust, reproducible and standardized estimates of ecosystem patterns
and processes (Rocchini and Neteler, 2012). Also, its use brings many
advantages: availability, transparency and shareability. In this context,
the R platform is one of the most used statistical and computational en-
vironment in ecology, partially thanks to the continuous development
of relevant packages. In particular, the rasterdiv package (Marcan-
tonio et al., 2021; Rocchini et al., 2021b; Thouverai et al., 2021) allows
to calculate a plethora of different indices to measure spatio-ecological
heterogeneity from space.

Most of the algorithms have been related to Information The-
ory relying on abundance-based metrics, starting from Shannon’s in-
dex (Simpson, 1949) (see Section 2). However, some information about
the spectral distance among pixel reflectance values might be lost if
not considered in the calculation (Rocchini et al., 2017). Currently,
the candidate for solving the problem is Rao’s Quadratic Entropy
index (hereafter Rao’s Q) (Rao, 1982): this index, besides the relative
abundance of pixel values in a given moving window or polygonal area,
incorporates also their spectral distances (Section 2). Both Shannon and
Rao’s Q indices are point descriptors of heterogeneity, namely they can
only show part of the whole heterogeneity spectrum. Recently Rocchini
et al. (2021a) proposed an implementation of the Rao’s Q index by
parameterizing the original formula, and allowing the whole continuum
of heterogeneity to be measured thanks to Rao’s Q continuous profiles
(see Section 2).

This paper aims to show how to make proper use of the Rao’s con-
tinuum heterogeneity variation profile by proposing a new R function –
integrated into the rasterdiv R package (Marcantonio et al., 2021) –
which calculates AUC, the area under the curve formed by applying the
parametric Rao’s Q index (see Section 2). Two case studies on multi-
and hyperspectral satellite images are also provided in order to verify
if the new metric proposed could be an effective tool for the study of
spatio-ecological heterogeneity.
2. The algorithm

2.1. The theory

Algorithms that aim to measure environmental heterogeneity
through remote sensing data can rely on the moving window technique,
which divides remotely sensed imagery into user-defined squares (win-
dows) to derive measures of heterogeneity. Examples are included in
the rasterdiv R package (Rocchini et al., 2021b). One of the most
used metrics included in the package is the Shannon entropy index H
(Shannon, 1948):

𝐻 = −
𝑁
∑

𝑖=1
𝑝𝑖 ln 𝑝𝑖 (1)

where the relative abundance of every pixel reflectance value cal-
culated as the ratio between the actual value of the pixel 𝑖 ∈ {1,… , 𝑁}
and the sum of the pixel values of the moving window (𝑝𝑖) in an
image of 𝑁 pixels is considered. It is usually calculated of one layer
images, such as a vegetation index or the first axis of a PCA. However,
Shannon’s H does not consider the spectral distances among pixel
reflectance values, overestimating the heterogeneity of homogeneous
surfaces (Rocchini et al., 2017). For instance, when using Shannon’s H,
spectral values differing by a few decimals will be treated the same as
spectral values differing by several order of magnitudes. To overcome
this issue, Rao’s Q index (Rao, 1982) can be used to include the pixel’s
spectral distances in the calculation:

𝑄 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑑𝑖𝑗 × 𝑝𝑖 × 𝑝𝑗 (2)

where 𝑑𝑖𝑗 is the spectral distance between pixel 𝑖 and pixel 𝑗 and 𝑝𝑖
and 𝑝𝑗 are the relative abundances of the pixels 𝑖 and 𝑗 in an assemblage
of 𝑁 pixels. The spectral distance between pixels 𝑑𝑖𝑗 can be calculated
over any number of layers and using any metric for the calculation of
pairwise distances. For example, in the rasterdiv package, the Rao
function permits the calculation of Rao’s Q choosing from ‘‘euclidean’’,
‘‘manhattan’’, ‘‘canberra’’, ‘‘minkowski’’ and ‘‘mahalanobis’’ as the type
of distance calculated (Marcantonio et al., 2021). Both Shannon’s H and
Rao’s Q are point descriptors of heterogeneity, showing only one part
of its potential spectrum. Therefore, the use of generalized entropies,
where one single formula represents a parameterized version of an
index, provides a continuum of heterogeneity metrics reflecting all the
characteristics of the heterogeneity spectrum. Rocchini et al. (2021b)
presented a parametric version of Rao’s Q allowing the characterization
of the dimensionality of heterogeneity in different ecosystems:

𝑄𝛼 =

( 𝑁
∑

𝑖,𝑗=1
𝜔𝑖𝑗𝑑

𝛼
𝑖𝑗

)

1
𝛼

(3)

where 𝑑𝑖𝑗 is the spectral distance between pixel 𝑖 and pixel 𝑗 and 𝜔𝑖𝑗
is the combined probability (1∕𝑁2) of extracting pixels 𝑖 and 𝑗 in this
order in an image of 𝑁 pixels. In other words, parametric Rao’s Q is
a generalized mean that measures the expected distance between two
randomly chosen pixels regulated by the parameter 𝛼. The 𝛼 parameter
provides a continuum of potential diversity indices by regulating the
weight of 𝑑𝑖𝑗 with the highest values obtaining different types of means
as it is increasing ([𝛼 → 0] ⇒ geometric, [𝛼 = 1] ⇒ arithmetic, [𝛼 = 2] ⇒
quadratic, [𝛼 = 3] ⇒ cubic, and so on till [𝛼 → ∞] ⇒ 𝑚𝑎𝑥𝑑).

In this paper, we propose to calculate the area under the curve
(AUC) constructed by applying the index parametric Rao’s Q over a
sequence of 𝛼 values. We want to verify if AUC can be used to quantify
the width of the diversity spectrum calculated with parametric Q for
each pixel, resulting in an image that can be exploited to monitor the
change in the heterogeneity spectrum over time for a selected area.

https://gedi.umd.edu/
https://science.nasa.gov/earth-science/decadal-sbg
https://science.nasa.gov/earth-science/decadal-sbg
https://science.nasa.gov/earth-science/decadal-sbg
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2.2. The R function

The function rasterdiv::RaoAUC() exploits the function ras-

terdiv::paRao() to define the values of the parametric Rao’s Q

using a vector of alphas decided by the user. Accordingly, the values of

parametric Rao’s Q are calculated building a moving window around

every pixel of the remote sensing image for every alpha selected. Then,

the integral of the curve formed by the values of the parametric Rao’s

Q index obtained for every pixel is calculated.

3. Examples

In this section, we present one theoretical examples and two case

studies for the new R function proposed (RaoAUC()). Specifically,

AUC was calculated for one layer, multi- and hyperspectral satellite

images of areas afflicted by a sudden event that changed the spatio-

ecological heterogeneity of the area. We choose two images per case

study of two different moments in time and calculated the difference

between the two, highlighting the increase in heterogeneity.

3.1. A theoretical example

In this section, we will show how to use the function accRao()

rom the rasterdiv package to calculate the accumulation function

integral) of Rao values obtained using a range of alpha-values. We

sed a raster for the global average NDVI rescaled at 8-bit available

rom rasterdiv. This raster was first cropped on the islands of

ardinia and Corsica. In order to simulate the effects of an ecological

erturbation, for example widespread drought, we created a new raster

ith perturbed NDVI values for these two islands. Pixels with NDVI

igher than 150 were decreased using values from a normal distribu-

ion centred on 50 with a standard deviation of 5. Then, we applied

ccRao() both on the original and simulated raster by using alphas
anging from 1 to 10: a
RaoAUC . before ← accRao (
alphas = 1 : 10 , #range of alphas

x = ndvi . before , #r a s t e r l ayer

d i s t _m = " eucl idean " , #method fo r the
#ca l cu l a t i on of the
#s p e c t r a l d i s tance

window = 3 , #dimension of the moving window

method = " c l a s s i c " , #s p e c i f i e s i f the funct ion
#i s appl ied on a s i ng l e
#layer or on a
#mult idimensional system

rasterAUC = TRUE, #s p e c i f i e s i f the output
#wi l l be a r a s t e r l ayer or
#a matrix

na . to l e rance = 0 . 4 , #proport ion of NA values
#to l e r a t ed

np = 1 #number of cores which w i l l be spawned
)

RaoAUC . a f t e r ← accRao (
alphas = 1 : 10 ,
x = ndvi . a f t e r ,
d i s t _m = " eucl idean " ,
window = 3 ,
method = " c l a s s i c " ,
rasterAUC = TRUE,
na . to l e rance = 0 . 4 , np = 1)

Afterwards, the difference between the two rasters, before and after

the simulated perturbation, was calculated (Fig. 1). Also, the average

parametric Rao of the images in Fig. 1 was calculated for every 𝛼 value,

and the resulting curves are showed in Fig. 2.

accRao() function derives the value of parametric Rao for each

ixel using a moving window algorithm. To illustrate how this method-

logy works, we applied paRao() on a single group of neighbour

ixels, which represents a moving window, from the two NDVI rasters

nd with alphas ranging from 1 to 10 as follows:
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Fig. 1. From left to right: the NDVI images of Sardinia and Corsica before and after the simulated perturbation, the correspondent AUC images and their difference after — before
the simulated perturbation.
Fig. 2. Three curves representing respectively: the mean values of parametric Rao’s
Q (i) before (yellow) and (ii) after (grey) the simulated ecological perturbation
(drought) of Fig. 1, their correspondent confidence intervals and (iii) their difference
(after–before, dashed line) over increasing alphas.

#Se l ec t i on of the 3x3 window
ndvi . pix . b ← ndvi . before [41 : 43 , 21 : 23 , drop=FALSE]
ndvi . pix . a ← ndvi . a f t e r [41 : 43 , 21 : 23 , drop=FALSE]

#Set the alpha i n t e r v a l
alphas ← 1 : 10

#Set the number of p i x e l s in the s e l e c t ed window
N ← 3 ^ 2

#Function to ca l cu l a t e paRao over the s e t alphas
RaoFx ← func t ion ( alpha ,N,D) {

( sum( ( 1/(N^ 4 ) ) ∗ D^ alpha )∗2 ) ^ ( 1/ alpha )
}

#Calcu la t ion of paRao before
rao . b ← sapply ( alphas , funct ion ( a ) {

RaoFx ( alpha = a , N = N,D = as . vector ( ndvi . pix . b ) ) } )

#Ca lcu la t ion of paRao a f t e r
rao . a ← sapply ( alphas , funct ion ( a ) {

RaoFx ( alpha = a , N = N,
D = as . vector ( ndvi . pix . a ) ) } )

c

Fig. 3. Curves representing the values of parametric Rao’s Q for one pixel before
(yellow) and after (grey) the simulated ecological perturbation (drought) of Fig. 1 over
increasing alphas. The area under the curve (AUC) is highlighted.

From the values obtained (a parametric value for each alpha), the
area under the curve was calculated integrating the results (Fig. 3):

#Calcu la t ion of AUC before
RaoAUC . bf ← approxfun ( x = alphas , y = rao . b )
RaoAUC . b ← i n t eg r a t e (RaoAUC . bf , lower = 1 ,

upper = 10 , subd iv i s i on s = 500)

#Ca lcu la t ion of AUC a f t e r
RaoAUC . a f ← approxfun ( x = alphas , y = rao . a )
RaoAUC . a ← i n t eg r a t e (RaoAUC . af , lower = 1 ,

upper = 10 , subd iv i s i on s = 500)

3.2. Empirical examples

In this section, the accRao() function is tested on two real-world
ase studies by comparing remotely sensed images before and after
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Fig. 4. On top, the Kangaroo Island before and after the fires (the area used for the analysis is highlighted) and the selected area before and after the fire in RGB false colour
(NIR, red, green); on the bottom the correspondent AUC images and their difference after–before the fire.
a perturbation event. AUC is calculated on multi- and hyperspectral
images, exploiting the information that every band holds to estimate
the spatio-ecological heterogeneity.

3.2.1. Example 1: Fire spread in the Kangaroo island (Australia)
This section focuses on the major fire-affected area of Kangaroo

Island in January 2020, in particular on Flinders Chase NP and the as-
sociated Ravine Des Casoars Wilderness Protection Area. Two cloudless
images from Copernicus Sentinel-2 (https://sentinels.copernicus.eu/
web/sentinel/missions/sentinel-2) with a spatial resolution of 10 m be-
fore (January 2019) and after (January 2021) were compared (Fig. 4).
The accRao() function was applied on the 2 multispectral images (Red,
Green, Blue and NIR bands) using a moving window of 9 × 9 pixels and
the parameter alpha was set to a range of 1 to 5:

#accRao ( ) funct ion
accRao ( alphas = 1 : 5 , x = kanga _ multi ,

d i s t _m = " eucl idean " , window = 9 ,
method = " multidimension " , rasterAUC = TRUE,
na . to l e rance = 0 . 9 , np = 1)

Subsequently, the difference between the obtained AUC images
as calculated, with positive values meaning an increase in spatio-
cological heterogeneity (Fig. 4). In this case, the AUC of Rao’s Q
rofiles succeeded to highlight areas where the perturbation (fire) event
aused an increase of spatial heterogeneity of vegetation which was
ore homogeneous (continuous woodland cover) before the perturba-

ion.

.2.2. Example 2: Post fire in Santa Barbara, California
For the last empirical examples two hyperspectral images of a post-

ire scene in Santa Barbara (California) were downloaded from AVIRIS
ttps://aviris.jpl.nasa.gov/ platform. The first image is from June 2009,
he second from June 2011 in order to visualize the recovery of the
egetation after the fire event (see Fig. 5). The accRao() function

was applied over all the 224 bands of the two images using a moving
window of 9 × 9 pixels and setting the 𝛼 parameter to a range of one
to 5:
#accRao ( ) funct ion
accRao ( alphas = 1 : 5 , x = santabarbara _ hyper ,

d i s t _m = " eucl idean " , window = 9 ,
method = " multidimension " , rasterAUC = TRUE,
na . to l e rance = 0 . 9 , np = 1)

Subsequently, the difference between the obtained AUC images was
calculated as in the previous examples (Fig. 6). The difference be-
tween the obtained AUC highlights subtle changes of spatio-ecological
heterogeneity in the studied area between 2009 and 2011.

4. Discussion

The study of landscape structure has been steadily growing in
recent years (e.g., Lichstein et al., 2002; Saravia, 2015; Marcantonio
et al., 2013) with the development of several methodologies and ap-
proaches, which have been tested ecosystems and supported in the
scientific literature (see Bar-Massada and Wood, 2014). In particular,
the use and availability of remote sensing data have made it possible
to assess specific heterogeneity patterns over various ecosystems, with
increasing performance in terms of spectral/spatial/temporal charac-
teristics, opening up new possibilities for exploring complex ecological
processes.

Using our algorithm, environmental heterogeneity is estimated by
the range of spectral values associated to the spatial variability within
a given habitat. Hence, environmental heterogeneity can be evaluated
contiguously, from regional to continental extents, according to the
remote sensing data used and the spatial extent of the analysis. Among
the heterogeneity metrics, parametric Rao’s Q adds a layer of infor-
mation to classical estimates of heterogeneity from remotely sensed
multispectral data. This index considers pairwise pixel spectral distance
to separate areas with high richness but low evenness from those with
low richness but high evenness (Rocchini et al., 2017).

In addition, the parametric Rao’s Q can be calculated in a multi-
variate system such as a multi-temporal system, i.e. long time series, in
order to improve the assessments and prediction of changes in spatio-
ecological heterogeneity over space and time (Rugani and Rocchini,
2016). Also, by considering multiple bands, it has a higher capability

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://aviris.jpl.nasa.gov/
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Fig. 5. Post fire in Santa Barbara 2009 (left) and 2011 (right). The area within the
square is the studied area.

to discern subtle diversity changes over the landscape (Torresani et al.,
2019).

In this paper, all the potential facets of heterogeneity were in-
vestigated by parameterizing the Rao’s Q metric and calculating the
area under the curve of continuous entropy profiles. This would be
particularly useful when dealing with multitemporal sets, with in-
creases or decreases of heterogeneity provoked by different ecological
processes like drought (Section 3.1, see also Jiao et al., 2020) and fire
(Section 3.2.1, see also Chuvieco and Kasischke, 2007; Section 3.2.2).
 (
The application of AUC on Rao’s Q in before/after ecological pertur-
bation scenarios can help pointing out areas with the highest difference
in spectral heterogeneity, by considering the whole heterogeneity con-
tinuum. For example, Section 3.2.2 of two postfire scenes shows the
sensibility of the algorithm in highlight even subtle landscape changes
using multiple bands for the analysis. Heterogeneity of ecosystems is
multifaceted in its very nature. As stressed by Gorelick (2011) there is
no ‘‘true heterogeneity’’ measurement since important holistic aspects
of ecosystems are inevitably lost once making use of single metrics.
From this point of view, the proposed generalized entropy, based on a
parameterization of the Rao’s Q entropy (and its area under the curve)
can help catching the multidimensionality of ecosystem heterogeneity
components (Nakamura et al., 2020), avoiding the intrinsic fallacy of
a single best index of true heterogeneity (Gorelick, 2011).

Moreover, the Rao’s Q original formula directly takes into account
the distance among values (pixel reflectances once applied to remote
sensing imagery). This leads to the possibility of accounting for the
turnover among reflectances, also known as beta-diversity in ecol-
ogy (Rocchini et al., 2018). Since little consensus has been reached
as to general measures of heterogeneity/beta-diversity measurement in
literature (Koleff et al., 2003), the aforementioned use of a generalized
metric like the parametric Rao’s Q helps detecting gradients in re-
flectance beta-diversity change (turnover) over space, otherwise hidden
when relying on point descriptors of heterogeneity, i.e. single metrics
like the commonly used Shannon and Simpson indices in remote sens-
ing applications (Nagendra, 2002). In other words, while a wide range
of approaches has been used to catch the variation of ecosystem prop-
erties, finding ways to generalize heterogeneity measurement could
represent a consistent approach to describe heterogeneity patterns
change in space and time (Haralick and Kelly, 1969).

The use of a continuum of diversities as in the parametric Rao’s Q
leads to the understanding of hidden parts of the whole diversity of
dimensionalities (Nakamura et al., 2020). Increasing alpha in Eq. (3)
will increase the weight of higher distances among different values
until reaching the maximum distance value possible (Rocchini et al.,
2021a). For this reason, spatio-ecological heterogeneity values of the
parametric Rao’s Q increase with each alpha progressively added to the
calculation constructing a curve for every moving window built around
each pixel (Rocchini et al., 2021b). Consequently, applying an integral,
it is possible to calculate the area under every pixel’s window area
curve obtaining a new spatio-ecological heterogeneity metric, AUC.
Hence, the accRao() function can highlight the differences before
nd after an ecological perturbation both in the theoretical and in the
mpirical examples (Figs. 1, 4 and 6) showing the change in the whole
eterogeneity continuum and being able to detect both: (i) spatially
ide heterogeneity change patterns, as in the Kangaroo Island’s fires
xample (see Section 3.2.1), as well as (ii) spatially localized differences
n space and time, as in the post fire in Santa Barbara example (see
ection 3.2.2).

The three examples proposed in Section 3, show the application
f AUC on one layer (Section 3.1), multispectral (Section 3.2.1) and
yperspectral (Section 3.2.2) satellite images. However, for the hyper-
pectral images it is difficult to address a cause for the heterogeneity
hange: because of the high number of bands exploited for the analysis
e cannot know which ones weight more in the measure of the index.
nalysis like the Principal Component Analysis (PCA) or correlation
atrices can help to highlight the bands which give more contribution

n the calculation of the spatio-ecological heterogeneity.
Also, in the empirical case studies only a range of alpha between

and 5 was tested because of the high computational complexity of
he function accRao() as it is now. We are actually working to speed
p the algorithm, so it would be interesting in a future study to test
ifferent ranges of alpha. In this context, it would also be helpful the
tudy of the influence of the number of bands and their resolution on
he measure of AUC, as highlighted by the Santa Barbara subsection

see Section 3.2.2).
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Fig. 6. From the top: RGB images of the study area (Santa Barbara, CA) in 2009 and 2011, the correspondent AUC images and their difference 2011–2009.
-

In conclusion, the integration over an alpha range is more con-
enient than having to choose a single alpha level as the most rep-
esentative level of diversity. This task is often complicated as there
s no direct interpretation for the meaning of indices calculated with
ifferent alphas. Here, we propose the way forward to re-conciliate the
dvantage of having a single metrics without the need of choosing a
ingle alpha value.

. Conclusion

In this paper, we provided a practical demonstration of the effec-
iveness of a method that can supply measures of generalized entropy
t different spatial scales and in different contexts. Generalized means
epresent an effective tool to develop a unifying notation for a large
amily of parametric diversity and dissimilarity functions (Ricotta et al.,
021). Indeed, binding different heterogeneity metrics in order to
nalyse ecosystem changes proved to be a reliable approach to enhance
he output information. Although remote sensing data have long held
he promise of transforming environmental monitoring efforts, publicly
ccessible tools leveraging these data to achieve actionable in-sights
ave been lacking. We suggest that Rao’s AUC can be useful to identify
reas more vulnerable to environmental changes, and to develop and
mplement appropriate habitat management plans and environmental
olicies.
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