

D7.1

On Programmable Corpora

Report and Prototype (DraCor)

Authors of the Report: Ingo Börner, Peer Trilcke

Concept & Development of the DraCor Prototype: Frank Fischer, Carsten Milling – Ingo Börner,

Mathias Göbel, Mark Schwindt, Daniil Skorinkin, Henny Sluyter-Gäthje, Peer Trilcke

Date: February 28, 2023

D7.1 On Programmable Corpora

 2

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101004984

Project Acronym: CLS INFRA

Project Full Title: Computational Literary Studies Infrastructure

Grant Agreement No.: 101004984

Deliverable/Document Information

Deliverable No.: D7.1

Deliverable Title: On Programmable Corpora. Report and Prototype (DraCor)

Authors: Ingo Börner, Peer Trilcke

Concept & Development of the DraCor Prototype: Frank Fischer, Carsten Milling – Ingo Börner,

Mathias Göbel, Mark Schwindt, Daniil Skorinkin, Henny Sluyter-Gäthje, Peer Trilcke

Review: Maciej Eder, Michał Mrugalski, Álvaro Pérez Pozo, Salvador Ros, Daniil Skorinkin,

Henny Sluyter-Gäthje

Dissemination Level: PUBLIC

DOI: 10.5281/zenodo.7664964

Document History

Version/Date Changes/Approval Author/Approved by

2022-02-17 Version for Review Ingo Börner, Peer Trilcke

2022-02-27 Version for Submission Ingo Börner, Peer Trilcke

D7.1 On Programmable Corpora

 3

Index

List of Figures 5

List of Tables 6

About this Deliverable 6

1. Publishable Summary 7

2. Introduction and Methodology 7

2.1 Towards an Infrastructural Ecosystem for CLS 7

2.2 A Prototyping Approach 9

3. CLS Research in Digital Ecosystems between Embeddedness and Instability: Some Key

Considerations 11

4. The DraCor Prototype in Action. Four Showcases 13

4.1 Showcase 1: One-Click Download of Modeled Text Data 13

4.2 Showcase 2: Geo-Mapping Locations of First Performances 15

4.3 Showcase 3: Extracting Stage Directions for NLP 17

4.4 Showcase 4: Plotting Network Measures for Thousands of Plays 19

5. Description of the DraCor Prototype 21

5.1 Corpora 22

5.2 DraCor Data Storage 26

5.2.1 GitHub Repositories 26

5.2.2 eXist-db 26

5.3 DraCor API 28

5.3.1 Implementation 29

5.3.2 OpenAPI Documentation 31

5.3.3 Functionality and Endpoints 32

5.3.3.1 Information on a Corpus 35

5.3.3.2 Information on a Play 37

5.3.3.3 Information on Key Constituents of a Play 42

Segments 42

Characters 42

Spoken Text 44

Stage Directions 46

5.3.3.4 Network Data 47

5.3.3.5 Cross-Corpora Queries 49

5.3.4 API Wrappers 50

D7.1 On Programmable Corpora

 4

5.4 DraCor Metrics Service 51

5.5 DraCor SPARQL Endpoint 54

5.6 DraCor Front-End 54

5.6.1 Landing Page: List of Corpora 58

5.6.2 Corpus Page 59

5.6.3 View of a Single Play 60

5.6.3.1 Tab “Network” 61

5.6.3.2 Tab “Relations” 62

5.6.3.3 Tab “Speech Distribution” 63

Excursus: On the Research-Driven Diagrams in the “Speech Distribution” Tab 64

Sapogov 1974 64

Yarkho 1997 [2019] 67

Trilcke, Fischer et al. 2017 71

5.6.3.4 Tab “Full Text” 73

5.6.3.5 Tab “Downloads” 75

Network Data 76

List of Characters 76

Spoken Text 77

Full Text 77

Stage Directions 77

6. Prototyping APIs for CLS. Some Reflections and Two Additional API Experiments 77

6.1 Relating APIs using OpenAPI: The Example of the Folger Shakespeare API 80

6.1.1 Discussion of the Folger Shakespeare API 80

6.1.2 ‘Swaggerization’ of the Folger Shakespeare API 83

6.1.3 Mappings of ShakeDraCor and the Folger Shakespeare API 88

6.2 Bridging POSTDATA and DraCor as Programmable Corpora 89

6.2.1 Overview of POSTDATA components 89

6.2.2 POSTDATAs Specification-first Approach in API Development 95

6.2.3 Prototyping a DraCor-like API for POSTDATA 97

6.2.4 Notes on the Implementation 104

7. Some Lessons Learned 110

References 112

Code References 116

D7.1 On Programmable Corpora

 5

List of Figures

Fig. 01: Full text view of a DraCor play in the front-end.. 14

Fig. 02: Download options for a DraCor play in the front-end .. 14

Fig. 03: Network visualization with Gephi, based on a DraCor one-click download ... 15

Fig. 04: Connecting DraCor and Wikidata: Mapping Locations of First Performances of GerDraCor Plays 17

Fig. 05: Mean Sentence Length in Stage Directions and Spoken Text in GerDraCor plays visualized with Datagraph

(cf. Trilcke et al. 2020) .. 19

Fig. 06: Average Path Length for 2,622 plays in DraCor visualized with Datagraph .. 20

Fig. 07: Different DraCor pages as displayed on a mobile phone .. 21

Fig. 08: Overview of the DraCor System .. 22

Fig. 09: View of collections in the eXist-db IDE “eXide” after loading GerDracor into a local DraCor instance 28

Fig. 10: DraCor API OpenAPI specification visualized with SwaggerUI ... 32

Fig. 11: DraCor menu ... 56

Fig. 12: DraCor corpora drop-down menu .. 57

Fig. 13: DraCor landing page.. 58

Fig. 14: TatDraCor corpus page ... 59

Fig. 15: Download buttons for corpus metadata ... 60

Fig. 16: Play info ... 61

Fig. 17: Author info ... 61

Fig. 18: Single play view, “Network” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088 62

Fig. 19: Single play view, “Relations” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088.................... 63

Fig. 20: Line chart, showing “the change of density per scene” (Sapogov 1971: 63) ... 66

Fig. 21: DraCor chart showing “speech distribution” following Sapogov 1974, https://dracor.org/rus/ostrovsky-

les#speech.. 67

Fig. 22: Chart showing the number of speaking characters (Yarkho 2019:44), for the russian version see

https://rvb.ru/philologica/04/04iarxo_t08.htm .. 69

Fig. 23: Speech distribution in Shakespeare (Yarkho 2019: 34) .. 69

Fig. 24: DraCor chart showing speech distribution following Yarkho 1997... 70

Fig. 25: Speech distribution in Shakespeare’s tragedies before 1600 following Wendell (Wendell 2021: 342) 71

Fig. 26: DraCor chart showing drama change rate following Trilcke, Fischer et al. 2017... 72

Fig. 27: Single play view, “Full text” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088 74

Fig. 28: Single play view, “Downloads” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088 75

Fig. 29: The Folger Shakespeare API Tools, https://www.folgerdigitaltexts.org/api ... 81

Fig. 30: OpenAPI specification rendered with SwaggerUI .. 84

Fig. 31: Response of Folger’s ftln endpoint .. 86

Fig. 32: Folger API response as displayed in the browser ... 86

Fig. 33: Underlying HTML source code for response in Fig. 32 ... 86

Fig. 34: Query in the interactive documentation provided by the Swagger Editor .. 86

Fig. 35: Analysis view of a single poem in POSTDATAs Poetry Lab App .. 90

Fig. 36: : PoetryLab API visualized with SwaggerUI... 91

Fig. 37: Search results as displayed in the PoetryLab front-end .. 92

Fig. 38: Profile page of Lope de Vega in PoetryLab application ... 94

Fig. 39: OpenAPI specification of the API displayed in SwaggerUI .. 100

Fig. 40: DraCor corpus overview (“card view”) ... 101

Fig. 41: PoeCor corpus overiew (“card view”) .. 101

Fig. 42: Corpus overview table with filter functionality .. 102

Fig. 43: Front-end rendering of the data returned by /corpora/{corpusname}/poems/{id} 104

Fig. 44: Query counting number of poems in POSTDATA knowledge graph ... 106

Fig. 45: Implementation of the method get_num_poems .. 107

Fig. 46: Implementation of the endpoint /corpora/{corpusname} ... 109

D7.1 On Programmable Corpora

 6

List of Tables
Tab. 01: Corpus Features ... 35

Tab. 02: Play Features ... 40

Tab. 03: Segment Features .. 42

Tab. 04: Character Features... 44

Tab. 05: Network metrics provided by the DraCor Metrics Service .. 54

Tab. 06: API endpoints used in the front-end ... 56

Tab. 07: “Protocol table” showing configurations in Ostrovsky's “The Forest” (cf. Sapogov 1974) 66

Tab. 08: Mapping Folger endpoints to DraCor endpoints ... 88

About this Deliverable
In addition to this report, this Deliverable D7.1 includes a technical prototype for Programmable

Corpora: the Drama Corpora Platform "DraCor", which has been under construction since 2018

and was most recently further developed within CLS INFRA.

 The main access points to the different components of the DraCor system are:

■ Code and Data on GitHub: https://github.com/dracor-org

■ DraCor Front-end: https://dracor.org/

■ DraCor API: https://dracor.org/doc/api

Numerous scholars participate in the development of DraCor and in the curation of the corpora

(the latter is not part of this Deliverable). For an overview, see https://dracor.org/doc/credits.

For the DraCor platform as a whole, these persons are responsible:

■ Editor-in-chief: Frank Fischer (Freie Universität Berlin)

■ Co-editors: Peer Trilcke (University of Potsdam), Julia Jennifer Beine (Ruhr University

Bochum), Daniil Skorinkin (University of Potsdam)

■ Technical lead: Carsten Milling (University of Potsdam)

■ Technical co-leads: Ingo Börner (University of Potsdam), Mathias Göbel (University of

Göttingen)

■ Art director: Mark Schwindt (Ruhr University Bochum)

https://github.com/dracor-org
https://dracor.org/
https://dracor.org/doc/api
https://dracor.org/doc/credits

D7.1 On Programmable Corpora

 7

1. Publishable Summary
While the discipline of Computational Literary Studies (CLS) consolidates, infrastructural

challenges are arising that have to be addressed to ensure that good, sustainable and open

scholarship can be carried out in this dynamic field of Digital Humanities research. In this situation,

Work Package 7 of the CLS project, entitled “Building the Ecosystem of and for Programmable

Corpora”, is developing a small-scale, but highly functional prototype for an infrastructural

ecosystem for CLS research, following the concept of a network-based software architecture. The

prototype, implemented as the multi-component system “DraCor” (Drama Corpora Platform),

realizes the concept of “Programmable Corpora”, which is defined as corpora that expose an

open, transparently documented and (at least partly) research-driven API to make texts machine-

actionable. This report gives a detailed description of the DraCor system as a prototype for

“Programmable Corpora”. It also shares two experiments in adapting and transferring the

approach of an API-based CLS research infrastructure to other systems and resources.

2. Introduction and Methodology

2.1 Towards an Infrastructural Ecosystem for CLS

With the ongoing formation of the discipline of Computational Literary Studies (CLS)––apparent

for instance in the founding of a dedicated journal (JCLS)1 and an annual conference (CCLS)2––

a whole set of pragmatic and infrastructural challenges arise that have to be addressed to ensure

that good, sustainable and open scholarship can be carried out in this emerging field. The CLS

INFRA project, where the present report was prepared, has set itself the task of conceptualizing

and prototyping both community-driven and infrastructural solutions to these disciplinary

challenges, to support and promote digitally progressive as well as socially relevant research on

the European (and the world's) literary cultural heritage.

Some of the major challenges of data driven CLS research arise from what we will address

as the problems of dispersion, of heterogeneity, and of instability of the field’s resources,

especially of its (datafied) epistemic objects and its (algorithmized) methods. While we will explain

in more detail later in this report what we mean by these problems, we will give some rather

general examples here: The epistemic objects of CLS research (i.e. corpora of literary texts) are,

for example, often prepared in the context of specific research projects, taking into account

different needs and following different standards (or different interpretations of the same

standards), and they are stored in varying locations with differing ways of access; digital methods

1 https://jcls.io.
2 https://jcls.io/site/conference.

https://jcls.io/
https://jcls.io/site/conference/

D7.1 On Programmable Corpora

 8

are also often developed in specific projects (and the corresponding software respectively) and

the code is published at again other locations, so that it can easily become a considerable

challenge to just read the data from one project into the software of another project. The resources

are thus dispersed and it is often difficult to connect or integrate them for further research. In turn,

the results obtained for a specific study may depend heavily on the states and contexts of the

data and software involved, so that it is not just difficult to reproduce CLS research but also to

conduct comparative or follow-up research that builds on existing studies.

 On the one hand, these challenges are a result of the current lack of standards, routines,

and conventions in a field that, as a starting community, in many respects is still in an experimental

phase and in which routines for the review and publication of research software3 and data4 have

only recently begun to consolidate. On the other hand, the current challenges might be an effect

of missing feasible disciplinary infrastructures. But before such infrastructures can be developed,

there needs to be discussions on the architectural styles of research environments in CLS with

which the challenges can be met. Thus, at a more abstract level, efforts towards standardization

and normalization are needed to develop a machine-readable domain model of CLS (and

presumably literary studies in general) and to formulate taxonomies as well as controlled

vocabularies. At the same time, at a more concrete level, infrastructural prototypes are needed in

which we experiment with ideas of a disciplinary ecosystem for CLS. The latter is what this report

(and the accompanying digital prototype) is about.

The long-term perspective of the ideas and prototypes presented here is what, following

Roy Fielding, a pioneer of the World Wide Web and creator of the Representational State Transfer

(REST) architectural style, could be called a “network-based software architecture” (Fielding

2000) for CLS. Therefore, in the course of CLS INFRA Work Package 7, we want to develop ideas

on how the above-mentioned problems of dispersion, heterogeneity, and instability of the CLS

field’s resources can be addressed with appropriate infrastructural concepts. In that sense, we

will approach the problem of dispersion with a distributed architecture, the problem of

heterogeneity with workflows of homogenization, and the problem of instability with versioning

techniques.

We will develop our ideas and our prototype(s) starting from a conceptual vision inspired

by the unfinished work “A Programmable Web” of programmer and open data activist Aaron

Swartz, who died in 2013. His “A Programmable Web” outlines a situation in which applications

are no longer “not just another tool [...] to use, but part of the ecology––a section of the

programmable web” (Swartz 2013: 7). While the CLS INFRA project as a whole is developing

ideas for a digital ecosystem of CLS and testing these ideas through studies, community activities,

and technical prototypes, CLS INFRA’s Work Package 7––whose activities are subject of this

3 Cf. e.g. the Guidelines https://jcls.io/site/code-data-review.
4 Cf. https://openhumanitiesdata.metajnl.com.

https://jcls.io/site/code-data-review/
https://openhumanitiesdata.metajnl.com/

D7.1 On Programmable Corpora

 9

report––focuses on a central building block of this ecosystem: on the concept of “Programmable

Corpora” (Fischer et al. 2019) that emerges from Swartz’s considerations. One of Swartz’s visions

was that APIs (Application Programming Interfaces) are not only added to web resources and

web applications as “an afterthought or a completely separate piece", but that, someday, APIs

“naturally grow out of” web resources and web applications (Swartz 2013: 7), so that they are

always essentially open to the web. So once this somewhat “natural growth” of APIs really sets

in, the web becomes fully “programmable”, according to Swartz. APIs in this sense are the core

building blocks of Swartz's concept – and they are correspondingly central to our concept of

“Programmable Corpora”, which in a first step can be understood as corpora that expose an API

to make texts machine-actionable.

In our prototype-based work on an idea of a CLS research infrastructure, we are

deliberately starting from corpora. Indeed, there are positions that state that, “across many

research domains in the humanities and social sciences, the corpus has emerged as a major

genre of cultural and scientific knowledge” (Gavin 2023: 4). If you focus on the CLS, it can even

be said, that––unlike in traditional literary studies, which usually starts from a single literary work

or the oeuvre of an author––the corpus has become the central epistemic object,5 while it is

important to underline that the notion of corpora might differ in linguistics and CLS (Mrugalski et

al. 2022). In our approach, therefore, it is the corpora that must be made programmable as a first

step, thus “growing” out of them the future ecology of CLS––driven by the spread of “naturally

growing” APIs, as Swartz would have said.

2.2 A Prototyping Approach

In CLS INFRA’s work package 7, we develop a technical prototype of Programmable Corpora.

Prototyping involves, following Budde et al., “producing early working versions (‘prototypes’) of

the future application system and experimenting with them” (Budde et al. 1992: 89). The prototype

to be developed––“prototype” roughly understood with Naumann and Jenkins as “an individual

that exhibits the essential features of a later type” (1982: 29)––can serve as a reduced model6 for

what one day might be the fully functional infrastructure of a network-based ecosystem for CLS.

On the way there, the prototyping approach, discussed in software development since the 1980s

(Naumann and Jenkins 1982; Budde et al. 1992), sets our methodological guidelines.

First of all, the prototype approach is particularly well suited to the specific starting

conditions of our work, where the user needs cannot clearly be defined at the beginning of the

5 Cf. Deliverable 5.1 “Review of the Data Landscape”, https://doi.org/10.5281/zenodo.6861022 (Mrugalski

et al. 2022), and 6.1 “Inventory of existing data sources and formats”,
https://doi.org/10.5281/zenodo.7520287 (Ďurčo et al. 2022).
6 “Model”, here understood with Tavolato and Vincena as “an operational software system which––though

somehow limited––gives an impression of how the final system will work” (1984: 438).

https://doi.org/10.5281/zenodo.6861022
https://doi.org/10.5281/zenodo.7520287

D7.1 On Programmable Corpora

 10

project.7 Thus, the agile method of prototyping allows us to take an “approach to software

construction based on experiment and experience” (Budde et al. 1992: 90), where the target

system is not fixed, but is conceptually developed and optimized in a series of iterations. As Floyd

already noted in 1984, “a prototype should always be considered a learning vehicle providing

more precise ideas about what the target system should be like” (Floyd 1984: 3). In this sense,

the prototyping approach keeps the development process open not least for visionary

interventions, an aspect that seems particularly appropriate given the current dynamic

development of the disciplinary field of CLS. As a “learning vehicle”, the prototype of

Programmable Corpora developed by us thus eventually also serves as a method for the CLS to

become self-aware of its infrastructural needs as well as of its own vision of an infrastructural

ecology.

In their early work on prototyping in software development, Tavolata and Vincena (1984:

437) differentiated three methodological approaches that usually are termed prototyping: the

“plug-in strategy or incremental delivery approach”, the “evolutionary development method”, and

the “throw-it-away approach”. In our adaptation of the prototyping approach, we combine the first

and the second method. On one side, our prototype of Programmable Corpora is open for

extensions following a plug-in strategy, so that, for example, additional microservices8 can be

(and already have been) connected to our prototype during the course of the project. On the other

side, we generally follow the approach of evolutionary development, where a working prototype

system is “built and delivered to the user for experimentation”, then “modified […] in a step-by-

step fashion to incorporate the experiences of the experimentation”, whereby this “is done in such

a way that the prototype evolves gradually into the final product” (Tavolato and Vincena 1984:

437), which in the end might evolve into a “pilot system” (Budde et al. 1992: 91).9

In addition, the prototyping process in our work package is designed along four

methodological specifications.

● With regard to the overall project CLS INFRA, we understand our approach as

Reflective Prototyping: The exchange with the other CLS INFRA work packages

as well as the input from the reports of the other work packages leads to a reflection

of the prototype development, for example in view of new knowledge about user

7 Rather, in the CLS INFRA project, user needs are identified in a series of tasks and described in

corresponding reports. With Schöch, Fileva Dudar 2022, A first report has already been published as
Deliverable 3.1, cf. “Baseline Methodological User Needs Analysis”,
https://doi.org/10.5281/zenodo.6389333.
8 For the concept of microservice cf. Nadareishvili et al. 2016: 3, who define: “A microservice is an

independently deployable component of bounded scope that supports interoperability through message-
based communication.”
9 This corresponds basically to the "production-driven prototypes" as described by Ruecker for the Digital

Humanities (Ruecker 2015: 2).

https://doi.org/10.5281/zenodo.6389333

D7.1 On Programmable Corpora

 11

needs, sharpened approaches to theorizing literary corpora or a more

comprehensive idea of the CLS data landscape.

● Second, our development activities explicitly follow a Research-Driven Prototyping

approach: In our work package, we are not only developing a prototype for

Programmable Corpora and thus a model for a research infrastructure of the CLS;

rather, at the same time, we are already using this prototype for actual research

studies, so that the prototype must prove itself under the real-life conditions of the

CLS research.

● Third, our methodological approach follows the idea of Community-Oriented

Prototyping: In this sense, we accompany the development of the prototype with

activities that are intended to encourage its use by the CLS research community

in order to stimulate usability testing of the prototype.

● Finally, we follow a Transfer Prototyping approach: Selected components of our

prototype are adapted (and thus "transferred") to other software settings to test

their generalizability and thus their suitability as common building blocks of an

infrastructural ecosystem for CLS.

The prototype for Programmable Corpora developed in our work package is the Drama Corpora

Platform (DraCor), which is freely usable via the web and which we will present in more detail in

section 5. DraCor is a multicomponent prototype that includes a number of homogenized corpora

and several APIs, some of which are document-based and some of which are research-driven; in

addition, the DraCor prototype includes exemplary microservices: Corpora, APIs, and

microservices will accordingly be the components that we explain and reflect on in more detail

throughout this report.

3. CLS Research in Digital Ecosystems between

Embeddedness and Instability: Some Key Considerations
Our development of a prototype of Programmable Corpora as a small-scaled vision of an

ecosystem of CLS starts from some key considerations about research in digital ecosystems,

which we will first briefly introduce before moving on to a detailed description of the prototype.

As we have outlined above, we start by noting the dispersion of resources and applications

for CLS research. However, our infrastructural approach is not aimed at solving dispersion

through centralization, i.e., developing a monolithic infrastructure which would not only be

susceptible to both changes and failures but also problematic given the structural diversity of the

CLS field. Instead, we want to tackle dispersion by conceptually orienting our prototype to ideas

of distributedness, and thus to approaches of distributed software architecture. Thereby, we

understand distributedness in a positive sense as a mode of (networked) embeddedness.

D7.1 On Programmable Corpora

 12

Embeddedness implies the potential for (mutual) interaction. In this sense, thinking about a future

infrastructure for CLS could mean looking more closely at modes, ways, and styles of interaction

between resources and applications, which in our operationalization means looking in a particular

way at interfaces or, more precisely, at application programming interfaces (APIs). How can

research software “interact” with corpora? How can websites, apps, or microservices “interact”

with corpora? And considering that we in the end are not only speaking of an infrastructure, but

of a digital ecosystem, i.e., a socio-technical environment: How can people, researchers and

citizens alike, interact with corpora (and thus with their literary cultural heritage)?

Rethinking dispersion as distributedness means paying attention both to the individual

digital components which are used in CLS and to the components’ way to connect with each

other. With respect to our prototyping of a CLS ecosystem, this means, for example, that we are

not only working on community-based approaches to homogenizing and federating corpora, but

also on how these corpora can be connected to research software or to websites, to name just

these two. And it is precisely this ongoing reflection on the possibilities of connection that

eventually leads––as Aaron Swartz has put it––to APIs “naturally growing out of” the resources

and applications.

So, we change the perspective on dispersion and understand it in terms of distributedness,

which is conceptualized as embeddedness and realized through APIs that––as connectors––

function as enablers of an interaction-based digital ecosystem of CLS. While such a digital

ecosystem, in which the individual components can communicate and connect with each other in

an as standardized manner as possible, could be a way of addressing the dispersion of

applications and resources, it at the same time entails challenges for the stability of research

settings. An example may illustrate this challenge of instability: CLS research projects regularly

integrate generic tools into their analysis pipelines, such as the open-source library spaCy, which

features a wide range of methods from Natural Language Processing, e.g., Named Entity

Recognition (NER), Part of Speech tagging (POS) or dependency parsing. Like many programs,

spaCy (Montani et al. 2023) is by no means “finished”, but is constantly being developed further;

for example, the language models used by spaCy are regularly optimized. To include such a

dynamic component from the digital ecosystem in an analysis pipeline can thus lead to the

situation that––even if the architecture of the pipeline has not changed––the results produced by

the pipeline are different. From a pragmatic point of view, such a situation can be addressed (and

thus more or less brought under control) by comprehensive documentation and precise

versioning.

At the same time, this embeddedness and the associated dynamics of the digital

ecosystem must be considered conceptually from an infrastructural perspective and taken into

account as a constraint for development activities. In this sense, this challenge is also always

reflected in the development work in work package 7. Accordingly, a separate task is devoted

D7.1 On Programmable Corpora

 13

precisely to this problem, on which the “Report on versioning requirements of APIs and corpora

within CLS” will be published in spring 2024 as deliverable D7.3. The report will present

approaches to counteracting instability: on the one hand by corpus versioning using the version

control system Git; on the other hand, by stabilizing actual digital research settings and their

parameterizations using Docker-based containerization technologies, especially for APIs and

methods as microservices.

4. The DraCor Prototype in Action. Four Showcases
Before we get into a systematic and technically oriented description of the prototype for

Programmable Corpora implemented as DraCor, we will first give an idea of possible uses of the

developed prototype by showcasing three examples. Each of the four examples illustrates a

different way of using the DraCor prototype in a CLS research environment: first, an approach to

geo-based visualization of corpus metadata using Linked Open Data; second, an API-based

approach to standardized extraction of specific textual data across different corpora; and third, a

method-based approach based on Social Network Analysis metrics.

4.1 Showcase 1: One-Click Download of Modeled Text Data

When considering an ecosystem for Computational Literary Studies, one usually thinks of

applications that operate at a relatively sophisticated technical resp. computational level. But

actually, it is central to the development of the discipline and its infrastructures that it remains

accessible even to novices and beginners. It is also for this reason that an essential component

of the DraCor prototype is a user-friendly front-end that, on the one hand, provides a set of

services with an easily accessible graphical user interface (GUI) and, on the other hand, allows

access to the corpora data with as little technical expertise as possible. The frontend with its

graphical user interface thus also assumes didactic functions: Texts can be easily navigated

through various tabs and viewed in different shapes and modes of modeling.

 For example, any play from the corpora contained in DraCor can be displayed in a text

view that does not differ significantly from classic ways of displaying texts in e-readers or web

browsers (see Fig. 01). While texts appear in such a full-text view as conventional epistemic

objects of literary studies (ready for close reading), after a tab change (see Fig. 02), one-click

downloads of differently modeled derivations from these full texts can be downloaded for “distant

reading” (Moretti 2013).

D7.1 On Programmable Corpora

 14

Fig. 01: Full text view of a DraCor play in the front-end Fig. 02: Download options for a DraCor play in the front-
end

This allows DraCor to introduce the different epistemic and technical manifestations of text in the

CLS in an easily accessible way. Furthermore, it is also possible to work with these modeled text

data immediately, which allows a quick introduction to methods and tools of the CLS.

 For this showcase, we choose to use the data of a co-occurrence network (i.e. a network

of characters connected via their co-presence on the stage), downloading the XML-based GEXF

format that can be opened with open source programming libraries such as networkx (Hagberg

et al. 2008) or the widely used open source desktop software Gephi (Bastian et al. 2009).10 With

a few clicks after the download, it is thus possible to create a network graph (see Fig. 03) that

now allows the literary text to be viewed in an entirely different modeling mode, predestined for

distant reading (Moretti 2011).

10 Gephi 0.10.1, https://gephi.org.

https://gephi.org/

D7.1 On Programmable Corpora

 15

Fig. 03: Network visualization with Gephi, based on a DraCor one-click download

4.2 Showcase 2: Geo-Mapping Locations of First Performances

However, DraCor's beginner-friendly front-end is just one way to access and use the data in this

Programmable Corpus. Instead, the computational literary scholar will usually access the data

either directly in the form of the TEI-XML11 or via the various APIs and API endpoints. In the

following showcase, the focus is on DraCor’s SPARQL12 endpoint.

During the homogenization of metadata that theater plays undergo as part of the

integration into the DraCor environment, Wikidata identifiers (entity IDs)13 for both authors and

individual works are typically included in the metadata of each play encoded in the <teiHeader>.

For example, for the German-language bourgeois tragedy “Emilia Galloti” by Gotthold Ephraim

Lessing this data is available in DraCor (Wikidata ID is highlighted). First for the author:14

<author>
 <persName>

11 TEI-XML is a type of the XML format that complies the standards defined by the “Text Encoding

Initiative (TEI)”, cf. https://tei-c.org/
12 Specification https://www.w3.org/TR/sparql11-query. A tutorial on how to use SPARQL to query

Wikidata can be accessed at: https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial
13 Cf. https://www.wikidata.org/wiki/Wikidata:Identifiers
14 Cf. Code reference <1>.

https://tei-c.org/
https://www.w3.org/TR/sparql11-query
https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial
https://www.wikidata.org/wiki/Wikidata:Identifiers
https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L11

D7.1 On Programmable Corpora

 16

 <forename>Gotthold</forename>.
 <forename>Ephraim</forename>
 <surname>Lessing</surname>
 </persName>
 <idno type="wikidata">Q34628</idno>
 <idno type="pnd">118572121</idno>
</author>

Then for the individual work:15

<listRelation>

<relation name="wikidata"
active="https://dracor.org/entity/ger000088"
passive="http://www.wikidata.org/entity/Q782653"/>

</listRelation>

Thanks to this metadata, the plays in DraCor can be linked to further information from, among

others, Wikidata, thus be embedded in the wide ecosystem of Linked Open Data and thereby

benefit from the often crowd-based data enrichment projects in the World Wide Web. For

example, numerous Wikidata entries on plays contain information about the “location of first

performances”.16 In the case of Lessing's "Emilia Galotti", this location is the "Hagenmarkt-

Theater", which also has a Wikidata entry.17 The entry for "location of the first performance" in

Wikidata has information about its "coordinate location",18 which provides the corresponding

geodata (52°16'1.9" N, 10°31'28.9" E). This embedding of DraCor plays in the Linked Open Data

Cloud now makes it possible to run SPARQL queries for the entire corpora, for example. In a

Jupyter Notebook,19 we showcased a corresponding query that displays on a map all the

information available in Wikidata about locations of first performances of plays in the German-

language drama corpus GerDraCor. Fig. 04 shows (parts of) the query and the map.

15 Cf. Code reference <2>.
16 Wikidata Property “P4647”, see https://www.wikidata.org/wiki/Property:P4647 for more information.
17 Cf. https://www.wikidata.org/wiki/Q1270860.
18 Wikidata Property “P625”, see https://www.wikidata.org/wiki/Property:P625 for more information.
19 See the section “A federated query: Connecting DraCor and Wikidata” in https://github.com/dracor-

org/dracor-notebooks/blob/lod-intro/lod-intro/lod-intro.ipynb.

https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L122
https://www.wikidata.org/wiki/Property:P4647
https://www.wikidata.org/wiki/Q1270860
https://www.wikidata.org/wiki/Property:P625
https://github.com/dracor-org/dracor-notebooks/blob/lod-intro/lod-intro/lod-intro.ipynb
https://github.com/dracor-org/dracor-notebooks/blob/lod-intro/lod-intro/lod-intro.ipynb

D7.1 On Programmable Corpora

 17

Fig. 04: Connecting DraCor and Wikidata: Mapping Locations of First Performances of GerDraCor Plays

4.3 Showcase 3: Extracting Stage Directions for NLP

While the previous showcase uses the SPARQL endpoint of our Programmable Corpora

prototype DraCor, the following showcase uses the custom developed DraCor API. Alongside the

TEI encoded DraCor plays are, among others, various XQuery-based extractor functions, which

make it possible, via the DraCor API, to retrieve specific and standardized text segments and use

them as input for, for example, Natural Language Processing (NLP) pipelines. Thus, for instance,

the TEI-based structure of the data in DraCor can be used to address specific research questions,

as in our next showcase.

Again, the homogenization of the drama corpora in DraCor serves as a starting point for

our showcase. During this homogenization, all plays are systematically structured in such a way

D7.1 On Programmable Corpora

 18

that the speaker's text can be consistently differentiated from the stage directions. For this

purpose, the corresponding TEI elements are used, where <stage> distinctly tags the text of the

stage directions.20 The following TEI snippet from Lessing’s “Emilia Galotti” exemplifies the data

structure.

<sp who="#appiani">

 <speaker>APPIANI</speaker>
<stage>tritt tiefsinnig, mit vor sich hingeschlagnen Augen herein, und
kömmt ihnen näher, ohne sie zu erblicken; bis Emilia ihm entgegen
springt.</stage>
<p>Ah, meine Teuerste! – Ich war mir Sie in dem Vorzimmer nicht
vermutend.</p>

</sp>

Via the DraCor API it is now possible to get all stage directions of a play with the corresponding

request URL: https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions. At the

same time, it is possible to retrieve all the spoken texts of the plays via another endpoint. For

Lessing’s “Emilia Galotti”, the corresponding request URL would be:

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text.

The obtained text can now be further processed in various ways. In an early showcase,

we used the NLP tool spaCy to perform a sentence splitting on the text data for all plays in the

German-language drama corpus GerDraCor and then compared the average sentence lengths

for the stage directions with those of the speaker text.

The result showed that the sentence lengths in the speaker texts were longer on average

overall, but that at the same time a development can be observed leading to a successive

convergence of sentence lengths (see Fig. 05) – a development that, as we have suggested

(Trilcke et al. 2020), can be explained in the context of research debates about the epification of

drama in the 19th century.

20 Cf. https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-stage.html.

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions
https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-stage.html

D7.1 On Programmable Corpora

 19

Fig. 05: Mean Sentence Length in Stage Directions and Spoken Text in GerDraCor plays visualized with Datagraph21

(cf. Trilcke et al. 2020)

4.4 Showcase 4: Plotting Network Measures for Thousands of

Plays

Connected to the DraCor corpora are various microservices that––following the principle of

“method as a microservice”––apply specific methods of CLS to the text data in the drama corpora.

The outputs from these microservices are, in the form of metrics, made available via the DraCor

API. Part of these microservice-based and thus research-driven API functions rely on methods

from Social Network Analysis. Again, based on the homogenized TEI structure of the plays in

DraCor, in particular the semi-automated speaker identification, a dedicated microservice first

automatically constructs network graphs to which then a number of algorithms from Network

Analysis are applied.

 The technical capability to retrieve metrics for the texts from several different drama

corpora via one single API enables the use of standardized analyses for comparative literary

studies, as Trilcke et al. (in press) have shown applying the concept of “Small World” to almost

3,000 dramas of European literature.

21 https://www.visualdatatools.com/DataGraph.

https://www.visualdatatools.com/DataGraph

D7.1 On Programmable Corpora

 20

 Analyzing plays with reference to the “Small World” concept requires the calculation of the

network metric of “Average Path Length”.22 This metric can, as outlined, be retrieved via the

DraCor API. For our final showcase, we pull from the DraCor API a file of aggregate metrics,

including “Average Path Length”. For example, the request URL for the German-language corpus

GerDraCor in this case is: https://dracor.org/api/corpora/ger/metadata/csv

After collecting the corresponding data for all DraCor corpora via the API, we filter the data

based on the metadata for plays published between 1500 and 1900. In a final step, we plot the

“Average Path Length” for the now remaining 2,622 plays as a chart (Fig. 06)––thus with just a

few clicks taking a decisive step towards a fully-fledged “distant reading” study, whereby at the

same time it becomes clear what is still missing in these data (and what would have to be provided

in an elaborated study): the interpretation of the data, which has to elaborate the meaning of such

plots.

Fig. 06: Average Path Length for 2,622 plays in DraCor visualized with Datagraph

22 See the documentation on https://networkx.org/documentation/networkx-

1.3/reference/generated/networkx.average_shortest_path_length.html

https://dracor.org/api/corpora/ger/metadata/csv
https://networkx.org/documentation/networkx-1.3/reference/generated/networkx.average_shortest_path_length.html
https://networkx.org/documentation/networkx-1.3/reference/generated/networkx.average_shortest_path_length.html

D7.1 On Programmable Corpora

 21

5. Description of the DraCor Prototype

Fig. 07: Different DraCor pages as displayed on a mobile phone

In CLS INFRA’s work package 7, we exemplify the concept of programmable corpora with a

prototype, which is DraCor (Drama Corpora Platform, https://dracor.org). DraCor itself follows the

idea of a network-based software architecture and thus constitutes a system consisting of multiple

interconnected components: At its core there are homogenized corpora in several (European)

languages. These corpora are curated in GitHub repositories and stored in an XML database as

a central data store which provides a RESTful API that powers a front end and can be used

individually to retrieve the raw TEI-XML data, metadata, and derived data in several formats.

Attached microservices offer additional functionalities, e.g., a Metrics Service is used to

calculate network metrics based on the play data and a Triple Store, which holds representations

of the plays as Linked Data and provides a SPARQL endpoint.

In the following, we describe in detail the individual components of the DraCor system.

https://dracor.org/

D7.1 On Programmable Corpora

 22

Fig. 08: Overview of the DraCor System

5.1 Corpora

As stated above, corpora as the central epistemic objects of CLS serve as the starting point of

our development work. DraCor corpora are encoded following the guidelines of the Text Encoding

Initiative (TEI P5)23. DraCor uses a TEI customization that contains only selected TEI elements

supported by the wider DraCor system and restricts the use of XML attributes and its values. The

23 https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html Special elements for the encoding of

dramatic texts are described in the module “Performance Texts” https://www.tei-c.org/release/doc/tei-p5-
doc/en/html/DR.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/DR.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/DR.html

D7.1 On Programmable Corpora

 23

customization is documented by an ODD24 from which a RelaxNG schema25 is generated, that is

used to validate the encoding of the plays. Schematron26 rules are implemented to check for

certain formal features of the XML files, e.g., the structuring into segments (acts, scenes) and the

identification of individual speakers of speech acts which allow for the extraction of character

networks.

Although the corpora in DraCor have different sources, they are largely homogeneous

both structurally and in terms of metadata. This homogeneity makes it possible, for example, to

perform comparative research on the corpora or to perform processing operations (such as

extracting information or counting) in a comparable way on the corpora. However, homogeneity

is something that has to be created first, because even if corpora are available in the target format

TEI, they often differ in the way TEI is applied, e.g., there are several ways, that can be used to

encode the structural division “scene”: On could, for example use the TEI element <div>27 and,

optionally, classify this segment with the attribute @type28. The running number of the scene in

the play could be attached to the division by using the attribute @n Another way to use the @n

attribute could be to indicate the level or depth inside the text segment structure, e.g. divisions on

the highest level have an @n value of “1”, divisions one level below have “2”, and so on.29

Another encoding approach would be to use the numbered divisions elements30 <div1> and

<div2> for “acts” and “scenes”.31 Another way of classifying segments would be to use the

attribute @ana32. These examples demonstrate that it is necessary to define a single strategy to

encode the phenomena and eventually transform other means of encoding them into a single

structure.

24 https://github.com/dracor-org/dracor-schema/blob/main/odd/dracor.odd
25 The RelaxNG Specification is available here: https://relaxng.org/spec-20011203.html. The schema

used for DraCor is available on GitHub: https://github.com/dracor-org/dracor-
schema/blob/main/odd/out/dracor.rng.
26 See https://www.schematron.com for more information on the validation language. The schematron file

that allows for checking of a play is available on GitHub: https://github.com/dracor-org/dracor-
schema/blob/main/schematron/dracor.sch.
27 https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-div.html.
28 https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.typed.html.
29 In the “DTA Basisformat” of the German Text Archive (DTA) the attribute @n is used this way, cf.

https://www.deutschestextarchiv.de/doku/basisformat/div.html. In the “German Drama Corpus”
(GerDraCor) there are two files (https://dracor.org/id/ger000474, https://dracor.org/id/ger000485) coming
from the DTA that have been transformed to match the encoding of DraCor corpora.
30 https://tei-c.org/release/doc/tei-p5-doc/en/html/DS.html#DSDIV2.
31 The TEI files of the “Perseus Digital Library” (http://www.perseus.tufts.edu/hopper; GitHub:

https://github.com/PerseusDL), that were transformed and included into the “Roman Drama Corpus”
(RomDraCor) used these elements, cf. <3>.
32 https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.global.analytic.html.

https://github.com/dracor-org/dracor-schema/blob/main/odd/dracor.odd
https://relaxng.org/spec-20011203.html
https://github.com/dracor-org/dracor-schema/blob/main/odd/out/dracor.rng
https://github.com/dracor-org/dracor-schema/blob/main/odd/out/dracor.rng
https://www.schematron.com/
https://github.com/dracor-org/dracor-schema/blob/main/schematron/dracor.sch
https://github.com/dracor-org/dracor-schema/blob/main/schematron/dracor.sch
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-div.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.typed.html
https://www.deutschestextarchiv.de/doku/basisformat/div.html
https://dracor.org/id/ger000474
https://dracor.org/id/ger000485
https://tei-c.org/release/doc/tei-p5-doc/en/html/DS.html#DSDIV2
http://www.perseus.tufts.edu/hopper
https://github.com/PerseusDL
https://github.com/dracor-org/romdracor/blob/e80db098a89e842174cf76dd0ffb56b5449d351d/tei/ad_lat.xml#L173-L175
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.global.analytic.html

D7.1 On Programmable Corpora

 24

 In general, three different strategies for the homogenization of corpora can be

distinguished.33

■ In the “from scratch” approach, the entire datafication of literary texts is done in a multi-

step workflow, which often starts at the very beginning with the digitization and raw text

creation of texts. In this process, all properties of the target format can be controlled by

the creators or the corpus curators. In this case, homogenization is basically not even

necessary, because the uniform workflow––if it is guideline-based––guarantees

homogeneity.

■ The “transformation” approach starts from an existing corpus whose text encoding as

a whole has to be adapted to the requirements of the homogeneous target format. In many

cases, this can be done automatically by mapping scripts that have to be developed

individually in each case. In addition, data enrichment may need to be done.

■ In the “aggregation” approach, digital files of literary texts are taken from different

resources and combined to form a new corpus. Here, the heterogeneity of the source

materials is usually at a maximum. This makes it necessary, as a rule, to implement

several transformation scenarios; in addition, extensive manual homogenization

interventions are usually required.

Larger, community-driven corpus building initiatives usually combine these different approaches.

In CLS context, the most important initiative for literary corpora is certainly the ELTeC project,34

which is building a "European Literary Text Collection". By relying on shared Sampling Criteria,35

elaborated Encoding Guidelines,36 and a sophisticated Workflow Schema,37 ELTeC has

established a de facto standard in “progressive collection building” (Schöch et al. 2021).

 While the “from scratch” approach hardly plays a role in building DraCor, the

“transformation” and the “aggregation” approach have been extensively experimented with. From

a technical point of view, these approaches comprise a series of automated and manual

transformations of the source data, which depend crucially on the format and markup of the files.

Texts from a single, homogeneous collection with pre-existing markup and metadata

(“transformation” approach) will require different workflows and pipelines than those coming, for

example, from a variety of raw text sources (“aggregation” approach).

Consequently, we have been prototyping a modular workflow made up of a set of demand-

dependent components. In addition to guideline-based manual revisions (e.g., pre-structuring

texts with Markdown), we use XSLT scripts for automated transformations. Edits specific to

33 See also Börner et al. [submitted] and the concept of “Distributed Corpus Building”, discussed by

Giovannini et al. [submitted].
34 Cf. Burnard, Schöch and Odebrecht 2021.
35 https://distantreading.github.io/sampling_proposal.html
36 https://distantreading.github.io/encoding_proposal.html
37 https://distantreading.github.io/workflow_proposal.html

https://distantreading.github.io/sampling_proposal.html
https://distantreading.github.io/encoding_proposal.html
https://distantreading.github.io/workflow_proposal.html

D7.1 On Programmable Corpora

 25

theater plays, such as the task of speaker identification, are supported by an Oxygen framework;38

we are furthermore experimenting with task-specific GUI applications based on the Javascript

framework React.39 The correction and enrichment of metadata, such as the addition of Wikidata

IDs, is organized semi-automatically via OpenRefine40.

A particular challenge is posed by living corpora (i.e., corpora that are still being worked

on, hence still changing in their composition, structure, data quality, annotation depth, etc.). Here,

the manual transformations performed during “onboarding” (i.e., the ingest of a corpus into the

DraCor system) should be re-applicable in case of edits to the source data. Accordingly, we

implemented routines for a ‘backward compatibility’ of the markup: the changes made by us

during the integration in the DraCor ecosystem can later be applied again to a newer version of

the source files.41

The literary texts in the DraCor corpora have a basic structural markup and are ready for

further analysis by various methods of CLS. Furthermore, they have been additionally enriched

with a research-driven markup for the application of a specific method, the network analysis of

literary texts (Trilcke 2013). Therefore, the encoding is tailored to allow for the extraction of co-

presence networks relying on structural segmentation of a given play into acts and scenes and

having uniquely identifiable speaking and acting characters. The cast lists or dramatis personae

that are contained in most dramatic texts are an insufficient source in this regard, because they

tend to be incomplete. Speaker labels contained in the proper text are also often misleading,

because they are often not stable enough to serve as an identifier. Therefore, the plays encoded

for the DraCor plattform have an additional section in their metadata in the <teiHeader> that

lists all characters as <person> elements in a <listPerson> and assigns them a unique

identifier (@xml:id), that is then used in the attribute @who to link the individual speech acts <sp>

with their respective speakers. The co-presence network can then be extracted by a designated

algorithm.42 While each distinct speaker represents a node in a network, a relation (edge) is

established if the speeches <sp> of two or more speakers appear in the same segment <div>

(normally a “scene” classified by the attribute @type). It is important to note that this method of

38 https://github.com/dracor-org/dracor-oxygen-framework.
39 Cf. e.g. our prototype of a “Who-Is-Identification”-Tool https://github.com/dracor-org/epdracor-whois resp.

https://dracor-org.github.io/epdracor-whois for the interface.
40 https://openrefine.org .
41 For this, cf. our prototype script in the EPDraCor repository: https://github.com/dracor-org/epdracor.
42 The algorithms used for extracting our network data are implemented in XQuery: The function of the

DraCor API metrics:get-network-metrics <4> extracts the segments of a given TEI file using the

function dutil:get-segments <5> and for each of these segments gets the distinct speakers with the

function dutil:distinct-speakers <6>. The network metrics are calculated based on these

extracted features with the “DraCor Metrics Service” (see section 5.4) using the Python package
“networkx”.

https://github.com/dracor-org/dracor-oxygen-framework
https://github.com/dracor-org/epdracor-whois
https://dracor-org.github.io/epdracor-whois/
https://openrefine.org/
https://github.com/dracor-org/epdracor
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/metrics.xqm#L49-L118
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L263-L286
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L103-L116

D7.1 On Programmable Corpora

 26

extracting networks from dramatic texts is only one possibility among many others and that the

scope for interpretation is determined by this mechanism of extraction.

While the TEI data of the theater plays contained in the corpora have some research

driven features, in general, they are suitable for the field of digital drama analysis, which manifests

itself in a growing list of research done based on DraCor corpora43 and is especially facilitated by

also hosting the corpora on GitHub44 with an open license that allows for extensive re-use.

5.2 DraCor Data Storage

5.2.1 GitHub Repositories

GitHub is a key infrastructural component, because it serves not only for storing the corpora, but

also for the development of the other components of the system, because it offers a rich set of

tools, e.g., versioning45 and issue tracking, as well as a space for discussions and collaboration.

Both application code and corpora are hosted on GitHub in designated repositories within

the DraCor “organization” (https://github.com/dracor-org). Each corpus repository includes at

least a TEI-XML file “corpus.xml” that contains the metadata of the corpus and a folder “tei” which

comprises the TEI-XML files of the individual plays.

Optionally, but highly recommended, a corpus repository should contain a “README.md”

file in Markdown that describes the corpus.

5.2.2 eXist-db

A key component of the DraCor system is the XML-Database eXist-db46. It is used not only for

storing the XML data of the plays, but also providing the DraCor API47, which is implemented in

43 See https://dracor.org/doc/research.
44 https://github.com/dracor-org
45 Each revision campaign of a single play is uniquely identifiable by its commit ID, which is an asset in a

system that is working with “living corpora”. By relying on GitHub and using the commit IDs as identifiers, it
is possible to assemble (and re-assemble) corpora representing a given state in the development. See the
example in the “Docker” notebook on how to create a stable corpus in a local DraCor instance:
https://github.com/dracor-org/dracor-notebooks/blob/docker/docker/local-dracor-with-docker.ipynb
46 Cf. http://exist-db.org. The version running on the production server at the time of writing of this report

is 6.0.1.
47 GitHub repository of the DraCor API: https://github.com/dracor-org/dracor-api

https://github.com/dracor-org
https://dracor.org/doc/research
https://github.com/dracor-org
https://github.com/dracor-org/dracor-notebooks/blob/docker/docker/local-dracor-with-docker.ipynb
http://exist-db.org/
https://github.com/dracor-org/dracor-api

D7.1 On Programmable Corpora

 27

XQuery48 with RESTXQ49 and runs as an application within the eXist-db instance. The application

features a modular architecture50.

Corpora are stored in the database as collections in /db/data/dracor which contains

five subcollections (“metrics”, “rdf”, “sitelinks”, “tei” and “webhook”) representing different aspects

of a play or providing additional functionality. For each corpus added to the database in each of

these collections a sub-collection for the corpus is created. For example, when adding the

German Drama Corpus (“GerDraCor”) with the corpusname “ger” to the database the source TEI-

XML data is stored in /db/data/dracor/tei/ger, the derived network metrics are stored in

/db/data/dracor/metrics/ger, etc.

48 Cf. https://www.w3.org/TR/xquery
49 Specification of RESTXQ: http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-

specification.html.
50 Code of the modules are available in the latest version here https://github.com/dracor-org/dracor-

api/tree/main/modules. Code reference <7> represents the state of the folder in version 0.88.0, which
overall is closest to the versions reviewed in this report. : The module “api.xqm” contains the xQuery code
of the core API functionality and the definition of the endpoints, “config.xqm” contains settings, e.g. the
paths of data collections and others (some of these variables can be overwritten with environment variables
in a Docker setting). The functionality to load corpora as ZIP files from GitHub is contained in “load.xqm”.
The module “metrics.xqm” contains the code that allows for the calculation of play metrics (e.g., number of
speeches and stage directions). It also has a function that extracts the structural information of a play and
its speakers and, based on this, retrieves calculated network metrics by sending a POST request to the
metrics service. The code to create a RDF representation of the play is contained in the module “rdf.xqm”.
This module also handles the connection to the Triple Store. The module “trigger.xqm” defines functions
which are executed when a document is added to, deleted from, or updated in the database. These
functions update calculated metrics and RDF representations. The module “util.xqm” contains utility

functions, which actually offer the core functionality of this service. The module’s functions are called in the
API module, whereas the API module in general handles the creation of the HTTP response, the functions
that retrieve the information from the TEI files (extractor functions), are contained in the “util.xqm” module.
The module “webhook.xqm” implements a webhook (https://docs.github.com/en/developers/webhooks-
and-events/webhooks/about-webhooks) that can be used to automatically update the database when
changes are made to the data repositories of individual corpora. The module “wikidata.xqm” provides
functionality to retrieve information from Wikidata, e.g., retrieves additional information about an author by
sending a SPARQL query to Wikidata’s SPARQL endpoint. Additional endpoints to implement a document-
driven API following the specification of the “Distributed Text Services” (DTS) API are available in the
module “dts.xqm” (on DTS cf. section 6).

https://www.w3.org/TR/xquery
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
https://github.com/dracor-org/dracor-api/tree/main/modules
https://github.com/dracor-org/dracor-api/tree/main/modules
https://github.com/dracor-org/dracor-api/tree/645ed31d091f4ea57b5513be2b88a9340102b0f6/modules
https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks
https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks

D7.1 On Programmable Corpora

 28

Fig. 09: View of collections in the eXist-db IDE “eXide”51 after loading GerDracor into a local DraCor instance

A webhook that triggers an update of corpora when changes are pushed to the main branch is

configured for the staging server https://staging.dracor.org. For the production server

https://dracor.org the ingest of corpora is triggered manually by the administrators, to make sure,

only reviewed changes to the corpora end up in the database.

The eXist-db provides a generic REST API52 which––in a local setup, i.e., by using

Docker––can be used to directly access and manipulate resources in the database by appending

the collection path of a resource to the base-url {url of the eXist-db}/rest/. For example,

with a running local eXist-db at localhost, the standard port 8080 and GerDraCor loaded, the

source TEI files of the plays in the corpus can be listed with a GET request to

http://localhost:8080/exist/rest/db/data/dracor/tei/ger. The stored network metrics of a single play,

e.g. “Emilia Galotti”, are available at

http://localhost:8080/exist/rest/db/data/dracor/metrics/ger/lessing-emilia-galotti.xml.

5.3 DraCor API53

Although the eXist-db already offers a generic REST API to retrieve (and manipulate) stored

documents, more specialized functionality that is motivated by uses in research and/or by

affordances of the frontend is implemented as an API – hence called “DraCor API”. While the

generic eXist-db REST API is designed to somewhat ‘mirror’ the organization of resources as

51 GitHub Repository: https://github.com/eXist-db/eXide.
52 See documentation: https://exist-db.org/exist/apps/doc/devguide_rest.
53 The version of the DraCor API running on the production server at the time of writing of this report is

0.87.1, cf. the corresponding release https://github.com/dracor-org/dracor-api/releases/tag/v0.87.1. The
code references partly also refer to the following version https://github.com/dracor-org/dracor-
api/releases/tag/v0.88.0.

https://staging.dracor.org/
https://dracor.org/
http://localhost:8080/exist/rest/db/data/dracor/tei/ger
http://localhost:8080/exist/rest/db/data/dracor/tei/ger
http://localhost:8080/exist/rest/db/data/dracor/tei/ger
http://localhost:8080/exist/rest/db/data/dracor/metrics/ger/lessing-emilia-galotti.xml
http://localhost:8080/exist/rest/db/data/dracor/metrics/ger/lessing-emilia-galotti.xml
http://localhost:8080/exist/rest/db/data/dracor/metrics/ger/lessing-emilia-galotti.xml
https://github.com/eXist-db/eXide
https://exist-db.org/exist/apps/doc/devguide_rest
https://github.com/dracor-org/dracor-api/releases/tag/v0.87.1
https://github.com/dracor-org/dracor-api/releases/tag/v0.88.0
https://github.com/dracor-org/dracor-api/releases/tag/v0.88.0

D7.1 On Programmable Corpora

 29

collections in the database, the DraCor API was designed with a domain model of digital drama

analysis in mind and thus organizes the API functionality around the two core entities “corpus”

and theater “play”, thus following the assumption already mentioned above that corpora are the

central epistemic objects of CLS (cf. Gavin 2023: 4). Information can be requested or methods

can be invoked on the level of the whole corpus, as well as for a single play, but a play is always

considered part of a corpus and thus in general needs to be identified by the name of the corpus

(“corpusname”) and the name (slug) of a play (“playname”) resulting in a typical repeating naming

pattern for an endpoint URL, like {base-url}/api/corpora/{corpusname}/play/{playname}.

5.3.1 Implementation

The module “api.xqm”54 contains the code of the DraCor API and defines its endpoints making

use of RESTXQ, whereas the URL of the endpoint is defined in the XQuery function annotation

%rest:path("/corpora/{$corpusname}/play/{$playname}/tei")

The XQuery code below implements the endpoint

/corpora/{corpusname}/play/{playname}/tei and can serve as an example of how in

general the API endpoints of the DraCor API are written:

(:~
 : Get TEI representation of a single play
 :
 : @param $corpusname Corpus name
 : @param $playname Play name
 : @result TEI document
 :)

declare
 %rest:GET
 %rest:path("/corpora/{$corpusname}/play/{$playname}/tei")
 %rest:produces("application/xml", "text/xml")
 %output:media-type("application/xml")

function api:play-tei($corpusname, $playname) {
 let $doc := dutil:get-doc($corpusname, $playname)
 return
 if (not($doc)) then
 <rest:response>
 <http:response status="404"/>
 </rest:response>
 else
 let $tei := $doc//tei:TEI
 let $model-pi := $doc/processing-instruction(xml-model)

54 Cf. code reference <8>.

https://github.com/dracor-org/dracor-api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm

D7.1 On Programmable Corpora

 30

 return if ($model-pi) then
 document {
 processing-instruction {'xml-model'} {$model-pi/string()},
 $tei
 }
 else $tei

};

The first part between (:~ and :) of the code is a multiline comment that documents the function.

The actual function starts with the keyword declare followed by the function annotations that

define the endpoint:

- %rest specifies the HTTP method (GET),

- the endpoint URL is set with %rest:path.

- The response format is specified in the annotation %rest:produces.

The function will return XML data. The actual name of the function “api:play-tei” follows the

function keyword. The function annotation %rest:path controls that the path parameters of

$corpusname and $playname are extracted from the request URL of the API call and passed

to the function. The code line starting with the keyword let defines a variable $doc to which the

contents of an XML document are assigned with the help of the utility function util:get-doc.

A control structure starting with the keyword if checks if the document is available and, in case

it is not, returns the HTTP status code 404, which commonly is used, if a resource is not

available.55

If the XML is available and successfully retrieved by the get-doc function, the code in

the else block is executed. If the original document contains an xml-model processing instruction,

it is issued, and, eventually, the TEI document is returned. Other endpoints are implemented

accordingly. As a rule of thumb there is a function that defines the endpoint (path,

accepted/returned formats ...). This function retrieves data from one or more utility functions

contained in the util module and returns the data as the response of the API endpoint.

The formats returned by the API are JSON, CSV, RDF+XML, TEI+XML, XML (Gephi,

GraphML) and PLAINTEXT. In some cases, e.g., in the case the endpoints are to retrieve network

data, the format is part of the endpoint’s URL, but some of the endpoints rely on the HTML

“Accept” header field to trigger different behavior, e.g., the endpoints /id/{id} and

/corpora/{corpusname}/play/{playname}/spoken-text-by-character evaluate

the “Accept” header to decide which format to return. In the XQuery code this is implemented by

providing functions with different function annotations in the RESTXQ namespace, e.g.,

55 Cf. https://www.rfc-editor.org/rfc/rfc9110.html#name-404-not-found.

https://www.rfc-editor.org/rfc/rfc9110.html#name-404-not-found

D7.1 On Programmable Corpora

 31

%rest:produces("text/csv") vs. %rest:produces("application/json"). The

values of the annotations are Internet Media Types (MIME types). Not for all formats returned by

the API there are MIME types available: Whereas there is a designated MIME type for TEI already

declared, which is application/tei+xml56, there are no designated MIME types registered

for the network data formats GraphML and GEXF. Therefore, relying solely on content negotiation

via MIME types in the Accept Header field of the HTTP request for all endpoints did not seem

feasible57, which resulted in multiple endpoints returning the same information, but in different

serializations (see for example section 5.3.3.4 on network data).

5.3.2 OpenAPI Documentation

The DraCor API is documented in the “OpenAPI Specification Format”58. It is a standardized

format for describing an API, including the available endpoints and the supported HTTP methods

(GET, POST, …), the expected input and output for each endpoint, which can be described with

schemas, and many other details. The OpenAPI specification is language agnostic, meaning it

can be used to describe APIs written in any programming language. APIs described with OpenAPI

are interoperable, because the documentation is machine-readable and can be easily understood

and consumed by a wide range of tools, such as API development frameworks or documentation

generators. It is also possible to automatically generate client libraries for many programming

languages from an OpenAPI specification.59 The OpenAPI specification serves as a contract

between the API provider and consumers, clearly defining what the API does and does not provide

(for another use-case of OpenAPI see section 6.1.2).

56 See https://www.rfc-editor.org/rfc/rfc6129.html; still, the API uses “application/xml”.
57 An option would be to rely on an additional parameter “format”, e.g. “Accept

application/xml;format=graphml” vs. “Accept application/xml;format=gexf”, see https://www.rfc-
editor.org/rfc/rfc9110.html#name-content-negotiation-fields. The use of MIME types is generally
encouraged by guidelines on API design, cf. e.g., the REST API Design Rulebook: “Rule: Media type
negotiation should be supported when multiple representations are available” (Massé 2012: 43).
58On OpenAPI see https://swagger.io/specification and the section 5.3.2 in this report. The API

specification of the DraCor API can be found in the “api.yml” file: https://github.com/dracor-org/dracor-
api/blob/main/api.yaml
59 https://swagger.io/tools/swagger-codegen.

https://www.rfc-editor.org/rfc/rfc6129.html
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-negotiation-fields
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-negotiation-fields
https://swagger.io/specification
https://github.com/dracor-org/dracor-api/blob/main/api.yaml
https://github.com/dracor-org/dracor-api/blob/main/api.yaml
https://swagger.io/tools/swagger-codegen

D7.1 On Programmable Corpora

 32

Fig. 10: DraCor API OpenAPI specification visualized with SwaggerUI

The specification of the DraCor API is rendered using Swagger UI60 as an interactive

documentation61. The API can be also used right away from within the browser, e.g., opening the

URL https://dracor.org/api/corpora will return a list of the available corpora.

5.3.3 Functionality and Endpoints

On a general level, the endpoints of the DraCor API can be differentiated into two groups: admin

endpoints and content endpoints.

There are a few endpoints that have a central function in the administration of the system.

They allow for adding a corpus to the database, triggering the process to load data from a

repository (on GitHub) or delete a corpus from the database. By following the REST principles,

these endpoints use the standard HTTP methods POST and DELETE on the corpora endpoint

/corpora/{corpusname}, and, in case of deleting a single play, the HTTP method DELETE

60 https://swagger.io/tools/swagger-ui
61 https://dracor.org/doc/api. An introduction on how to use the interactive documentation is available

here: https://github.com/dracor-org/dracor-notebooks/blob/textplus/api-tutorial/textplus-api-tutorial.ipynb.

https://dracor.org/api/corpora
https://swagger.io/tools/swagger-ui
https://dracor.org/doc/api
https://github.com/dracor-org/dracor-notebooks/blob/textplus/api-tutorial/textplus-api-tutorial.ipynb

D7.1 On Programmable Corpora

 33

on the /corpora/{corpusname}/play/{playname} endpoint. Adding a single play to a

corpus is considered an update operation on the

/corpora/{corpusname}/play/{playname} endpoint and therefore uses the PUT

method.62 All “admin” operations require that a user has authenticated herself or himself and has

the necessary write permissions on the database. Corpora are loaded and updated on the

production system with these endpoints. While these functionalities are not relevant for the

common user working with the ready-to-use infrastructure provided at https://dracor.org, they gain

importance in scenarios in which a local installation of the system is set up, e.g., by using Docker.

The admin endpoints are the easiest way to create and populate custom corpora.63

The larger number of public (“content”) endpoints are motivated by the needs of research

and the front-end (see section 5.6). They are primarily used by issuing HTTP GET requests and

as a response return data in various formats (JSON, CSV, XML, TEI+XML, RDF+XML,

PLAINTEXT). They do not require a user to be logged in, therefore the endpoints are grouped

under the label “public” in the OpenAPI specification.64

Of these “public” endpoints two endpoints––i.e., /info and /id/{id}––provide utility

functionality. The /info endpoint supports some self-description capabilities of the API by

returning information about the underlying versions of the eXist-db and the API.65 In the returned

JSON object, the field with the key “version” contains the version number of the application, which

refers to a release that can be tracked down on GitHub66, thus allowing a user to get information

about the specific development state of the system. When using the API in research, it is advisable

to note the used version of the API to allow for a reproduction of the results based on the actual

infrastructural components used.67

The “resolver endpoint” /id/{id}68 which can resolve DraCor IDs, e.g., “ger000088” to

corpus name “ger” and the play name “lessing-emilia-galotti” issues a redirect depending on the

62 The interactive documentation (using Swagger UI, see section below) can be accessed at

https://dracor.org/doc/api#/admin.
63 For a tutorial see https://github.com/dracor-org/dracor-notebooks/blob/docker/docker/local-dracor-with-

docker.ipynb.
64 The interactive documentation of the “public” endpoints can be accessed at

https://dracor.org/doc/api#/public.
65 The interactive documentation can be accessed at https://dracor.org/doc/api#/public/api-info. The

endpoint is implemented by the function api:info <10> in “api.xqm”.
66 see https://github.com/dracor-org/dracor-api/releases for all releases of the API.
67 In deliverable D 7.3, we will showcase a more advanced approach towards repeating research by using

Docker technology.
68 The interactive documentation of the endpoint can be accessed at

https://dracor.org/doc/api#/public/resolve-id. The endpoint is implemented by the function api:id-to-
url <11> which issues a redirect to an url generated by the local function local:id-to-url <12>

based on the provided “Accept” header field.

https://dracor.org/
https://dracor.org/doc/api#/admin
https://github.com/dracor-org/dracor-notebooks/blob/docker/docker/local-dracor-with-docker.ipynb
https://github.com/dracor-org/dracor-notebooks/blob/docker/docker/local-dracor-with-docker.ipynb
https://dracor.org/doc/api#/public
https://dracor.org/doc/api#/public/api-info
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L65-L87
https://github.com/dracor-org/dracor-api/releases
https://dracor.org/doc/api#/public/resolve-id
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L163-L190
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L143-L161

D7.1 On Programmable Corpora

 34

provided “Accept” header field69 in the request. For example, if a client requests the resource

“https://dracor.org/api/id/ger000088” without any specific “Accept” header, the server sends a 303

“See other”70 status code and provides “https://dracor.org/ger/lessing-emilia-galotti” as the new

location in the “Location” response header71. If the client is a web browser, it will normally display

the webpage of the single play. If the client requests RDF data by including

application/rdf+xml in the “Accept” field of the request header, the server will also send the

status code “303” but redirect the client to the

/corpora/{corpusname}/play/{playname}/rdf endpoint, which returns metadata about

the play in RDF.72 Apart from RDF the other MIME type that is supported by this content

negotiation mechanism is application/json which forwards to the

/corpora/{corpusname}/play/{playname} endpoint. Most prominently, the resolver

endpoint is used to properly redirect to a single play page if the (shorter) URL includes only the

DraCor ID, e.g., “https://dracor.org/id/ger000088”. This allows for the shortest possible citation of

a play on the DraCor platform by just providing the ID.73

The other endpoints grouped under “public” in the documentation are providing

information on

(1) a single-language corpus (see section 5.3.3.1),

(2) a single play in a corpus (see section 5.3.3.2),

(3) data on the key constituents of a play, i.e. (see section 5.3.3.3),

(3a) segments,

(3b) characters,

(3c) the spoken text and

(3d) stage directions, as well as

(4) derived network data on a single play, its characters, and their relations (see section

5.3.3.4).

These aspects are seldom fully covered by a single endpoint because the information on a single

entity is available in different serializations or structured with a different focus or probable use

case in mind.

69 Cf. https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1.
70 Cf. https://www.rfc-editor.org/rfc/rfc7231#section-6.4.4.
71 Cf. https://www.rfc-editor.org/rfc/rfc7231#section-7.1.2.
72 This behavior conforms to what has been described as “Cool URIs for the Semantic Web”:

https://www.w3.org/TR/cooluris.
73 Cf. for example the way Trilcke et al. (in press) are referencing DraCor plays.

https://dracor.org/api/id/ger000088
https://dracor.org/ger/lessing-emilia-galotti
https://dracor.org/id/ger000088
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1
https://www.rfc-editor.org/rfc/rfc7231#section-6.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.2
https://www.w3.org/TR/cooluris

D7.1 On Programmable Corpora

 35

5.3.3.1 Information on a Corpus

Tab. 01 contains an overview of the available features for a single corpus. The column “Feature”

contains a unique name for the feature. In the endpoint-columns the keys of the respective JSON

objects are given. An asterisk “*” indicates that the object is part of an array, a dot “.” is used to

notate the paths of nested objects. When referring to a corpus feature in the text the siglum “C”

followed by the row number of the table in square brackets is used, e.g. [C1] for the feature

“corpus_name”.

 endpoint

No. Feature /corpora /corpora/{corpusname}

C1 corpus_name *.name name

C2 corpus_uri *.uri N.A.

C3 corpus_title *.title title

C4 corpus_acronym *.acronym acronym

C5 corpus_description *.description description

C6 corpus_repository *.repository repository

C7 corpus_licence *.licence licence

C8 corpus_licence_url *.licenceUrl licenceUrl

C9 corpus_num_of_plays *.metrics.plays N.A.

C10 corpus_num_of_characters *.metrics.characters N.A.

C11 corpus_num_of_characters_male *.metrics.male N.A.

C12 corpus_num_of_characters_female *.metrics.female N.A.

C13 corpus_num_of_tei_text_elements *.metrics.text N.A.

C14 corpus_num_of_sp *.metrics.sp N.A.

C15 corpus_num_of_stage *.metrics.stage N.A.

C16 corpus_num_of_word_tokens_in_text_elements *metrics.wordcount.text N.A.

C17 corpus_num_of_word_tokens_in_sp *.metrics.wordcount.sp N.A.

C18 corpus_num_of_word_tokens_in_stage *.metrics.wordcount.stage N.A.

C19 corpus_metrics_date_updated *.metrics.updated N.A.

C20 corpus_play_objects N.A. dramas

Tab. 01: Corpus Features

D7.1 On Programmable Corpora

 36

Information on available corpora (and, consequently, on a single corpus74) can be retrieved from

the /corpora endpoint75 which returns an array of objects representing the corpora with some

metadata: The field with the key “name” [C1] of the corpus contains an identifier (“corpusname”)

that is needed when requesting information about a single corpus. The other fields contain the

title of the corpus (key “title”, [C3]), a “description” [C5], URL of the repository on GitHub [C6],

information on the license (key “licence” [!] [C7]) and a URL at which the license can be found

[C8]. The field with the key “uri” [C2] contains an identifier that corresponds to the request URL of

the /corpora/{corpusname} endpoint and can be used to request more information about the

corpus, e.g., included plays. The data returned is extracted from the “corpus.xml” file that

describes each corpus.76

If the optional query parameter “include” is provided and set to “metrics” in the request,

additional count-based metrics on the corpora can be included in the response, i.e. number of

plays [C9], texts [C13]77, speech acts [C14], stage directions [C15], characters [C10] (male [C11]

and female [C12]) and number of word tokens in speeches [C17], stage directions [C18], and

texts [C16].78

The contents, meaning the included plays, of a single corpus can be retrieved from the

endpoint /corpora/{corpusname}79. This endpoint also offers basic metadata about the

74 The most comprehensive data on a single corpus is contained by the list of all corpora as returned by

the /corpora endpoint. Although the responses of the endpoints /coropora/{corpusname} contains

some metadata on the corpus that is extracted from the “corpus.xml”, the endpoint

/corpora/{corpusname} (and, respectively, /corpora/{corpusname}/metadata and

/corpora/{corpusname}/metadata/csv provide data on the included plays). The above-mentioned

metrics about a single corpus are only contained in the list of corpora returned by the /corpora

endpoint. It is fair to say that the naming of the endpoints is somewhat misleading.
75 The interactive documentation can be accessed at https://dracor.org/doc/api#/public/list-corpora.
76 The function dutil:get-corpus <13> retrieves the data from the “corpus.xml” file stored in the “tei”

collection of the given corpus in the database. The information is extracted by the function dutil:get-
corpus-info <14>.
77 Whereas the field “plays” contains the number of <tei:TEI> elements <15>, which represents the

number of documents in a corpus, “texts” is the count of all elements <tei:text> inside the documents

<16>.
78 The metrics are retrieved by the function local:get-corpus-metrics <17> in “api.xqm”. The

function is called from the function api:corpora if the parameter “include” is set to “metrics” <18>. The

function counts elements in the collection of TEI documents, except for the word counts <19>, which are
retrieved from the pre-calculated files in the “metrics” collection and summed up. This is done to avoid
having to tokenize all texts at this point to count the tokens . When requesting the metadata on a single

corpus by calling the endpoint /corpora/{corpusname}/metadata the metrics are provided by the

function dutil:get-corpus-meta-data (cf. <20>) <21> which does not include the number of “plays”

(elements <tei:TEI>) and “texts” (elements <tei:text>), but an array of the actual plays with

metadata.
79 The interactive documentation can be accessed at https://dracor.org/doc/api#/public/list-corpus-

content.

https://dracor.org/doc/api#/public/list-corpora
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L401-L417
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L436-L475
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L197
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L202
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L192-L220
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L243-L245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L213-L217
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://dracor.org/doc/api#/public/list-corpus-content
https://dracor.org/doc/api#/public/list-corpus-content

D7.1 On Programmable Corpora

 37

corpus that should allow for unambiguously identifying it, e.g., its identifier (field “name”). The

metadata on the corpus is, again, fetched from “corpus.xml”, as in the case of the /corpora
endpoint. In addition, there is a field with the key “dramas” [C20] which includes an array of objects

representing the individual plays.

5.3.3.2 Information on a Play

The information on a single play is distributed over several endpoints, which can be seen in the

Tab 02 that gives an overview over the 64 features available.80 The column “Feature” contains a

unique name for the feature, in the endpoint-columns the key of the respective JSON objects (or

in the case of a CSV file, the column name) is given. An asterisk “*” indicates that the object is

part of an array, a dot “.” is used to notate the paths of nested objects. When referring to a play

feature in the text the siglum “P” followed by the row number of the table in square brackets is

used, e.g. [P2] for the feature “play_id”.

The features can be grouped as follows:

■ Identifiers of the play (and the corpus it is contained in), external IDs (Wikidata)

[P1–4]

■ Titles, such as main title and subtitle, if available, and English translation thereof

[P5–8]

■ Information on the author(s), names in several variants (fullname, shortname),

external identifier(s) of the author (primarily Wikidata) [P9–21]

■ Genre [P22, 23]

■ Dates [P24–27]

■ Sources digital and print [P28–34]

■ Wikipedia links [P35]

■ Segments, such as acts, scenes, paragraphs, lines; but also structures of dramatic

texts, speeches, stage directions; number of word tokens therein [P36–43]

■ Characters, including social relations; information on culmination of characters in

a segment [P44-52]

■ Network data, metrics based on a co-presence network constructed from

appearances of speaking characters in a segment [P53–P64]

 endpoint

No. Feature /corpora/{corpusname} /corpora/{cor
pusname}/me

tadata

/corpora/{corpu
sname}/metadat

a/csv

/corpora/{corpusn
ame}/play/{playna

me}

/corpora/{cor
pusname}/pla

y/{playname}/

80 The endpoint /corpora/{corpusname}/metadata includes the name of the corpus in two fields,

“playName” is considered a duplicate of the field with the key “name” and is not included in the table.

D7.1 On Programmable Corpora

 38

metrics

P1 play_corpus_name N.A. N.A. N.A. corpus corpus

P2 play_id dramas.*.id *.id id id id

P3 play_name dramas.*.name *.name name name name

P4 play_wikidata_id dramas.*.wikidataId N.A. N.A.

wikidataId N.A.

P5 play_title dramas.*.title *.title title title N.A.

P6 play_subtitle dramas.*.subtitle *.subtitle subtitle subtitle N.A.

P7 play_title_en dramas.*.titleEn N.A. N.A. titleEn N.A.

P8 play_subtitle_en dramas.*.subtitleEn N.A. N.A. subtitleEn N.A.

P9 play_author_name dramas.*.authors.*.name N.A. N.A. authors.*.name N.A.

P10 play_author_name_en N.A. N.A. N.A. authors.*.nameEn N.A.

P11 play_author_fullname dramas.*.authors.*.fullname N.A. N.A. authors.*.fullname N.A.

P12 play_author_fullname_en N.A. N.A. N.A. authors.*.fullname

En

N.A.

P13 play_author_shortname dramas.*.authors.*.shortnam
e

N.A. N.A. authors.*.shortnam
e

N.A.

P14 play_author_shortname_en N.A. N.A. N.A. authors.*.shortnam
eEn

N.A.

P15 play_first_author_name dramas.*.author.name N.A. N.A. author.name N.A.

P16 play_first_author_shortname N.A. *.firstAuthor firstAuthor N.A. N.A.

P17 play_first_author_deprecatio
n_warning

N.A. N.A. N.A. author.warning N.A.

P18 play_author_also_known_as N.A. N.A. N.A. authors.*.alsoKnow

nAs

N.A.

P19 play_author_ref_external_id dramas.*.authors.*.refs.*.ref N.A. N.A. authors.*.refs.*.ref N.A.

P20 play_author_ref_type dramas.*.authors.*.refs.*.typ
e

N.A. N.A. authors.*.refs.*.typ
e

N.A.

P21 play_num_of_co_authors N.A. *.numOfCoAut

hors

numOfCoAuthor

s

N.A. N.A.

P22 play_genre_normalized N.A. *.normalizedG
enre

normalizedGenre genre N.A.

P23 play_is_libretto N.A. *.libretto libretto libretto N.A.

P24 play_year_written dramas.*.writtenYear *.yearWritten yearWritten yearWritten N.A.

P25 play_year_printed dramas.*.printYear *.yearPrinted yearPrinted yearPrinted N.A.

P26 play_year_premiered dramas.*.premiereYear *.yearPremiere
d

yearPremiered yearPremiered N.A.

P27 play_year_normalized dramas.*.yearNormalized *.yearNormaliz yearNormalized yearNormalized N.A.

D7.1 On Programmable Corpora

 39

ed

P28 play_digital_source_name dramas.*.source N.A. N.A. source.name N.A.

P29 play_digital_source_url dramas.*.sourceUrl *.digitalSource digitalSource source.url N.A.

P30 play_original_source_full_cit

ation

N.A. N.A. N.A. originalSource N.A.

P31 play_original_source_publis
her

N.A. *.originalSourc
ePublisher

originalSourcePu
blisher

N.A. N.A.

P32 play_original_source_public
ation_place

N.A. *.originalSourc
ePubPlace

originalSourcePu
bPlace

N.A. N.A.

P33 play_original_source_public
ation_year

N.A. *.originalSourc
eYear

originalSourceYe
ar

N.A. N.A.

P34 play_original_source_num_o
f_pages

N.A. *.originalSourc
eNumberOfPa
ges

originalSourceNu
mberOfPages

N.A. N.A.

P35 play_num_of_wikipedia_link
s

N.A. *.wikipediaLink
Count

wikipediaLinkCo
unt

N.A. wikipediaLinkC
ount

P36 play_segments N.A. N.A. N.A. segments N.A.

P37 play_num_of_segments N.A. *.numOfSegm
ents

numOfSegments N.A. N.A.

P38 play_num_of_acts N.A. *.numOfActs numOfActs N.A. N.A.

P39 play_num_of_paragraphs N.A. *.numOfP numOfP N.A. N.A.

P40 play_num_of_verse_lines N.A. *.numOfL numOfL N.A. N.A.

P41 play_num_of_word_tokens_i
n_text_elements

N.A. *.wordCountTe
xt

wordCountText N.A. N.A.

P42 play_num_of_word_tokens_i
n_sp

N.A. *.wordCountS
p

wordCountSp N.A. N.A.

P43 play_num_of_word_tokens_i
n_stage

N.A. *.wordCountSt
age

wordCountStage N.A. N.A.

P44 play_characters N.A. N.A. N.A. cast N.A.

P45 play_num_of_speakers N.A. *.numOfSpeak
ers

numOfSpeakers N.A. N.A.

P46 play_num_of_speakers_gen
der_female

N.A. *.numOfSpeak
ersFemale

numOfSpeakers
Female

N.A. N.A.

P47 play_num_of_speakers_gen

der_male

N.A. *.numOfSpeak

ersMale

numOfSpeakers

Male

N.A. N.A.

P48 play_num_of_speakers_gen
der_unknown

N.A. *.numOfSpeak
ersUnknown

numOfSpeakers
Unknown

N.A. N.A.

P49 play_num_of_person_group
s

N.A. *.numOfPerso
nGroups

numPersonGrou
ps

N.A. N.A.

P50 play_all_in_segment N.A. N.A. N.A. allInSegment N.A.

P51 play_all_in_index N.A. N.A. N.A. allInIndex N.A.

D7.1 On Programmable Corpora

 40

P52 play_character_relations N.A. N.A. N.A. relations N.A.

P53 play_network_data_csv_url dramas.*.networkdataCsvUrl N.A. N.A. N.A. N.A.

P54 play_network_nodes N.A. N.A. N.A. N.A. nodes

P55 play_network_size dramas.*.networkSize *.size size N.A. size

P56 play_network_num_edges N.A. *.numEdges numEdges N.A. numEdges

P57 play_network_average_degr
ee

N.A. *.averageDegr
ee

averageDegree N.A. averageDegre
e

P58 play_network_density N.A. *.density density N.A. density

P59 play_network_diameter N.A. *.diameter diameter N.A. diameter

P60 play_network_average_path
_length

N.A. *.averagePath
Length

averagePathLen
gth

N.A. averagePathL
ength

P61 play_network_average_clust
ering

N.A. *.averageClust
ering

averageClusterin
g

N.A. averageCluste
ring

P62 play_network_num_connect

ed_components

N.A. *.numConnect

edComponent
s

numConnectedC

omponents

N.A. numConnecte

dComponents

P63 play_network_max_degree N.A. *.maxDegree maxDegree N.A. maxDegree

P64 play_network_max_degree_
character_ids

N.A. *.maxDegreeId
s

maxDegreeIds N.A. maxDegreeIds

Tab. 02: Play Features

The play objects contained in the array in the response of the /corpora/{corpusname}
endpoint [C20] contain data about a single play including identifiers (fields “id” [P2], “name” [P3],

“wikidataId” [P4]), titles (“title” [P5], “subtitle” [P6]), author(s) (“authors” [P9, 11, 13, 19, 20], and,

deprecated, “author” [P15]), dates (“writtenYear” [P24], “printYear” [P25], “premiereYear” [P26]

and “yearNormalized” [P27]) information about the source (“source” [P28], “sourceUrl” [P29]), the

number of nodes of the extracted network, which is equal to the number of characters

(“networkSize” [P55]), and a link to the data of the network as CSV (“networkdataCsvUrl” [P53]).

Even more extensive data for all plays in a corpus including count-based [P37–43, 45–49] and

network-based metrics [P55–64] is returned by the two endpoints

/corpora/{corpusname}/metadata81, returning a JSON file, and

81The interactive documentation is available at https://dracor.org/doc/api#/public/corpus-metadata. The

endpoint is implemented with the function api:corpus-meta-data <22>, which generates its data

with the function dutil:get-corpus-meta-data <21>. Because the data generated is also used by

the endpoint returning a CSV, the JSON object is flat and resembles the columns in the CSV file. This
has an effect on the serialization of fields, that have multiple values, e.g. “maxDegreeIds”, which is
serialized as a string value, not as an array (cf. <23>).

https://dracor.org/doc/api#/public/corpus-metadata
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L595-L598

D7.1 On Programmable Corpora

 41

/corpora/{corpusname}/metadata/csv82 returning the information as a table in the CSV

format. Characters and segments (i.e. acts and scenes)83 of a single play can be fetched from the

/corpora/{corpusname}/play/{playname} endpoint.84 The endpoint

/corpora/{corpusname}/play/{playname}/metrics85 predominantly contains the

network metrics, that are calculated by the DraCor Metrics Service (see section 5.4) upon loading

the data into the database, i.e. “size” [P55], “numEdges” [P56], “averageDegree” [P57], “density”

[P58], “diameter” [P59], “averagePathLength” [P60], “averageClustering” [P61],

“numConnectedComponents” [P62], “maxDegree” [P63] and “maxDegreeIds” [P64].

The data on plays and corpora is also available in a RDF serialization that is generated

upon loading a corpus into the database. The endpoint is

/corpora/{corpusname}/play/{playname}/rdf.86 The whole TEI source document of a

play can be retrieved from the /corpora/{corpusname}/play/{playname}/tei

endpoint.87

82 The endpoint /corpora/{corpusname}/metadata.csv, which provided the metadata table, is

deprecated and should not be used. Guides on API design discourage including file extensions in API
URL patterns, cf. “Rule: File extensions should not be included in URIs” (Massé 2012:13). The interactive

documentation of the endpoint /corpora/{corpusname}/metadata/csv is available at:

https://dracor.org/doc/api#/public/corpus-metadata-csv-endpoint. The functionality is implemented by two

functions: api:corpus-meta-data-csv <24> which wraps the function api:get-corpus-meta-
data-csv <25>. As in the case of its JSON returning twin endpoint, it generates the data with the util

function dutil:get-corpus-meta-data <21>, but serializes it as CSV. The columns are defined in

the “api.xqm” module as a variable “metadata-columns” <26> and, probably, contain the most compact
overview of available fields of a single corpus available in DraCor.
83 The designated endpoint that returns a list of segments in a custom XML

/corpora/{corpusname}/play/{playname}/segmentation is deprecated, see

https://dracor.org/doc/api#/public/play-segments-xml. The segments can be found in the response of the

/corpora/{corpusname}/play/{playname} endpoint, albeit in JSON.
84 The endpoint is implemented with the function api:play-info <27> which retrieves the data from

the function dutil:get-play-info <28>.
85 The endpoint is implemented with the function api:play-metrics <29> which retrieves the data

from the function dutil:get-play-metrics <30>.
86 The endpoint is implemented by the function api:play-rdf <31>. It returns the file contained in the

collection /db/data/dracor/rdf/{corpusname}. The module that generates the RDF is still under

development. In the version deployed on the DraCor server the module “rdf.xqm”
(https://github.com/dracor-org/dracor-api/blob/main/modules/rdf.xqm) generates the triples based on the
DraCor ontology https://github.com/dracor-org/dracor-schema/blob/main/ontology/dracor-ontology.xml; an
updated version of the module “rdf.xqm” will additionally serialize the information according to the
standard ontologies CIDOC-CRM (https://www.cidoc-crm.org) and the CIDOC harmonized ontology
FRBRoo (https://www.cidoc-crm.org/frbroo). The current state of the module can be accessed here:
https://github.com/dracor-org/dracor-api/blob/43-refine-rdf-generation/modules/rdf.xqm.
87 The endpoint is implemented with the function api:play-tei <32> that gets the data from the

function dutil:get-doc <33>. The data stored in the collection

/db/data/dracor/tei/{corpusname} is returned.

https://dracor.org/doc/api#/public/corpus-metadata-csv-endpoint
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L687-L701
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L22-L63
https://dracor.org/doc/api#/public/play-segments-xml
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L764-L786
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L897-L1014
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L940-L961
https://github.com/dracor-org/dracor-api/blob/main/modules/rdf.xqm
https://github.com/dracor-org/dracor-schema/blob/main/ontology/dracor-ontology.xml
https://www.cidoc-crm.org/
https://www.cidoc-crm.org/frbroo
https://github.com/dracor-org/dracor-api/blob/43-refine-rdf-generation/modules/rdf.xqm
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L845-L873
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L77-L91

D7.1 On Programmable Corpora

 42

5.3.3.3 Information on Key Constituents of a Play

Segments

Information on segments, i.e., acts, scenes and other types of structuring a play, e.g.,

“appearances” [de: “Auftritte”] is not available as a single designated endpoint. Some information

on the segmentation of a play is represented by the features “play_num_of_acts” [P38] and

“play_num_of_segments” [P37]. The structure of a play in segments can be inferred from the field

with the key “segments” [P36] in the response object of the

/corpora/{corpusname}/play/{playname} endpoint.88 To some extent the feature

“play_all_in_segment” [P50] is also a feature of a single segment, because it marks the segment

in which all characters have appeared on the stage at least once. One of the reasons, why the

class segment is somewhat underrepresented might be due to the fact that contrary to the other

entity classes corpus, play and character, there are no explicit IDs on segments,89 i.e., an attribute

@xml:id on the element <div> is not used, which makes it difficult to address a single segment

and implement a designated endpoint.

Tab. 03 gives an overview of the features of a segment that are included in the response

of /corpora/{corpusname}/play/{playname} endpoint. The deprecated endpoint

/corpora/{corpusname}/play/{playname}/segmentation is not taken into account.

 endpoints

No. Feature /corpora/{corpusname}/play/{playname}

S1 segment_type segments.*.type

S2 segment_number segments.*.number

S3 segment_title segments.*.title

S4 segment_speaking_characters segments.*.speakers

Tab. 03: Segment Features

Characters

Data on the characters of a play are, on the one hand, included in the response of the endpoint

/corpora/{corpusname}/play/{playname} in the field with the key “cast” [P44], on the

88 The function dutil:get-play-info that is generating the response data of

/corpora/{corpusname}/play/{playname} retrieves the information on the segments with the

function dutil:get-segments <34>.
89 We are still discussing at which level(s) and in which depth the assignment of IDs makes sense. In fact,

such an assignment presupposes a more extensive (and thus debatable) modeling of the dramatic text. In
addition, there is a risk that assigning IDs at too fine a granularity (e.g., at the word level) will significantly
overload the XML.

https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L263-L286

D7.1 On Programmable Corpora

 43

other hand, there are two designated endpoints returning a list of characters: The endpoint

/corpora/{corpusname}/play/{playname}/cast90 returns this data in JSON, the

endpoint /corpora/{corpusname}/play/{playname}/cast/csv91 returns it as a table in

CSV.

Tab. 04 lists the features available for a single character. The table includes the above

discussed character-specific endpoints, but also the endpoints

/corpora/{corpusname}/play/{playname}/metrics which contains a field “nodes”

representing the characters [P54] and

/corpora/{corpusname}/play/{playname}/spoken-text-by-character, because

the spoken text of a character can be considered a feature of a character. In total 15 character

features are available from five endpoints.

 endpoint

No. Feature /corpora/{corpus
name}/play/{play

name}

/corpora/{corpus
name}/play/{play

name}/metrics

/corpora/{corpu
sname}/play/{pl

ayname}/cast

/corpora/{corpu
sname}/play/{pl

ayname}/cast/c
sv

/corpora/{corpu
sname}/play/{pl

ayname}/spoken
-text-by-
character

Ch1 character_id cast.*.id nodes.*.id *.id id *.id

Ch2 character_name cast.*.name N.A. *.name name *.label

Ch3 character_is_group cast.*.isGroup N.A. *.isGroup isGroup *.isGroup

Ch4 character_gender cast.*.sex N.A. *.gender gender *.gender

Ch5 character_wikidata_id cast.*.wikidata_id N.A. *.wikidataId wikidataId N.A.

Ch6 character_node_betweenness N.A. nodes.*.betweenn
ess

*.betweenness betweenness N.A.

Ch7 character_node_degree N.A. nodes.*.degree *.degree degree N.A.

90 The interactive documentation of the endpoint is available at: https://dracor.org/doc/api#/public/get-

cast. The endpoint is implemented with the function api:cast-info <35>, that retrieves the data from

the function dutil:cast-info <36>.
91 The interactive documentation of the endpoint is available at: https://dracor.org/doc/api#/public/get-

cast-csv. The endpoint is implemented with the function api:cast-info-csv-ext <37>. The same

result can be achieved when sending the appropriate “Accept” header with the value “text/csv” in the

request to the /corpora/{corpusname}/play/{playname}/cast endpoint, that evaluates the

headers and returns data according to the requested MIME-type. This is implemented by specifying the

“Accept” header in the function annotation of the function api:cast-info-csv <38> here: <39>. The

data is generated by using the same function as

/corpora/{corpusname}/play/{playname}/cast, i.e., dutil:cast-info. The columns are set

in api:cast-info-csv and the data returned by dutil:cast-info ist filtered accordingly in the api

function.

https://dracor.org/doc/api#/public/get-cast
https://dracor.org/doc/api#/public/get-cast
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1399-L1421
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1074-L1136
https://dracor.org/doc/api#/public/get-cast-csv
https://dracor.org/doc/api#/public/get-cast-csv
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1457-L1464
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1423-L1455
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1433

D7.1 On Programmable Corpora

 44

Ch8 character_node_closeness N.A. nodes.*.closeness *.closeness closeness N.A.

Ch9 character_node_eigenvector N.A. nodes.*.eigenvect
or

*.eigenvector eigenvector N.A.

Ch10 character_node_weighted_degre

e

N.A. nodes.*.weighted

Degree

*.weightedDegre

e

weightedDegree N.A.

Ch11 character_num_of_segments N.A. N.A. *.numOfScenes numOfScenes N.A.

Ch12 character_num_of_sp N.A. N.A. *.numOfSpeech
Acts

numOfSpeechAc
ts

N.A.

Ch13 character_num_of_word_tokens N.A. N.A. *.numOfWords numOfWords N.A.

Ch14 character_roles N.A. N.A. N.A. N.A. *.roles

Ch15 character_spoken_text N.A. N.A. N.A. N.A. *.text

Tab. 04: Character Features

Spoken Text

The spoken text by characters, i.e., the text without stage directions, is available from the endpoint

/corpora/{corpusname}/play/{playname}/spoken-text. The text can be filtered by

setting the query parameters “gender”, “relation” and “role”. The data is returned in PLAINTEXT

format.92 The endpoint /corpora/{corpusname}/play/{playname}/spoken-text-by-

character returns the spoken text grouped by character. Depending on the “Accept” header in

the request, the endpoint can return the data in JSON format or in a table as CSV.93

An example taken from the play “Emilia Galotti” (https://dracor.org/id/ger000088) can

demonstrate how the stage directions encoded with the TEI element <stage> are excluded from

the spoken text in the API outputs. The following snippet is taken from the TEI94, spoken text is in

bold script.

<div type="act">
 <head>Erster Aufzug</head>
 <stage>Die Szene, ein Kabinett des Prinzen.</stage>
 <div type="scene">

92 The interactive documentation is available at: https://dracor.org/doc/api#/public/play-spoken-text. The

endpoint is implemented with the function api:spoken-text <40>. The filtering is implemented in the

function dutil:get-speech-filtered <41>. If no parameters are set, the function dutil:get-
speech <42> is used.
93 The interactive documentation is available at: https://dracor.org/doc/api#/public/play-spoken-text-by-

character. The endpoint is implemented with the function api:spoken-text-by-character which

calls api:get-spoken-text-by-character <43>. The data is generated with the local function

local:get-text-by-character <44>. The CSV is generated with api:spoken-text-by-
character-csv <45>, the JSON with api:spoken-text-by-character-json <46>.
94Cf. <47>.

https://dracor.org/id/ger000088
https://dracor.org/doc/api#/public/play-spoken-text
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1565-L1611
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L161-L235
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L118-L136
https://dracor.org/doc/api#/public/play-spoken-text-by-character
https://dracor.org/doc/api#/public/play-spoken-text-by-character
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1638-L1647
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1613-L1636
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1685-L1716
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1666-L1683
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L159-L176

D7.1 On Programmable Corpora

 45

 <head>Erster Auftritt</head>
 <sp who="#der_prinz">
 <speaker>DER PRINZ</speaker>

<stage>an einem Arbeitstische, voller Briefschaften und Papiere,
deren einige er durchläuft.</stage>
<p>Klagen, nichts als Klagen! Bittschriften, nichts als
Bittschriften! – Die traurigen Geschäfte; und man beneidet uns
noch! – Das glaub' ich; wenn wir allen helfen könnten:
dann wären wir zu beneiden. – Emilia? <stage>Indem er noch eine
von den Bittschriften aufschlägt, und nach dem unterschriebnen
Namen sieht.</stage> Eine Emilia? – Aber eine Emilia Bruneschi –
nicht Galotti. Nicht Emilia Galotti! – Was will sie, diese Emilia
Bruneschi? <stage>Er lieset.</stage> <!-- … --></p>

 </sp>
 <!-- ... -->
 </div>
</div>

The fragment above retrieved as PLAINTEXT response from the endpoint

/corpora/{corpusname}/play/{playname}/spoken-text95 looks as such:

Klagen, nichts als Klagen! Bittschriften, nichts als Bittschriften! – Die traurigen Geschäfte; und

man beneidet uns noch! – Das glaub' ich; wenn wir allen helfen könnten: dann wären wir zu

beneiden. – Emilia? Eine Emilia? – Aber eine Emilia Bruneschi – nicht Galotti. Nicht Emilia

Galotti! – Was will sie, diese Emilia Bruneschi?

The JSON array contains the text grouped by character as an object with some metadata on the

speaker and the text included in the field with the key “text”, which contains an array with the

individual speeches as items. The following example below is the same snipped as in the previous

example in a different serialization:96

[{
 "id" : "der_prinz",
 "label" : "Der Prinz",
 "isGroup" : false,
 "gender" : "MALE",
 "roles" : [],
 "text" : ["Klagen, nichts als Klagen! Bittschriften, nichts als
Bittschriften! – Die traurigen Geschäfte; und man beneidet uns noch! – Das
glaub' ich; wenn wir allen helfen könnten: dann wären wir zu beneiden. –

95 https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text
96 https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text-by-character

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text
https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/spoken-text-by-character

D7.1 On Programmable Corpora

 46

Emilia? Eine Emilia? – Aber eine Emilia Bruneschi – nicht Galotti. Nicht Emilia
Galotti! – Was will sie, diese Emilia Bruneschi?
…
]}, …]

Stage Directions

The text of stage directions can be retrieved from the endpoints

/corpora/{corpusname}/play/{playname}/stage-directions97, which returns all

stage directions of a play excluding the speaker labels and

/corpora/{corpusname}/play/{playname}/stage-directions-with-speakers98

which includes speaker labels. Both endpoints return the data in plain text format.

To demonstrate the filtering in the output, the same excerpt from the play “Emilia Galotti”

(https://dracor.org/id/ger000088) is used. Stage directions are encoded using the TEI element

<stage> in the source file and are included in the API output. The following snippet is taken from

the TEI99, stage directions are in bold script, the speaker label in <speaker> is in italics:

<div type="act">
 <head>Erster Aufzug</head>
 <stage>Die Szene, ein Kabinett des Prinzen.</stage>
 <div type="scene">
 <head>Erster Auftritt</head>
 <sp who="#der_prinz">
 <speaker>DER PRINZ</speaker>

<stage>an einem Arbeitstische, voller Briefschaften und Papiere,
deren einige er durchläuft.</stage>
<p>Klagen, nichts als Klagen! Bittschriften, nichts als
Bittschriften! – Die traurigen Geschäfte; und man beneidet uns
noch! – Das glaub' ich; wenn wir allen helfen könnten: dann wären
wir zu beneiden. – Emilia? <stage>Indem er noch eine von den
Bittschriften aufschlägt, und nach dem unterschriebnen Namen
sieht.</stage> Eine Emilia? – Aber eine Emilia Bruneschi – nicht
Galotti. Nicht Emilia Galotti! – Was will sie, diese Emilia
Bruneschi? <stage>Er lieset.</stage> <!-- … --></p>

 </sp>

97 The interactive documentation is available at: https://dracor.org/doc/api#/public/play-stage-directions.

The endpoint is implemented with the function api:stage-directions <48>, which generates the

plaintext data by getting the text nodes contained in the TEI element <stage> <49>.
98 The interactive documentation is available at: https://dracor.org/doc/api#/public/play-stage-directions-

with-speakers. The endpoint is implemented with the function api:stage-directions-with-
speakers <50>, which also generates the returned data.
99 Cf. <47>.

https://dracor.org/id/ger000088
https://dracor.org/doc/api#/public/play-stage-directions
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1718-L1741
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1738-L1739
https://dracor.org/doc/api#/public/play-stage-directions-with-speakers
https://dracor.org/doc/api#/public/play-stage-directions-with-speakers
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1743-L1769
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L159-L176

D7.1 On Programmable Corpora

 47

 <!-- ... -->
 </div>
</div>

The response of the /corpora/{corpusname}/play/{playname}/stage-directions

includes all stage directions separated by newlines100:

Die Szene, ein Kabinett des Prinzen.

an einem Arbeitstische, voller Briefschaften und Papiere, deren einige er durchläuft.

Indem er noch eine von den Bittschriften aufschlägt, und nach dem unterschriebnen Namen

sieht.

Er lieset.

The response of the endpoint /corpora/{corpusname}/play/{playname}/stage-

directions-with-speakers includes the speaker label “DER PRINZ” (here marked with

bold font) before the first of the stage directions included in the speech act:101

Die Szene, ein Kabinett des Prinzen.

DER PRINZ an einem Arbeitstische, voller Briefschaften und Papiere, deren einige er durchläuft.

Indem er noch eine von den Bittschriften aufschlägt, und nach dem unterschriebnen Namen

sieht.

Er lieset.

5.3.3.4 Network Data

Several endpoints offer the data of the extracted co-presence networks. The network metrics that

are calculated upon the ingest of a corpus into the database with the help of the DraCor Metrics

Service are provided by the endpoint

/corpora/{corpusname}/play/{playname}/metrics (see also section 5.3.3.2 on play

features and the paragraphs on character features in section 5.3.3.3 above).102 The data is

returned as JSON.

The network data is also available in a tabular form as CSV. The response of the endpoint

/corpora/{corpusname}/play/{playname}/networkdata/csv103 includes information

100 https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions
101 https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions-with-speakers
102 The interactive documentation is available at: https://dracor.org/doc/api#/public/play-metrics. The

endpoint is implemented with the function api:play-metrics <51>. The data is loaded from the

stored files in the collection /db/data/dracor/metrics/{corpusname} and prepared for the

response with the function dutil:get-play-metrics <52>.
103 The interactive documentation is available at: https://dracor.org/doc/api#/public/network-csv. The

endpoint is implemented with the function api:networkdata-csv <53>. The data is generated in this

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions
https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/stage-directions-with-speakers
https://dracor.org/doc/api#/public/play-metrics
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://dracor.org/doc/api#/public/network-csv
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L963-L1013

D7.1 On Programmable Corpora

 48

on the edges of the network in the columns “Source”, “Type”, “Target” and “Weight”. The endpoint

/corpora/{corpusname}/play/{playname}/networkdata/gexf104 provides the

network data in the XML based format GEXF105 ready to be used with the network analysis tool

Gephi106. The endpoint

/corpora/{corpusname}/play/{playname}/networkdata/graphml107 returns data as

XML in the GraphML108 format.

The designated functions that generate the network data rely on an intermediary structure.

In the case of the above-mentioned endpoints, it is a custom XML; the case of the function that

prepares the data for posting it to the metrics service, the XQuery data types map and sequence

are used, that can be serialized to JSON objects and arrays. This structure is then transformed

to the requested serializations in the designated rendering functions109:

<segments>
 <sgm>
 <spk>character_id_1</spk>
 <spk>character_id_2</spk>
 <sgm>
 <!-- … -->
</segments>

Another type of network is based on the social relations (available as play feature [P52]) that are

encoded for some of the plays in the TEI element <listRelation> in the <listPerson>. The

example below is a snippet from the code of the play “Emilia Galotti”

(https://dracor.org/id/ger000088):110

<listRelation type="personal">

function based on segments and speakers retrieved from the corresponding utility functions dutil:get-
segments and dutil:distinct-speakers.
104 The interactive documentation is available at: https://dracor.org/doc/api#/public/network-gexf. The

endpoint is implemented with the function api:networkdata-gexf <54>.
105 The GEXF file format is described at https://gexf.net. Unfortunately, there seems to be no official

MIME-Type available for this format, cf. https://www.iana.org/assignments/media-types/media-
types.xhtml.
106 https://gephi.org.
107 The interactive documentation is available at: https://dracor.org/doc/api#/public/network-graphml. The

endpoint is implemented with the function api:networkdata-graphml <55>.
108 Specification of the GraphML format: http://graphml.graphdrawing.org.
109 <56> (CSV), <57> (GEXF), <58> (GraphML), https://github.com/dracor-org/dracor-

api/blob/main/modules/metrics.xqm#L62-L72 <59> (in the function metrics:get-network-metrics

that prepares the data for sending to metrics service). A similar structure is available from the deprecated
segmentation endpoint, cf. https://dracor.org/doc/api#/public/play-segments-xml for documentation.
110 Cf. <60>.

https://dracor.org/id/ger000088
https://dracor.org/doc/api#/public/network-gexf
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1037-L1110
https://gexf.net/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://gephi.org/
https://dracor.org/doc/api#/public/network-graphml
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1112-L1194
http://graphml.graphdrawing.org/
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L985-L997
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1058-L1070
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1133-L1145
https://github.com/dracor-org/dracor-api/blob/main/modules/metrics.xqm#L62-L72
https://github.com/dracor-org/dracor-api/blob/main/modules/metrics.xqm#L62-L72
https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L62-L72
https://dracor.org/doc/api#/public/play-segments-xml
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L90-L94

D7.1 On Programmable Corpora

 49

 <relation name="parent_of" active="#odoardo #claudia" passive="#emilia"/>
 <relation name="associated_with" active="#marinelli" passive="#der_prinz"/>
 <relation name="associated_with" active="#camillo_rota"
passive="#der_prinz"/>
</listRelation>

The endpoint /corpora/{corpusname}/play/{playname}/relations/csv111 provides

these relations as tabular data (in a CSV file) containing the columns “Source”, “Type”, “Target”

and “Label”. The social relations in the play “Emilia Galotti” are provided in the response of the

endpoint as follows:112

Source,Type,Target,Label
odoardo,Directed,emilia,parent_of
claudia,Directed,emilia,parent_of
marinelli,Directed,der_prinz,associated_with
camillo_rota,Directed,der_prinz,associated_with

This information can be requested in two other XML formats to be used with network analysis

software. The endpoint

/corpora/{corpusname}/play/{playname}/relations/gexf113 returns the relation

data of a play as GEXF and

/corpora/{corpusname}/play/{playname}/relations/graphml114 as GraphML.

5.3.3.5 Cross-Corpora Queries

There is one endpoint that provides a means to query across several plays and/or corpora. The

endpoint /character/{id} lists plays having a character identified by a Wikidata ID.115 This

endpoint can be used to retrieve characters in plays that are actualizations of a common

archetype, e.g., the “Faust” character. In the source TEI the reference to an entry on Wikidata is

111 The interactive documentation is available at: https://dracor.org/doc/api#/public/relations-csv. The

endpoint is implemented with the function api:relations-csv <61> that generates the social relations

data using the function dutil:get-relations <62>.
112 https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/relations/csv
113 The interactive documentation is available at: https://dracor.org/doc/api#/public/relations-gexf. The

endpoint is implemented with the function api:relations-gexf <63> that uses the social relations

data that is included in the data returned of the function dutil:get-play-info <64>.
114 The interactive documentation is available at: https://dracor.org/doc/api#/public/relations-graphml. The

endpoint is implemented with the function api:relations-graphml <65> that uses the social relations

data that is included in the data returned of the function dutil:get-play-info <64>.
115 The interactive documentation is available at: https://dracor.org/doc/api#/public/plays-with-character.

The endpoint is implemented with the function api:plays-with-character <66> that generates its

data using the function dutil:get-plays-with-character <67>.

https://dracor.org/doc/api#/public/relations-csv
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1197-L1245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1144-L1180
https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/relations/csv
https://dracor.org/doc/api#/public/relations-gexf
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1247-L1318
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L951
https://dracor.org/doc/api#/public/relations-graphml
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1320-L1397
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L951
https://dracor.org/doc/api#/public/plays-with-character
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1771-L1792
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1182-L1206

D7.1 On Programmable Corpora

 50

included in the attribute @ana. The code snippet below shows the encoding of the character

“Faust” in Goethe’s play:116

<person xml:id="faust" sex="MALE" ana="http://www.wikidata.org/entity/Q76918">
 <persName>Faust</persName>
</person>

The Wikidata ID can be used as the value of the path parameter “id” the endpoint as such:

https://dracor.org/api/character/Q76918. The response includes a JSON array that lists 21

dramas with a Faust character linked to Wikidata. These range from early plays such as

Weidmann's “Johann Faust” (1775)117, Goethe's both “Faust” parts118 and Vischer's “Faust III”

(1862)119, to mashups such as Grabbe's “Don Juan and Faust” (1829)120 and a version with a

female Faust, Wilhelm Schäfer's “Faustine” (1898)121.

The endpoint also returns results from different corpora, as can be seen when querying

for “Antigone” characters: https://dracor.org/api/character/Q131351, which returns results from

the Greek, Roman, Italian and Russian Drama Corpora.

5.3.4 API Wrappers

For the programming languages Python and R, the packages “pydracor”122 and “rdracor”123 serve

as API wrappers. For information on the two packages, see the CLS INFRA work package 7

Deliverable D7.2.

116 Cf. <68>.
117 https://dracor.org/id/ger000014.
118 https://dracor.org/id/ger000243, https://dracor.org/id/ger000201.
119 https://dracor.org/id/ger000064.
120 https://dracor.org/id/ger000209.
121 https://dracor.org/id/ger000302.
122 Code repository on GitHub: https://github.com/dracor-org/pydracor. The package is published on PyPI

(“Python Package Index”) https://pypi.org/project/pydracor and can be installed with the command pip3
install pydracor on a machine with Python and pip available.
123 Code repository on GitHub: https://github.com/dracor-org/rdracor; The package is published on CRAN

(“Comprehensive R Archive Network”) and with R the library can be installed with a single line of code

install.packages("rdracor") and can be included into R projects with library(rdracor).

http://www.wikidata.org/entity/Q76918
https://dracor.org/api/character/Q76918
https://dracor.org/api/character/Q131351
https://github.com/dracor-org/gerdracor/blob/d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c/tei/goethe-faust-eine-tragoedie.xml#L75-L77
https://dracor.org/id/ger000014
https://dracor.org/id/ger000243
https://dracor.org/id/ger000209
https://dracor.org/id/ger000302
https://github.com/dracor-org/pydracor
https://pypi.org/project/pydracor
https://github.com/dracor-org/rdracor

D7.1 On Programmable Corpora

 51

5.4 DraCor Metrics Service

The network metrics provided by several API endpoints are calculated with a separate

microservice implemented in Python.124 This microservice exposes an API with a single endpoint

/metrics that accepts POST requests. It expects the structural data extracted from the source

TEI file as JSON in the body of the HTTP POST request. Below is an example of the data that

can be posted to the service:

{"segments":[{"speakers":["speaker_1","speaker_2"]},{"speakers":["speaker_1","s
peaker_3"]}]}

For the sample data above, the service will return a JSON object, that will look like this:

{
 "size": 3,
 "density": 0.6666666666666666,
 "diameter": 2,
 "averagePathLength": 1.3333333333333333,
 "averageDegree": 1.3333333333333333,
 "averageClustering": 0.0,
 "maxDegree": 2,
 "maxDegreeIds": [
 "speaker_1"
],
 "numConnectedComponents": 1,
 "numEdges": 2,
 "nodes": {
 "speaker_1": {
 "degree": 2,
 "weightedDegree": 2,
 "betweenness": 1.0,
 "closeness": 1.0,
 "eigenvector": 0.707106690085642
 },
 "speaker_2": {
 "degree": 1,
 "weightedDegree": 1,
 "betweenness": 0.0,
 "closeness": 0.6666666666666666,
 "eigenvector": 0.5000000644180599

124 The GitHub repository can be accessed at: https://github.com/dracor-org/dracor-metrics. The version

reviewed in this report is 1.2.0, cf. https://github.com/dracor-org/dracor-metrics/releases/tag/v1.2.0.The
code is in the file “main.py”. The API is implemented with the package “hug” (https://pypi.org/project/hug).

https://github.com/dracor-org/dracor-metrics
https://github.com/dracor-org/dracor-metrics/releases/tag/v1.2.0
https://pypi.org/project/hug

D7.1 On Programmable Corpora

 52

 },
 "speaker_3": {
 "degree": 1,
 "weightedDegree": 1,
 "betweenness": 0.0,
 "closeness": 0.6666666666666666,
 "eigenvector": 0.5000000644180599
 }
 }
}

When using the Metrics Service as a component of the DraCor system, the eXist-db application

will handle the extraction, send the request to the specified endpoint URL and decode the returned

data.125

All metrics are calculated using the Python package networkX (Hagberg et al. 2008)126

based on a Graph G that is constructed when the respective function is called.127 Tab. 05 lists all

metrics, whereas the first column contains the key of the field with the calculated value in the

returned JSON object, the second column is the name of the metric and in column 3 the

corresponding play (P) or character feature (Ch) is referenced (see Tab. 02 and 03 in section

5.3.3.2 resp. 5.3.3.3):

Key Metric Feature

size128 Network Size P55

density129 Network Density P58

diameter130 Network Diameter P59

125 This functionality is implemented with the function metrics:get-network-metrics <69>. The

returned metrics are stored in a designated collection in the database

/db/data/dracor/metrics/{corpusname}.
126 https://networkx.org. The documentation provides extensive information on the algorithms

implemented in the package: https://networkx.org/documentation/stable/reference.
127 In the code, the graph is created here: <70>.
128 Calculated by counting a list of nodes, see code <71>; Documentation:

https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.nodes.html#net
workx.classes.function.nodes.
129 Calculated with the networkx function density
(https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.density.html#n
etworkx.classes.function.density).
130 Cf. <72>.

https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L49-L118
https://networkx.org/
https://networkx.org/documentation/stable/reference
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L18-L36
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L38
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.nodes.html#networkx.classes.function.nodes
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.nodes.html#networkx.classes.function.nodes
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.density.html#networkx.classes.function.density
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.density.html#networkx.classes.function.density
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L71

D7.1 On Programmable Corpora

 53

numEdges131 Number of Edges P56

averagePathLength132 Average Path Length P60

averageDegree133 Average Degree P57

averageClustering134 Average Clustering Coefficient P61

maxDegree135 Maximum Degree P63

maxDegreeIds136 Maximum Degree IDs P64

numConnectedComponents137 Number of Connected Components P62

nodes.*.degree138 Degree Centrality Ch7

nodes.*.weightedDegree139 Weighted Degree Ch10

nodes.*.betweenness140 Betweenness Centrality Ch6

nodes.*.closeness141 Closeness Centrality Ch8

131 Uses the networkx function number_of_edges

(https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.number_of_ed
ges.html#networkx.classes.function.number_of_edges).
132 Cf. <73>.
133 Cf. <74>.
134 Cf. <75>; Documentation:

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.av
erage_clustering.html#networkx.algorithms.cluster.average_clustering.
135 Cf. <76>.
136 Cf. <77>.
137 Uses the networkx function number_connected_components
(https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.compone
nts.number_connected_components.html#networkx.algorithms.components.number_connected_compon
ents).
138 Uses the networkx function degree
(https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#n
etworkx.classes.function.degree).
139 Uses the networkx function degree
(https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#n
etworkx.classes.function.degree).
140 Uses the networkx function betweenness_centrality
(https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.
betweenness_centrality.html#networkx.algorithms.centrality.betweenness_centrality.
141 Uses the networkx function closeness_centrality (

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.
closeness_centrality.html#networkx.algorithms.centrality.closeness_centrality).

https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.number_of_edges.html#networkx.classes.function.number_of_edges
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.number_of_edges.html#networkx.classes.function.number_of_edges
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L72-L73
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L74
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L75
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.average_clustering.html#networkx.algorithms.cluster.average_clustering
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.average_clustering.html#networkx.algorithms.cluster.average_clustering
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L39
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L40
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.number_connected_components.html#networkx.algorithms.components.number_connected_components
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.number_connected_components.html#networkx.algorithms.components.number_connected_components
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.number_connected_components.html#networkx.algorithms.components.number_connected_components
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#networkx.classes.function.degree
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#networkx.classes.function.degree
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#networkx.classes.function.degree
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.degree.html#networkx.classes.function.degree
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html#networkx.algorithms.centrality.betweenness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html#networkx.algorithms.centrality.betweenness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html#networkx.algorithms.centrality.closeness_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html#networkx.algorithms.centrality.closeness_centrality

D7.1 On Programmable Corpora

 54

nodes.*.eigenvector142 Eigenvector centrality Ch9

Tab. 05: Network metrics provided by the DraCor Metrics Service

5.5 DraCor SPARQL Endpoint

Data on corpora and plays is transformed to RDF upon loading corpora into the database. This

data is not only stored in an XML serialization inside the eXist-db143, but also loaded into a triple

store144. The current setup uses Apache Jena Fuseki145 that provides a SPARQL endpoint.146

YASGUI is used to provide a GUI.147 YASGUI148 not only supports writing SPARQL queries, but

it also has several capabilities to display the results, e.g. a map view (see for example Fig. 04 in

section 4.2).

5.6 DraCor Front-End

The central user interface of the DraCor system, that is running on the website https://dracor.org,

is implemented as a single page application based on the React Javascript library149 that retrieves its

data from the API.150 In the following section we describe the single components of the front-

end151 and especially emphasize its relation to the API. An overview of all endpoints and

information if they are used can be seen in Tab. 06. The columns include the components of the

website, the rows list all endpoints supporting HTTP GET requests. An entry marked with

“fetched” means that data is actually retrieved from the API and rendered, whereas “linked”

indicates that the page contains a link to an endpoint that triggers a download behavior.

142 Uses the networkx function eigenvector_centrality
(https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.
eigenvector_centrality.html#networkx.algorithms.centrality.eigenvector_centrality).
143 Data is stored in the collection /db/data/dracor/rdf/{corpusname} and can be retrieved with

the /corpora/{corpusname}/play/{playname}/rdf endpoint.
144 Repository of the Jena Fuseki Setup used for DraCor: https://github.com/dracor-org/dracor-fuseki
145 https://jena.apache.org; Fuseki: https://jena.apache.org/documentation/fuseki2/index.html.
146 The production version of the endpoint is available at https://dracor.org/fuseki/sparql.
147 It can be accessed at https://dracor.org/sparql.
148 https://yasgui.triply.cc. GitHub repository: https://github.com/TriplyDB/Yasgui.
149 Code repository on GitHub: https://github.com/dracor-org/dracor-frontend. The app development was

bootstrapped with “Create React App”, see GitHub repository https://github.com/facebook/create-react-
app.
150 For sending requests to the API and parsing the responses the package “Apisauce” is used, see

GitHub repository https://github.com/infinitered/apisauce.
151 The GitHub repository of the DraCor front-end app we refer to in this report is version 1.5.0, cf.

https://github.com/dracor-org/dracor-frontend/releases/tag/v1.5.0.

https://dracor.org/
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.eigenvector_centrality.html#networkx.algorithms.centrality.eigenvector_centrality
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.eigenvector_centrality.html#networkx.algorithms.centrality.eigenvector_centrality
https://github.com/dracor-org/dracor-fuseki
https://jena.apache.org/
https://jena.apache.org/documentation/fuseki2/index.html
https://dracor.org/fuseki/sparql
https://dracor.org/sparql
https://yasgui.triply.cc/
https://github.com/TriplyDB/Yasgui
https://github.com/dracor-org/dracor-frontend
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/infinitered/apisauce

D7.1 On Programmable Corpora

 55

Endpoint

Landing

Page

Corpus

Page

Play Page

Play Page

overall,

Head

Tab

“Network”

Tab

“Relations”

Tab “Speech

distribution”

Tab “Full

text”

Tab

“Downloads

”

/info fetched

/corpora fetched

/corpora/{corpusname} fetched

/corpora/{corpusname}/

metadata

 linked

/corpora/{corpusname}/
metadata/csv

 linked

/corpora/{corpusname}/
play/{playname}

 fetched (already
fetched)

(already
fetched)

(already
fetched)

(already
fetched)

/corpora/{corpusname}/

play/{playname}/metrics

 fetched

/corpora/{corpusname}/
play/{playname}/tei

 linked fetched linked

/corpora/{corpusname}/
play/{playname}/rdf

/corpora/{corpusname}/
play/{playname}/cast

 linked

/corpora/{corpusname}/
play/{playname}/cast/cs
v

 linked

/corpora/{corpusname}/
play/{playname}/networ
kdata/csv

 linked

/corpora/{corpusname}/
play/{playname}/networ

kdata/gexf

 linked

/corpora/{corpusname}/
play/{playname}/networ
kdata/graphml

 linked

/corpora/{corpusname}/

play/{playname}/relation
s/csv

 linked

/corpora/{corpusname}/
play/{playname}/relation
s/gexf

 linked

/corpora/{corpusname}/
play/{playname}/relation
s/graphml152

152 To be included, cf. https://github.com/dracor-org/dracor-frontend/pull/246.

https://github.com/dracor-org/dracor-frontend/pull/246

D7.1 On Programmable Corpora

 56

/corpora/{corpusname}/
play/{playname}/spoken
-text

 linked

/corpora/{corpusname}/

play/{playname}/spoken
-text-by-character

 linked

/corpora/{corpusname}/
play/{playname}/stage-
directions

 linked

/corpora/{corpusname}/
play/{playname}/stage-
directions-with-speakers

 linked

/id/{id} Used in the frontend to redirect {dracor-app-url}/id/{dracor-id} to the play page.

/character/{id}

/author/{wikidataId}153 fetched

Tab. 06: API endpoints used in the front-end

On each page on the DraCor front-end there is a header containing the logo and the top

navigation154 with the menu drop-down menus.

Fig. 11: DraCor menu

The menu item “About” contains links to pages providing information about DraCor, a FAQ, a

page listing all people involved in creating the system and the corpora, and the imprint. All corpora

are always accessible from the “Corpora” drop-down menu item.

153 This is a “hidden” API endpoint that supports getting data for an author from Wikidata.
154 React component “TopNav” <78>.

https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/TopNav.js

D7.1 On Programmable Corpora

 57

Fig. 12: DraCor corpora drop-down menu

The menu item “Tools” contains links to the interactive API documentation implemented with

Swagger UI155, a link to the SPARQL interface156 that is built on YASGUI157, the editor “ezlinavis”

(Easy Linavis)158, that allows to quickly generate CSV files with network data from simple

segmentations of a dramatic text written in a Markdown-inspired159 notation and the web

application “Shiny Dracor”160 which provides an interface to interact and analyze networks. The

menu item “How To” includes links to a page listing tutorials and teaching material161 as well as

an extensive list of research based on DraCor and the corpora provided162. The last item in the

155 https://swagger.io/tools/swagger-ui.
156 https://dracor.org/sparql
157 https://yasgui.triply.cc, GitHub repository: https://github.com/TriplyDB/Yasgui.
158 https://ezlinavis.dracor.org, cf. GitHub repository https://github.com/dracor-org/ezlinavis.
159 Markdown is a simple markup language, invented by John Gruber and the already mentioned Aaron

Swartz, cf. https://daringfireball.net/projects/markdown.
160 https://shiny.dracor.org; the experimental web application is implemented with R and the web

framework for interactive data visualizations “Shiny” (https://shiny.rstudio.com), cf. GitHub repository:
https://github.com/dracor-org/dracor-shiny.
161 https://dracor.org/doc/tutorials
162 https://dracor.org/doc/research

https://swagger.io/tools/swagger-ui/
https://dracor.org/sparql
https://yasgui.triply.cc/
https://github.com/TriplyDB/Yasgui
https://ezlinavis.dracor.org/
https://github.com/dracor-org/ezlinavis
https://daringfireball.net/projects/markdown/
https://shiny.dracor.org/
https://shiny.rstudio.com/
https://github.com/dracor-org/dracor-shiny
https://dracor.org/doc/tutorials
https://dracor.org/doc/research

D7.1 On Programmable Corpora

 58

top navigation “Merch”163 links to a page listing available DraCor merchandising, e.g. the card

game “Dramenquartett”164.

The website’s footer165 contains a hint how to cite Dracor and a box providing information

on the version of the API and the underlying eXist-db. This data is retrieved from the API endpoint

/info and renders the information accordingly.166

5.6.1 Landing Page: List of Corpora

Fig. 13: DraCor landing page

A user accessing the web application’s landing page167 is presented with an overview page, on

which all corpora are displayed as cards including some basic statistics (number of plays,

characters, tokens in speeches and stage directions and the date of the last update of the corpus)

in a slider. The data is fetched from the API’s endpoint /corpora with metrics included by setting

the parameter “include” to “metrics”.168

163 https://dracor.org/doc/merch
164 https://dramenquartett.github.io, see the poster for a German version:

https://doi.org/10.6084/m9.figshare.5926363.v1 and the poster for an English version:
https://doi.org/10.6084/m9.figshare.6667424.v1 Cf. Fischer et al. 2018.
165 React component “Footer” <79>.
166 The data is fetched from the API by the function fetchInfo in “App.tsx” <80> . It uses a custom type

“ApiInfo” defined in the “types.ts” <81>. The information is rendered in the component “Footer” <82>.
167 React component “Home” <83>.
168 The interactive documentation of the /corpora endpoint can be accessed at

https://dracor.org/doc/api#/public/list-corpora. The React component “Corpora” <84> fetches the corpus

https://dracor.org/doc/merch
https://dramenquartett.github.io/
https://doi.org/10.6084/m9.figshare.5926363.v1
https://doi.org/10.6084/m9.figshare.6667424.v1
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/App.tsx#L27-L43
https://github.com/dracor-org/dracor-frontend/blob/ea545e97e5eb654b3730a45925703f32f1648212/src/types.ts#L1-L6
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js#L74-L96
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Home.js
https://dracor.org/doc/api#/public/list-corpora
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js

D7.1 On Programmable Corpora

 59

5.6.2 Corpus Page

Selecting a single corpus results in an overview of the corpus contents, which is generated by

rendering the response of an API call to the /corpora/{corpusname} endpoint169, e.g. the

Tatar Drama Corpus containing three plays will be visualized as a sortable table,170 as depicted

in the following screenshot of https://dracor.org/tat171.

Fig. 14: TatDraCor corpus page

data from the API with the function fetchData <85> and displays them as single corpus cards, which

are rendered using the component “CorpusCard” <86>.
169 The interactive documentation of the /corpora/{corpusname} endpoint can be accessed at

https://dracor.org/doc/api#/public/list-corpus-content. The data is retrieved with the function

fetchCorpus <87> in the “Corpus” component <88>. The table is rendered using the component

“CorpusIndex” <89>.
170 The table relies on the package “react-bootstrap-table2”: https://react-bootstrap-table.github.io/react-

bootstrap-table2; GitHub repository: https://github.com/react-bootstrap-table/react-bootstrap-table2.
171 The response of the corpora /corpora/{corpusname} endpoint for the Tatar Drama Corpus

(TatDraCor) can be inspected at https://dracor.org/api/corpora/tat.

https://dracor.org/tat
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js#L79-L89
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/CorpusCard.js
https://dracor.org/doc/api#/public/list-corpus-content
https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js#L25-L45
https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js
https://react-bootstrap-table.github.io/react-bootstrap-table2
https://react-bootstrap-table.github.io/react-bootstrap-table2
https://github.com/react-bootstrap-table/react-bootstrap-table2
https://dracor.org/api/corpora/tat

D7.1 On Programmable Corpora

 60

The buttons “TEI version” in the table column “Source”, which allows to directly download the TEI-

XML file of a single play allow to download the data as returned by the API endpoint

/corpora/{corpusname}/play/{playname}/tei.172

Fig. 15: Download buttons for corpus metadata

Two links at the top of the page provide an easy way to download the corpus metadata in JSON

or CSV format. They link directly to the API endpoints /corpora/{corpusname}/metadata

and /corpora/{corpusname}/metadata/csv.173

5.6.3 View of a Single Play

There is a designated page that offers information on a single play. It includes several “React”

components and renders data fetched (mainly) from the

/corpora/{corpusname}/play/{playname}174 as tabs175, that are displayed below a static

header with basic information on the play and its author.176 The portrait, as well as dates and

places of birth and death are retrieved from Wikidata. The front-end uses the “hidden” endpoint

/author/{wikidataId}.

172 The interactive documentation of the endpoint can be accessed at

https://dracor.org/doc/api#/public/play-tei. The component “CorpusIndex” does not fetch the TEI data, but

assigned the respective URL of the TEI endpoint to a variable <90>, which is then used in the href

attribute of the “download button” <91> .
173 The interactive documentation of the endpoints can be accessed at:

https://dracor.org/doc/api#/public/corpus-metadata and https://dracor.org/doc/api#/public/corpus-
metadata-csv-endpoint.
174 The component “PlayInfo” contained in “Play.js” <92> fetches the data using the function fetchPlay
<93> from the endpoint. The interactive documentation of the endpoint
/corpora/{corpusname}/play/{playname} can be accessed at

https://dracor.org/doc/api#/public/play-info.
175 In “Play.js” the component “PlayDetailsTab” is used, which includes the content of the tab base on a

control flow structure (if/else if/else) <94> evaluating the variable “tab” <95>.
176 The components that is used to render information on the play (title and subtitle, the various dates and

the IDs) is contained in the file “PlayDetailsHeader.js” <96>. It uses the component “AuthorInfo” <97>,
which renders the information on a play’s author by sending a request to the (undocumented) API

endpoint /author/{wikidataId} (see <98>using the function fetchAuthorInfo <99>. An example

of the response for Gotthold Ephraim Lessing can be seen at https://dracor.org/api/author/Q34628.

https://dracor.org/doc/api#/public/play-tei
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L104
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L115-L122
https://dracor.org/doc/api#/public/corpus-metadata
https://dracor.org/doc/api#/public/corpus-metadata-csv-endpoint
https://dracor.org/doc/api#/public/corpus-metadata-csv-endpoint
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L51-L70
https://dracor.org/doc/api#/public/play-info
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L114-L166
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L97
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/PlayDetailsHeader.js
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L19
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L18-L54
https://dracor.org/api/author/Q34628

D7.1 On Programmable Corpora

 61

Fig. 16: Play info Fig. 17: Author info

5.6.3.1 Tab “Network”

The tab "Network" renders a graph177 based on co-occurrences of characters in a segment178 and

lists some basic network metrics extracted from the play and its characters. The network metrics

are retrieved from the endpoint /corpora/{corpusname}/play/{playname}/metrics.179

The information about the characters of a play that are displayed in the box “Cast List” in the

sidebar are fetched from the /corpora/{corpusname}/play/{playname} endpoint.180 The

gender of a character is indicated by a symbol following the name, groups of characters are also

marked. If a Wikidata identifier of a character is contained in the data an icon with the Wikidata

logo as a link to the character’s entity page is displayed next to the character’s name (see example

of Sophocles: Antigone, https://dracor.org/id/greek000025).

177 The graph visualization is implemented using a React wrapper for the library “SigmaJS”

(https://www.sigmajs.org). See https://sim51.github.io/react-sigma for more information on the package.
Code repository on GitHub: https://github.com/sim51/react-sigma. The component that is used to render
with the component “NetworkGraph” <100>. It uses the layout algorithm “ForceAtlas2” in an
implementation for SigmaJS (https://logicatcore.github.io/assets/js/sigma.js-
1.2.1/plugins/sigma.layout.forceAtlas2). The actual settings of the layout are defined in the code of the
component at <101>.
178 None of the pre-calculated graph formats, that are provided by the API (endpoints

/corpora/{corpusname}/play/{playname}/networkdata/[csv|gexf|graphml]) are used.

Instead, the graph is created from the character (“cast”) and segment (“segments”) data that is returned

from /corpora/{corpusname}/play/{playname}. The file “network.js” contains two functions that

are used: Co-occurrences (edges between character nodes) are calculated with the function

getCooccurrences <102> based on the “segments”. The function makeGraph <103> creates the

graph data that can be rendered with SigmaJS.
179 The data is rendered with the component “PlayMetrics” in “PlayMetrics.js” <152>. The interactive

documentation of the endpoint /corpora/{corpusname}/play/{playname}/metrics is available

at https://dracor.org/doc/api#/public/play-metrics.
180 The data is retrieved by the function fetchPlay in “Play.js” already the “Play page” is loaded (see

footnote 175) and passed to the component “CastList” <104>.

https://dracor.org/id/greek000025
https://www.sigmajs.org/
https://sim51.github.io/react-sigma
https://github.com/sim51/react-sigma
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js
https://logicatcore.github.io/assets/js/sigma.js-1.2.1/plugins/sigma.layout.forceAtlas2/
https://logicatcore.github.io/assets/js/sigma.js-1.2.1/plugins/sigma.layout.forceAtlas2/
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js#L29-L39
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L3-L36
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L38-L59
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/PlayMetrics.js
https://dracor.org/doc/api#/public/play-metrics
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/CastList.js

D7.1 On Programmable Corpora

 62

Fig. 18: Single play view, “Network” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088

5.6.3.2 Tab “Relations”

The tab “Relations” visualizes kinship and other social relationship data, following the encoding

scheme proposed in Wiedmer, Pagel, Reiter (2020). The tab is only displayed if this data is

https://dracor.org/id/ger000088

D7.1 On Programmable Corpora

 63

available in the response of the endpoint /corpora/{corpusname}/play/{playname}.181 In

the sidebar there is a box showing the cast of the play.182

Fig. 19: Single play view, “Relations” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088

5.6.3.3 Tab “Speech Distribution”

The tab “Speech Distribution” offers visualizations183 either of the distribution of speaking

characters or of their speeches per segment of a play. The line charts are inspired by three

181 The returned data of the play “Emilia Galotti” can be accessed at

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti. The data is retrieved by the function

fetchPlay in “Play.js” already the “Play page” is loaded (see footnote 175) and passed to the

component “RelationsGraph” <105>, which uses the library “SigmaJS” to render the characters in “cast”
as nodes and the data from “relations” as the edges of a graph. The settings and the options of the force-
directed layout which uses the algorithm “ForceAtlas2” (cf. footnote 178) are set in the code of the
component <106> as are to colors of the rendered relation types <107> .
182 The component “CastList” (cf. footnote 181) is used.
183 In the GitHub repository the React components are contained in the folder

/src/components/SpeechDistribution <108> . The charts are made using the library “react-chartjs-2”
(https://react-chartjs-2.js.org), an implementation of Chart.js (https://www.chartjs.org) for the react

https://dracor.org/id/ger000088
https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L37-L63
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L14-L21
https://github.com/dracor-org/dracor-frontend/tree/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution
https://react-chartjs-2.js.org/
https://www.chartjs.org/

D7.1 On Programmable Corpora

 64

research papers on quantitative drama analysis (Sapogov 1974; Yarkho 2019 [1935–1938];

Trilcke, Fischer 2017). The line charts are rendered in the front-end based on the data of a single

play returned from the /corpora/{corpusname}/play/{playname} endpoint of the API.

 The tab “Speech Distribution” is a prototype in a special way. Conceptually, research-

driven microservices are usually implemented within the DraCor ecosystem as dedicated

programs, for example in distinct Python scripts184 or in separate (also Python-based) Jupyter

Notebooks.185 However, the tab “Speech distribution” is an experimental attempt to implement a

research-driven microservice in the frontend which in this case actually performs not only the

visualization, but also most of the calculations. We discuss the implementation as well as the

research on which this research-driven microservice is based in the following excursus.

Excursus: On the Research-Driven Diagrams in the “Speech Distribution” Tab

Sapogov 1974

The chart which is initially displayed when opening the tab “Speech Distribution” shows a

visualization that is based on the article “Some Characteristics of the Dramaturgical Structure of

A. N. Ostrovsky's Comedy ‘The Forest’”186 by Russian literary critic Vyacheslav Sapogov (1939–

1996).187

Sapogov’s basic assumption of his analysis of Ostrovsky’s play is that a “neutral observer”,

who even though she or he does not understand the text, is nevertheless able to distinguish

sequences of the play that are delimited by a character entering or exiting the stage.188 These

framework. The code is available on GitHub: https://github.com/reactchartjs/react-chartjs-2. The data is
displayed as line charts, see the documentation of the component: https://react-chartjs-
2.js.org/components/line.
184 Such as the “DraCor Metrics Service”, see GitHub repository https://github.com/dracor-org/dracor-

metrics.
185 Such as the Notebook “To catch a protagonist in DraCor” by Ingo Börner, see GitHub repository

https://github.com/dracor-org/dracor-notebooks/tree/main/catch-a-protagonist-in-dracor
186 The original title is: “Некоторые характеристики драматургического построения комедии А. Н.

Островского ‘ЛЕС’”.
187 Sapogov’s study (Sapogov 1974) has not been translated to English. For a short summary and

discussion of his approach in English see the dissertation of Inna Wendell (2021: 34–36). She points out

that Sapogov applies the method developed in an earlier russian study by Revzina and Revzin (1971),
which is grounded on the work of Solomon Marcus (1970; German edition 1973) (for a discussion of the
Revzin’s approach c.f. Wendell 2021: 31–34). The actual plotting of the density is first found in Sapogov’s
work (c.f. Wendell 2021:35). Hence when discussing the DraCor platform, Wendell has a fair point in
noting “The DraCor project refers to this plot as ‘speech distribution’ (as described in Sapogov) but it
would be fair to give credit to the Revzins and also to characterize the plot using their terminology, i.e.,
scene density.” (Wendell 2021: 63, fn 68).
188 Sapogov is clearly following here the considerations of Solomon Marcus (1973: 289–293). Sapogov

(as also Yarkho, see next section) seem to have an understanding of “scene”, which doesn’t necessarily
take into consideration the boundaries as marked by paratextual or typographical features (e.g. headings,
i.e. “Scene 1”), but solely look at the entering and exiting of characters (probably marked by stage

https://github.com/reactchartjs/react-chartjs-2
https://react-chartjs-2.js.org/components/line
https://react-chartjs-2.js.org/components/line
https://github.com/dracor-org/dracor-metrics
https://github.com/dracor-org/dracor-metrics
https://github.com/dracor-org/dracor-notebooks/tree/main/catch-a-protagonist-in-dracor

D7.1 On Programmable Corpora

 65

configurations are recorded in a table (cf. Tab. 07) with the characters as rows and the sequences

as columns in which the presence of a character in a segment is marked as “1”, absence “0”.189

The first part of Sapogov’s “protocol table” representing the first act of “The Forest” looks as such:

 I действие [1st act]

 1 2 3 4 5 6 7 8

Г [G] 0 0 0 1 1 1 1 1

А [A] 1 1 0 0 0 0 1 0

М [M] 0 0 0 1 1 0 0 0

Б [B] 0 0 0 1 1 0 0 0

В [V] 0 0 0 0 1 1 0 0

П [P] 0 0 0 0 1 1 0 0

Бу [Bu] 0 1 1 1 0 0 0 0

К [K] 1 1 1 1 0 0 1 0

У [U] 0 1 1 0 0 0 1 1

Н [N] 0 0 0 0 0 0 0 0

directions) – “appearances”. However, in the table he seems to rely on the explicit marked boundaries in
the text: In the first scene of the first act the characters Karp [K] and Aksyusha [A] are on stage. The end
of the first scene is marked by the entrance of the character Bulanov [Bu]. The last stage direction of
scene 1 reads “Аксюша смотрит в окно, Буланов входит.” [A. looks out of the window, Bu. enters]. In
the text follows a title marking the start of scene 2 which starts with a stage direction listing the characters
“Аксюша, Буланов, Карп, потом Улита.” [A., Bu., K., later U.]. In the table all mentioned characters are
marked as present, although the character Ulita [U] enters only later in the scene, which is marked by the
stage direction “Входит Улита и чего-то ищет.” [U. enters looking for someone.] The “neutral”
observer would have split the second scene into two segments, the first (which would be the overall
second segment) featuring the characters A., Bu. and K, while the overall third segment would have the
characters A., Bu, K. and U. – In DraCor corpora boundaries of segments (scenes and acts) are

motivated by typographical and paratextual features and are explicitly encoded using TEI-XML <div>s.

Because Sapogov does not seem to identify the segment boundaries as his “neutral observer”, the
visualization on the DraCor platform matches Sapogov’s chart.
189 The actual “protocol” table (“таблица-протокол”, Sapogov 1971:60), a configuration matrix, was not

included in the edition that was accessible in the Russian National Library (call number: Б-74-13/348). We
were able to obtain a photograph of the table. Because of its size it was printed separately on a larger
sheet and included with the publication. Sapogov notes in the text proper, that he included all characters
of the play in this table, but “Teren’ka” (Теренька, мальчик Восмибратова), which has only one
appearance at the beginning of the second act.

D7.1 On Programmable Corpora

 66

С [S] 0 0 0 0 0 0 0 0

Пл. я190 2 4 3 5 5 3 4 2

Tab. 07: “Protocol table” showing configurations in Ostrovsky's “The Forest” (cf. Sapogov 1974)

Based on this table Sapogov calculates, what he calls, the “density of acts”, which is calculated

by summing up the cells of a segment containing “1” divided by the total number of cells

representing a segment. Sapogov reports the density of the acts of the analyzed play as follows:

I – 28/88 = 0,32; II – 4/22 = 0,18; III – 43/132 = 0,32; IV – 18/88 = 0,2; V – 32/99 = 0,32. The

density of the whole play “The Forest” is 123 / 429 = 0,28.

In his study, Sapogov refers to the line chart “Table 2” (see Fig. 20 below), which, as he

states, shows “the change of the density per scene”191, even though the actual chart does not

contain the density normalized as explained and calculated by him in the text proper for the acts,

but the total number of characters per scene. The visualization in the front-end of DraCor (see

Fig. 21) also only shows the number of characters per segment192:

Fig. 20: Line chart, showing “the change of density per scene” (Sapogov 1971: 63)

190 “плотность явления” [density of scene].
191 “[...] таблица 2 представляет собой график изменения плотности по отдельным явлениям.”

(Sapogov 1971: 61).
192 The visualization uses the component “Sapogov” in “/components/SpeechDistribution/Sapogov.js”

<109>. The data which is retrieved when the “Play page” is loaded (see footnote 175) is passed to the
component. The speakers in each segment are counted <110> and visualized using the component
“Line”.

https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js#L74-L88

D7.1 On Programmable Corpora

 67

Fig. 21: DraCor chart showing “speech distribution” following Sapogov 1974, https://dracor.org/rus/ostrovsky-

les#speech

Yarkho 1997 [2019]

The second visualization193 is based on the article “Speech Distribution in Five-Act Tragedies (A

Question of Classicism and Romanticism)”194 written by the Russian Formalist Boris Yarkho

(1889–1942). Although Yarkho’s methodology originated by far in the pre-computer area–the first

edition of the article was finished between late 1928 and early 1929–it virtually prompts repetition

studies with digital technology today. A detailed discussion of Yarkho’s method, an

implementation and actualization using up-to-date statistical methods in Python can be found in

the dissertation of Inna Wendell, in which Yarkho’s method is applied for a study of Russian and

French five-act comedies in verse (Wendell 2021; Discussion of Yarkho 1997 cf. Wendell 2021:

43–53).195 In short, Yarkho assumes that a feature that allows to distinguish between five-act

193 The visualization uses the component “Yarkho” in “/components/SpeechDistribution/Yarkho.js” <111>.

The data which is retrieved when the “Play page” is loaded (see footnote 175) is passed to the
component. The function uses two objects (“yarkho” and “nonGroups”) to hold the data for two lines in the
chart. The number of speakers is used as the keys of the object. While iterating over the segments of the
API response data, the function counts the speakers of a segment and then increments a counter
variable in the field of the object identified by the speaker-count <112>. The data is visualized using the
component “Line”.
194 The original title is: “Распределение речи в пятиактной трагедии (К вопросу о классицизме и

романтизме)”. The article in Russian can be accessed at https://rvb.ru/philologica/04/04iarxo.htm.
195 Wendell developed a Python library called “Player” (https://github.com/innawendell/player), that allows

for the extraction of the features used for the analysis from PLAINTEXT and TEI-XML files (amongst them
10 comedies from RusDraCor), see <113>. The data and her analyses as notebooks can be found on
GitHub as well: https://github.com/innawendell/European_Comedy.

https://dracor.org/rus/ostrovsky-les#speech
https://dracor.org/rus/ostrovsky-les#speech
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js#L86-L132
https://rvb.ru/philologica/04/04iarxo.htm
https://github.com/innawendell/player
https://github.com/innawendell/European_Comedy/blob/a0ffe348031579278990cb29a14c799985adbdfb/Russian_Comedies/Russian_Comedies.tsv
https://github.com/innawendell/European_Comedy

D7.1 On Programmable Corpora

 68

tragedies of classicism and romanticism, is the distribution of speech or dialogue types, which are

classified by the number of speaking characters (monologues, dialogues, polylogues) and then

counted. It is important to note that Yarkho has a special definition of a segment or scene:

The start and finish of a scene is, in principle, determined by a narrowing or widening of potential
speech distribution, i. e. for the most part, with a character’s entrance or exit from the stage. If a
character starts talking from off-stage, their appearance is counted from the moment their voice is
heard. The entrance or exit of a silent character also sets the bounds of a scene; only if the
character (for example, an army cohort) passes upstage, without stopping, do we not consider
this a change of scene. The death of a character signifies a potential narrowing of speech
distribution, and therefore demarcates a scene. [...] A character may either be an individual or a
collective. If the People, an army cohort, etc. ... speak with one voice [...] then they are counted
as one character. [...] If the crowd is divided with a precise indication of groups (for example in
Grillparzer: “Einige” ... “Andere” ...), each group counts as one character. When »All« are
speaking in one voice, “All” are not considered an individual character if they have spoken
separately in the same scene; but if at least one of the participants has not spoken separately,
“All” are counted as an additional character. (Yarkho 2019: 21f.)

This type of segmentation is not available in the DraCor corpora, thus, in the case of DraCor, the

visualization must not be understood as a re-implementation Yarko’s method, but could be

regarded as inspired by Yarkho’s plots, of which there are only two in the article. For example, in

Fig. 22 (see below) Yarkho determined percentage shares of segments by the number of

speaking characters of Shakespearean tragedies that are compared to a certain subcorpus of

tragedies of romanticism and visualized them as a line chart:

D7.1 On Programmable Corpora

 69

Fig. 22: Chart showing the number of speaking characters (Yarkho 2019:44), for the russian version see
https://rvb.ru/philologica/04/04iarxo_t08.htm

The visualization that is shown on the DraCor front-end should only be used to compare plays

from DraCor corpora with each other. If compared for example to the data that is provided by

Yarkho in his article the numbers will not match up, because of different ways of counting

segments and speaking characters therein. An example can demonstrate that: In another table

(see Fig. 23) Yarkho provides the actual raw numbers of the type of segments of Shakespeare’s

tragedies, amongst them “Hamlet” (in row 8).

Fig. 23: Speech distribution in Shakespeare (Yarkho 2019: 34)

If we compare this to the respective DraCor visualization of “Hamlet”

(https://dracor.org/id/shake000032) from the Shakespeare Drama Corpus (ShakeDraCor), we

can clearly see the mismatch already when looking at the number of monologues: Yarkho

identified 21 segments with a single speaker, whereas in DraCor only one non-group character is

delivering a single monologue:

https://rvb.ru/philologica/04/04iarxo_t08.htm
https://dracor.org/id/shake000032

D7.1 On Programmable Corpora

 70

Fig. 24: DraCor chart showing speech distribution following Yarkho 1997

In her study Wendell uses data from the Russian Drama Corpus (RusDraCor), but adds additional

markup to mark the boundaries of “scenes” in the sense of Yarkho by splitting up <div>s and

attaching an additional attribute @type with the value extra_scene.196 While simply splitting the

respective <div>s is a pragmatic solution, in corpora, that are used not solely for this research

purpose a less invasive encoding solution would have to be found, e.g. using the TEI element

<milestone> with an attribute @unit to mark the boundaries of appearances.

Wendell also includes a series of visualizations but uses bar plots to show the speech

distribution. Below is an example of her plots:

196 See documentation of the additional tags introduced by Wendell: <114>. The xml extractor functions

for RusDraCor files in her Python library “Player” <115> operate on the adapted markup. An example of a
scene that is split after a character leaves the stage can be found at <116>.

https://github.com/innawendell/European_Comedy/blob/466c2d2bed597ee7dd850b61445554d8fc173c30/TAGS_EXPLANATION.md#2-russian-tei-files
https://github.com/innawendell/player/blob/85a4173ea41146f0ab852cf7b328358575e0280a/player/russian_tei_functions.py
https://github.com/innawendell/European_Comedy/blob/7b96d1e43d31acab85c8431a915039082813c126/Russian_Comedies/TEI_files/R_1.xml#L1036-L1047

D7.1 On Programmable Corpora

 71

Fig. 25: Speech distribution in Shakespeare’s tragedies before 1600 following Wendell (Wendell 2021: 342)

Trilcke, Fischer et al. 2017

The third chart (cf. Fig. 26) can be used to assess the dynamic of a play. It allows for identifying

highly dynamic plays with a frequent alternation of characters on stage, which would be reflected

in a line that often swings with high amplitudes, or low-dynamic plays with only small changes

taking place between scenes, which becomes visible in a more or less straight running line.

D7.1 On Programmable Corpora

 72

Fig. 26: DraCor chart showing drama change rate following Trilcke, Fischer et al. 2017

The metric underlying the visualization is the so-called “drama change rate”. It was first

implemented in the Tool “Dramavis”197 and is described in the paper “Network Dynamics, Plot

Analysis: Approaching Progressive Structuration of Literary Texts” (Trilcke, Fischer et al. 2017).

The algorithm calculates an edit distance similar to the Levenshtein Distance198. For each

segment of a play the cast of a scene (only speaking characters, though) is compared to the

following segment. The operations that are necessary to get from the first state to the latter (add

a character, remove a character) are summed up, resulting in a metric, that is called the “segment

change rate”, which can be normalized by dividing the resulting number through the number of all

characters present in the consecutive segments (“normalized segment change rate”). To obtain

a metric for the entire play, the drama change rate, the sum of all segment change rates is

calculated and divided by the number of all segment change rates. The progression of the

segment change rate can be represented in a chart (see Fig. 26).199

197 The Python tool “Dramavis” (https://github.com/lehkost/dramavis) was developed in the predecessor

project to DraCor “DLINA” (https://dlina.github.io) as a tool to analyze derived structural and network data
from plays (“LINA” for ”Literary Network Analysis” in a custom XML format, example of the play ‘Emilia
Galotti’: https://dlina.github.io/linas/88/). The algorithm to calculate the drama change rate was added to
“Dramavis” with this commit: <117>.
198 See https://en.wikipedia.org/wiki/Levenshtein_distance. While the Levenshtein Distance is normally

used to access the similarity of string, the described algorithm is a “graph edit distance”.
199 The visualization on the front-end uses the component “TrilckeFischer” <118>. The data is retrieved

when the “Play page” is loaded (see footnote 175) and passed to the component. The function

https://github.com/lehkost/dramavis
https://dlina.github.io/
https://dlina.github.io/linas/88/
https://github.com/lehkost/dramavis/pull/16/commits/db960b36d305ee3a3275335209d10d57afdf6e60
https://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js

D7.1 On Programmable Corpora

 73

The excursus exemplified an attempt to directly implement research-driven visualizations in the

front-end. The goal of this experimental implementation in DraCor is also to pay more attention to

the long but little-noticed tradition of quantitative analysis of dramas and thus, in a way, to highlight

the antecedents of DraCor. Of course, as shown, this presupposes an in-depth understanding of

the respective research articles.

We now return to the documentation of the less research-driven tabs in the Single Play

view.

5.6.3.4 Tab “Full Text”

The tab “Full text” (see Fig. 27) allows for reading the text of a single play. The source TEI-XML

is retrieved from the endpoint /corpora/{corpusname}/play/{playname}/tei and

rendered using the library “CETEIcean”200, which transforms TEI elements to custom HTML 5.

The advantage of using this library is that there is no need for an additional transformation step

(e.g., by using a custom XSLT to transform TEI-XML to HTML). The rich information from the

source is kept.201

“calcChangeRates” <119> iterates over the segments and passes two consecutive segments to the
function “calcSegmentChangeRate” <120>, which is then used in the rendering using the component
“LineChart” <121>.
200 Code repository on GitHub: https://github.com/TEIC/CETEIcean. For an introduction to the library see

http://teic.github.io/CETEIcean/Balisage-CETEIcean.html and (Cayless and Viglianti 2018).
201 The URL of the API endpoint is set in the component “Play.js” when the page of a single play is loaded

<122>. This URL is passed in <123> to the component “TEIPanel” in the file “TEIPanel.js” <124>. This
component renders the TEI-XML using the “CETEIcean” library.

https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L31-L40
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L14-L29
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L53-L100
https://github.com/TEIC/CETEIcean
http://teic.github.io/CETEIcean/Balisage-CETEIcean.html
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L102
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L138
https://github.com/dracor-org/dracor-frontend/blob/1a108a52f43536bdab7269850d9cfbcb8e7ce64f/src/components/TEIPanel.js

D7.1 On Programmable Corpora

 74

Fig. 27: Single play view, “Full text” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088

The sidebar displays two info boxes alongside the text: The first info box provides information

about the source of the enriched digital text that was used to produce the DraCor TEI-XML file

D7.1 On Programmable Corpora

 75

and a bibliographic reference to the printed source.202 Below the source box there is an I nfo box

listing the segments and the characters speaking therein.203

5.6.3.5 Tab “Downloads”

The tab “Downloads” (Fig. 28) provides several serializations of semantic layers of a single play

to be downloaded in several different formats.204

Fig. 28: Single play view, “Downloads” tab, for Lessing’s “Emilia Galotti”, https://dracor.org/id/ger000088

Technically this page provides links to the designated API endpoints. While manually navigating

to an endpoint of the API–e.g. https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/tei –

results in the web browser displaying the file, clicking on links in the “Download” tab triggers the

file download behavior of the web browser: So, for example, the link to the TEI source of the play

202 The info box is created using the component “SourceInfo” <125>. When the page of the play is loaded

the component in “Play.js” passes the data that is retrieved from the endpoint (see footnote 175) to the
“SourceInfo” component, which uses the information contained in “source” and “originalSource” <126> .
203 The code generating the overview of the segments of a play is located in the file “Segments.tsx”

<127> The function is written in TypeScript. It produces the segments structure of the play by evaluating
“segments” and “cast” in the response data retrieved from the endpoint when the page of a single play is
loaded (see footnote 175).
204 The component “DownloadLinks” <128> is used to display the links which are defined inside the

component <129>.

https://dracor.org/api/corpora/ger/play/lessing-emilia-galotti/tei
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SourceInfo.js
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L140
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/Segments.tsx
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L18-L29

D7.1 On Programmable Corpora

 76

“Emilia Galotti” in the play’s “Download” tab (https://dracor.org/ger/lessing-emilia-

galotti#downloads) results in the browser downloading the file “ger000088-lessing-emilia-

galotti.tei.xml”.205

Network Data

Network data can be downloaded in three formats that are offered by the endpoints following the

pattern

/corpora/{corpusname}/play/{playname}/networkdata/[csv|gexf|graphml]

A simple representation of the extracted network from a play is provided by the endpoint

/corpora/{corpusname}/play/{playname}/networkdata/csv as CSV. The provided

CSV file contains the data in the columns “Source”, “Type”, “Target” and “Weight”.

The other two formats provided are based on XML: The GEXF file is fetched from the

endpoint /corpora/{corpusname}/play/{playname}/networkdata/gexf and can be

directly loaded into the network analysis software “Gephi”206. GraphML207 is a popular format that

is supported by a wide range of open-source network analysis tools. It is provided by the endpoint

/corpora/{corpusname}/play/{playname}/networkdata/graphml
Data about social relations208 amongst the characters can be downloaded if encoded in

the source TEI of a play. This data can be obtained as CSV or GEXF209 that are provided by the

respective endpoints /corpora/{corpusname}/play/{playname}/relations/csv and

/corpora/{corpusname}/play/{playname}/relations/gexf

List of Characters

Data on characters can be downloaded in CSV and JSON formats by providing the data that is

returned by the endpoints210 /corpora/{corpusname}/play/{playname}/cast (returns

JSON) and /corpora/{corpusname}/play/{playname}/cast/csv.

205 The file names contain the play ID, the playname and an optional slug of the semantic layer, e.g.

“cast” separated by either dots or dashes: {id}.{playname}[.|-]{layer slug}.{file format
ending} See for example {id}-{playname}-cast.csv <130>. The file names are defined in the

component.
206 Gephi: https://gephi.org; the GEXF file format is described at https://gexf.net.
207 Specification of the GraphML format: http://graphml.graphdrawing.org
208 Cf. section 5.6.3.2.
209 The API offers this data additionally in GraphML format: Interactive documentation of the endpoint

/corpora/{corpusname}/play/{playname}/relations/graphml see

https://dracor.org/doc/api#/public/relations-graphml. There is an open issue on GitHub to fix this
inconsistency: https://github.com/dracor-org/dracor-frontend/issues/245
210 The interactive documentation of the endpoints can be accessed at

https://dracor.org/doc/api#/public/get-cast and https://dracor.org/doc/api#/public/get-cast-csv.

https://dracor.org/ger/lessing-emilia-galotti#downloads
https://dracor.org/ger/lessing-emilia-galotti#downloads
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L134
https://gephi.org/
https://gexf.net/
http://graphml.graphdrawing.org/
/Users/peertrilcke/Dropbox/CLS%20INFRA%20D/D7.1/Relations#_5.6.3.2_Tab_
https://dracor.org/doc/api#/public/relations-graphml
https://github.com/dracor-org/dracor-frontend/issues/245
https://dracor.org/doc/api#/public/get-cast
https://dracor.org/doc/api#/public/get-cast-csv

D7.1 On Programmable Corpora

 77

The returned data includes information that is encoded in the source TEI, i.e. gender, but

also derived text- or structure-based metrics thereof, i.e. the number of segments a character

appears in (“numOfScenes”) or the number of speeches (“numOfSpeechActs”) and spoken words

(“numOfWords”), as well as network-based metrics which are calculated with the help of the

metrics service (“degree”, “weightedDegree”, “closeness”, “betweenness” and “eigenvector

centrality”, see also section 5.4 on the “DraCor Metrics Service”).

Spoken Text

Files containing the spoken text per character are available for download: Linking to the endpoint

/corpora/{corpusname}/play/{playname}/spoken-text-by-character

the data can be downloaded in JSON format. The data is provided as an array containing objects

representing the spoken text by a character.

The spoken text (excluding stage directions and speaker labels) as PLAINTEXT is made

available via the endpoint211 /corpora/{corpusname}/play/{playname}/spoken-text

Full Text

The source TEI-XML file can be downloaded. This is implemented by providing a link to the

/corpora/{corpusname}/play/{playname}/tei endpoint of the API.212

Stage Directions

Stage directions can be downloaded as PLAINTEXT either including or excluding the speaker

labels. The endpoints213 are /corpora/{corpusname}/play/{playname}/stage-

directions and /corpora/{corpusname}/play/{playname}/stage-directions-

with-speakers

6. Prototyping APIs for CLS. Some Reflections and Two

Additional API Experiments
In the previous section we reported on API prototyping in the context of the development of

DraCor, our Programmable Corpora prototype. At this point, we want to briefly point out where

211 The interactive documentation of the endpoints can be accessed at

https://dracor.org/doc/api#/public/play-spoken-text-by-character and
https://dracor.org/doc/api#/public/play-spoken-text.
212 The interactive documentation of the endpoint can be accessed at

https://dracor.org/doc/api#/public/play-tei.
213 The interactive documentation of the endpoints can be accessed at

https://dracor.org/doc/api#/public/play-stage-directions and https://dracor.org/doc/api#/public/play-stage-
directions-with-speakers.

https://dracor.org/doc/api#/public/play-spoken-text-by-character
https://dracor.org/doc/api#/public/play-spoken-text
https://dracor.org/doc/api#/public/play-tei
https://dracor.org/doc/api#/public/play-stage-directions
https://dracor.org/doc/api#/public/play-stage-directions-with-speakers
https://dracor.org/doc/api#/public/play-stage-directions-with-speakers

D7.1 On Programmable Corpora

 78

we see potentials of the idea of Programmable Corpora and thus of the design and exposure of

APIs for literary corpora.

■ APIs can support the stabilization of epistemic objects in CLS. While metadata

formats or initiatives such as the "Text Encoding Initiative" continue to make a central

contribution to the standardization of digital text objects, API endpoints help to reference

specified aggregations as well as specified elements of research objects. For example, if

you are researching the stage direction in Lessing's “Emilia Galotti”, your research object

is addressable at https://dracor.org/api/corpora/ger/play/lessing-

emilia-galotti/stage-directions

■ APIs can facilitate the standardization of (some) CLS workflows. Much of the work in

CLS is about (pre)processing data. In the operations that are implemented in APIs, such

processing workflows can be standardized (which in turn leads to the stabilization of

processed research objects). For example, if one is researching co-occurrence networks

of plays, one can access (the output of) a standardized workflow for generating such a

network via an API endpoint like

https://dracor.org/api/corpora/ger/play/lessing-emilia-

galotti/networkdata/graphml

■ APIs can simplify working with digital materials and applying digital methods in

CLS. APIs make it possible in principle to interact with data-enabled literary texts without

having to resolve in detail issues such as the storage of data or the concrete technical

implementation of algorithms for analysis. Thus, APIs can lower the technical barriers to

digital work in CLS. For example, someone working on network analysis of plays can

obtain essential network analysis metrics (in a CSV file that can be easily opened in e.g.,

Excel or OpenOffice Calc) for the plays in a corpus without any programming effort of their

own by calling an endpoint like

https://dracor.org/api/corpora/ger/metadata/csv

■ APIs can be possible solutions for working with copyright-protected material in

CLS. APIs also allow the underlying data to be hidden, so that you only get specifically

transformed or derived representations of the data through the API. Thus, by means of an

appropriately configured API, the concept of "Derived Text Formats" developed by Schöch

et al. (2020) could in principle be implemented for text and data mining with copyrighted

materials. In CLS work package 7, there will be a dedicated task (T7.5) in which we will

experiment with styles of API design that could address such research scenarios.

DraCor as a prototype for Programmable Corpora––that is, corpora that expose an API to make

texts machine-actionable––demonstrates these potentials of APIs for CLS research without

already being a fully mature subsystem of a future infrastructural ecosystem for CLS. To conclude

this report, and thus to conclude the first phase of Programmable Corpora prototyping in CLS

D7.1 On Programmable Corpora

 79

INFRA, let us briefly systematize the agile development of DraCor and especially of the DraCor

API.

The––to once again quote Aaron Swartz––”natural growth” of the DraCor API out of our

data, the drama corpora, is driven first by the structure of the data resp. the TEI documents (for

example by the possibility of extracting specific information), second by research questions (such

as the calculation of specific network metrics), third by front-end requirements and hence our

approach to enable GUI-based low-technical accessibility and navigability of the data. In this

sense, it can be said that the DraCor API, in its current state of implementation is

● document-based,

● research-driven,

● front-end-oriented.

This functional perspective on the API and the resulting functional differentiation of its endpoints

can explain some of the dynamics in the “growth” of the API. At the same time, it emphasizes that

the DraCor API is evolving in a specific environment of practices (such as conducting new studies

or implementing new front-end functionalities), which also means that it must be understood as a

specific realization of the idea of Programmable Corpora, one that has also become more specific

as its growth has progressed.

It remains open at this point whether this increasing specificity of an API in the course of

its "natural growth" in an environment of practices, as Swartz had in mind, can be avoided at all.

One approach that will play a more important role in further work on the DraCor prototype, and

possibly will lead to an increase in structure and system in the growth of the API (and maybe

make it more generic), is ontology-based modeling of the data domain to which the API is

dedicated. We will address these issues in detail in CLS INFRA Report D7.4, which we will publish

in 2025 and which will focus on critical issues for the implementation of Programmable Corpora.

While the structuring of API development by aligning, on the one hand, the documentation

of API functionalities and data returned in API responses with, on the other hand, domain-specific

ontologies appears to be one strategy for future development, during the reporting phase, we

experimented with yet another approach. This approach is based on the ideas of Distributed Text

Services (DTS)214 and the corresponding API specifications. DTS which is also TEI-based, offers

the possibility to define standardized endpoints for APIs that bring a high degree of genericity.

With the implementation of these DTS endpoints, which has already been done experimentally

and is currently in internal review,215 the individualization of the DraCor API in its specific

ecosystem can be complemented by standardized endpoints.

214 https://distributed-text-services.github.io/specifications; cf. Almas et al. 2023.
215 https://github.com/dracor-org/dracor-api/pull/172

https://distributed-text-services.github.io/specifications/
https://github.com/dracor-org/dracor-api/pull/172

D7.1 On Programmable Corpora

 80

To develop a deeper understanding of design styles for APIs and to practically evaluate different

approaches in the process of prototyping DraCor and the DraCor API, we also ran two API

experiments, which we will report on in the following sections.

 The first experiment (cf. section 6.1) is dedicated to one of the oldest APIs for literary

corpora to our knowledge, the Shakespeare Folger API. Here we tried to, so to speak, "update"

the API by using the already mentioned OpenAPI documentation (cf. section 5.3.2), thereby

making it comparable to the DraCor API in selected (end)points. With the second experiment (cf.

section 6.2), we focused on the POSTDATA ecosystem,216 which is dedicated to providing and

analyzing corpora of poems. Here we tried to develop a DraCor-like API that connects to the

POSTDATA Knowledge Graph containing Linked Linguistic Open Data (Chiarcos et al. 2013) and

complements the “PoetryLab API” provided by POSTDATA. We wanted to test whether the

DraCor approach to design an API can be transferred to other corpora and/or digital ecosystems,

i.e., whether our prototype can serve as a proof of concept for a CLS ecosystem connecting

multiple components.

6.1 Relating APIs using OpenAPI: The Example of the Folger

Shakespeare API

6.1.1 Discussion of the Folger Shakespeare API

In the following, we will discuss the API (“Folger Shakespeare API Tools”, hence “Folger API”)217

of the Folger Shakespeare Online Library218 which we consider an “early adopter” of adding an

API to a corpus of literary texts, in this case the plays of William Shakespeare (Niles and Poston

2016). The URL of the HTML documentation of the Folger Shakespeare API Tools has been

indexed by the Internet Archive’s Wayback machine with the first crawl dating back to the year

2015219.

216 The project “POSTDATA – Poetry Standardization and Linked Open Data” received funding from the

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 679528).
217 https://www.folgerdigitaltexts.org/api
218 https://shakespeare.folger.edu
219 Cf. https://web.archive.org/web/20150410034823/https://www.folgerdigitaltexts.org/api. Since then the

overall structure of the documentation has been unchanged, although extended. For example, the 2015
documentation lists only 10 functions (“ftln”, “word”, “segment”, “text”, “concordance”, “monologue”,
“onStage”, “charChart”, “parts” and “witScript”) and doesn’t include the drop downs to build a query. The
fact that the original endpoints are still included today with unchanged functionality and syntax shows that
the API already has been stable for 7 years, even though the interface and the layout of the other parts of
the Folger Shakespeare Library have evolved rapidly. This underpins the argument that APIs could foster
the stability of research because, if implemented properly, they are quite robust.

https://www.folgerdigitaltexts.org/api
https://shakespeare.folger.edu/
https://web.archive.org/web/20150410034823/https:/www.folgerdigitaltexts.org/api

D7.1 On Programmable Corpora

 81

Fig. 29: The Folger Shakespeare API Tools, https://www.folgerdigitaltexts.org/api

The book chapter “Mediating the Shakespeare User’s Digital Experience” (Redick and Johnson

2022) gives a brief characterization of the “Folger API” and its usefulness for research:

Finally, a small segment of the website is entirely focused on activities that require digital
technology to perform: the Folger Shakespeare API suite [...]. [T]he API [...] enables features such
as concordances and character charts, among others. With the concordance feature, users can
view every word spoken in a play, and with the character charts, users can identify which characters
are on stage and/or speaking, even if they are dead (as ghosts). [...] Much of the Folger
Shakespeare site facilitates the most common activity (across media) related to the play texts:
reading them. The ability to create links and contextual content across the site, such as audio
recording annotations, downloadable files, and API features that support data mining makes the

https://www.folgerdigitaltexts.org/api

D7.1 On Programmable Corpora

 82

experience of reading the texts more flexible and usable for a wider audience than the printed
books could manage. (Redick and Johnson 2022: 281; our emphases)

The “Folger API” is documented by a plain HTML page (cf. Fig. 29) which aims at making a user

familiar with the functionality. It provides a basic introduction to the API and makes clear that it is

“work in progress”. Users can start building queries by selecting a play and a function from two

dropdown select fields or choose from 15 examples220. The documentation explains the pattern

of how queries should be constructed by appending at least the parameters play code and

function name in some cases followed by optional parameters to the base URL

https://www.folgerdigitaltexts.org.

The play codes identifying the 38 Shakespearean plays are also listed in the

documentation221 and the following 15 endpoints are documented as follows:222

● synopsis (+ act/scene, optionally): returns a synopsis of the play and its scenes

● ftln (+ Folger through line number): returns the spoken text at that FTLN

● word (+ word id): returns information about that word

● segment (+ object id): returns the text of that xml:id

● text: returns only the spoken text in that play

● charText: returns a list of characters arranged according to amount of lines spoken,

with a link to each character's entire spoken text

● charTextMinus: returns a list of characters arranged according to amount of lines

spoken, with a link to the play's spoken text, minus this character

● concordance: lists the words used (in spoken text) and their frequency

● monologue (+ optional line count): provides a list of speeches longer than the given line

count (defaults to 30 lines)

● onStage (+ ftln): returns a list of characters on stage at that line

● charChart: provides a graphical representation of who is on stage across a timeline of

the play

● parts: provides parts or cue scripts for each character

220 The documentation does not provide examples for all the listed endpoints: There are no examples for

the endpoints segment, charText, charTextMinus, monologue and sounds.
221 Almost every response of an endpoint includes a title of the play for which data is requested, but in the

case of the playcodes “AWW”, “Err”, “LLL”, “MV”, “Wiv”, “MND”, “Shr”. and “WT” the title included in the
documentation doesn’t match the title from the response, e.g. “The Winter’s Tale” vs. “Winter’s Tale”. This
is not a problem for a human viewer who can easily understand which play is intended, but this
inconsistency has to be taken into account when trying to match a list derived from the documentation
and the titles included in the output in a program.
222 Cf. Folger API Documentation: “Functions”, https://www.folgerdigitaltexts.org/api

https://www.folgerdigitaltexts.org/
https://www.folgerdigitaltexts.org/api

D7.1 On Programmable Corpora

 83

● witScript: provides "witScripts" for each character. "Witness" or "Witmore" scripts

attempt to show what a character sees. They offer the play text only when that character

is on stage.

● sounds: returns a list of all stage directions that contain sounds (i.e., "music," "flourish,"

"thunder")

● scenes: returns a list of all the scenes in the play

While the original, simple documentation of the Folger API allows a human reader to easily get

started using the functionality provided and analyzing the returned results by manual inspection,

it must be said that the affordances of modern use of APIs in the paradigm of the “Programmable

Web” have changed.

6.1.2 ‘Swaggerization’ of the Folger Shakespeare API

As a demonstrator of what can be done with state-of-the-art ways of API documentation and with

the aim of making the Folger API comparable by using a standardized format of documentation,

we re-documented the Folger API in the OpenAPI format.

The OpenAPI specification provides a standardized format for describing an API, including

the available endpoints and the supported HTTP methods (GET, POST, …), the expected input

and output for each endpoint, which can be described with schemas, and many other details. The

OpenAPI specification is language agnostic, meaning it can be used to describe APIs written in

any programming language. APIs described with OpenAPI are interoperable, because the

documentation is machine-readable and can be easily understood and consumed by a wide range

of tools, such as API development frameworks or documentation generators (e.g., Swagger UI).

It is also possible to automatically generate client libraries for many programming languages from

an OpenAPI specification.223 The OpenAPI specification serves as a contract between the API

provider and consumers, clearly defining what the API does and does not provide (for OpenAPI

and DraCor see section 5.3.2).

When developing the prototype, we used the Python package “APISpec”224 that allowed

us to generate an OpenAPI conformant specification from the docstring annotations to functions

in the Python code225. After we had generated the documentation as a YAML file226, we used the

Swagger Editor227 which displays the documentation as an interactive website, from which queries

223 https://swagger.io/tools/swagger-codegen.
224 https://github.com/marshmallow-code/apispec; Documentation: https://apispec.readthedocs.io
225 See code on GitHub: https://github.com/ingoboerner/folger-shakespeare-openapi. A fork of this

repository is available at https://github.com/dh-network/folger-shakespeare-openapi. The re-
documentation is done with the Jupyter Notebook “folger-shakespeare-api-doc.ipynb” <131>.
226 Cf. <132>.
227 https://editor.swagger.io

https://swagger.io/tools/swagger-codegen
https://github.com/marshmallow-code/apispec
https://apispec.readthedocs.io/
https://github.com/ingoboerner/folger-shakespeare-openapi
https://github.com/dh-network/folger-shakespeare-openapi
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/a1bb3b82c777d4dc5350bc09362b86f8eb444c83/folger-shakespeare-api-doc.ipynb
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/47800fb3a6ccc0de0f8d9281d3ac4559da7caa99/openapi.yaml
https://editor.swagger.io/

D7.1 On Programmable Corpora

 84

to the documented endpoints can be sent. We also used this editor to automatically generate a

client (API wrapper) for the programming language Python, which drastically simplifies the task

of querying the Folger API.

Fig. 30: OpenAPI specification rendered with SwaggerUI

Querying the API from the interactive Swagger documentation and from within Python scripts

makes one thing obvious: the Folger API’s features are geared more towards users reading the

output in a web browser and not so much with practitioners of CLS in mind, that would not “view”

D7.1 On Programmable Corpora

 85

the response of an endpoint but rather process it by using custom scripts. Exploiting the rich and

useful features of the API is hindered by the decision of relying solely on HTML as the format of

resource representation in the API’s responses. If a user would not only want to “view” the result

of a query to a specific endpoint but process it with a script she or he would have to first parse

the response into some kind of data structure that could then be easily processed in the program.

While it is evident that most users will consult the Folger Shakespeare Online Library with the

intent of reading (or downloading) the texts, it would drastically enhance the usefulness of the

Folger API suite if some sort of content negotiation would be implemented to allow for requesting

other formats of resource representation, e.g., JSON right away.

We will explain this with an example: The endpoint ftln228 allows a user to retrieve some

metadata and the textual content of a text line identified by the so-called “Folger Through Line

Number” (FTLN), which is a concept that relates back to the printed Folger Shakespeare editions.

The number is included in the underlying TEI-XML encoded play, which makes use of the TEI

element <milestone> to mark the beginnings of these lines. In the example below we show the

snippet of the TEI file229 (Fig. 31) which is the basis of the data returned by the example of a query

to this endpoint in the documentation “https://www.folgerdigitaltexts.org/WT/ftln/1201”. The ID of

the line identified by the FTLN of “1201” is included in the attribute xml:id. The <milestone>

has other attributes of which @n, @ana and @corresp contain information that is included in the

HTML response of the endpoint (see Fig. 32 and 33).

<milestone unit="ftln" xml:id="ftln-1201" n="3.1.27" ana="#short" corresp="#w0175960

#c0175970 #w0175980 #c0175990 #w0176000 #c0176010 #w0176020 #c0176030 #w0176040

#p0176050"/>

<w xml:id="w0175960" n="3.1.27">And</w>

<c xml:id="c0175970" n="3.1.27"> </c>

<w xml:id="w0175980" n="3.1.27">gracious</w>

<c xml:id="c0175990" n="3.1.27"> </c>

<w xml:id="w0176000" n="3.1.27">be</w>

<c xml:id="c0176010" n="3.1.27"> </c>

<w xml:id="w0176020" n="3.1.27">the</w>

<c xml:id="c0176030" n="3.1.27"> </c>

<w xml:id="w0176040" n="3.1.27">issue</w>

<pc xml:id="p0176050" n="3.1.27">.</pc>

228 It is called tln in the original documentation, which is misleading, because it is actually ftln in the

URL of the endpoint.
229 We use the XML file of the play “The Winter’s Tale” as an example. It can be retrieved here:

https://shakespeare.folger.edu/downloads/xml/the-winters-tale_XML_FolgerShakespeare.zip

https://www.folgerdigitaltexts.org/WT/ftln/1201
https://shakespeare.folger.edu/downloads/xml/the-winters-tale_XML_FolgerShakespeare.zip

D7.1 On Programmable Corpora

 86

Fig. 31: Response of Folger’s ftln endpoint

Fig. 32: Folger API response as
displayed in the browser

Fig. 33: Underlying HTML source code for response in Fig. 32

Fig. 34: Query in the interactive documentation provided by the Swagger Editor

D7.1 On Programmable Corpora

 87

If we inspect the response returned from the endpoint (see Fig. 32 and 33) we can observe the

following:

● the format of resource representation is HTML;

● only a snippet of a fully valid HTML document is returned230;

● the information is organized in lines separated by the HTML element
;

● some of the lines contain the information as PLAINTEXT. Here the relevant value is

prepended by a label followed by a colon, e.g., “Type: ”. For others, the information is

dispersed amongst HTML attributes of the element <a> and its textual content;

● in the response other endpoints are referenced, e.g., the segment and the word

endpoints;

● from only one example, one cannot assume, that the output is always structured in the

same way, e.g., the information on the speaker of the text that includes the requested line

can be taken from the fifth line of the response; in the current example there is only one

“Speaker”, but, one can expect, that there are lines in a play that are spoken by more than

one character;

● the response contains the title of the play only, not the play code that is used to identify

the parent play in the context of the Folger API.

Based on this and other observations (inspection of multiple responses) a user wanting not only

to “read” the response of the Folger API, but to process it algorithmically, would have to parse the

response to extract the relevant information. As our endeavor of re-documenting the API has

shown, it is quite easy to come up with a function that requests data from an endpoint, whereas

developing a parser function that would transform the HTML response into a data structure native

to Python is fairly more complex.

Overall, the Folger API can be classified as a research-driven API. The functionality

provided by the various endpoints helps users to answer very specific questions relevant for

dramatic texts, e.g., the endpoint witScript provides the text “when that character is on stage”,

or the endpoint sounds lists all stage directions that are classified as containing sounds.

Conversely, there are hardly any functions that could be labeled as “document-driven”,

except for the endpoint segment which allows for querying the text of a segment by its xml:id.

This endpoint is referenced in the responses from other endpoints, e.g., ftln and word to allow

for requesting the context of the given unit under investigation (see example of ftln above). Still,

there is no discovery endpoint implemented that would allow for algorithmically retrieving all the

230 The completeness of the HTML document varies from endpoint to endpoint, some also return not only

snippets, but full-fledged HTML pages with <html>, <head> and <body> containing the result, e.g.,

charText.

D7.1 On Programmable Corpora

 88

IDs of segments of a play which are eligible in a query for an individual segment. Likewise, an

answer to the question of how many segments there are in a given text, is almost impossible to

get.

6.1.3 Mappings of ShakeDraCor and the Folger Shakespeare API

The Folger Shakespeare Corpus has also been ingested into the DraCor system as

“ShakeDraCor”231. The original encoding of the <text> was kept, but the metadata in the

<teiHeader> was adapted to seamlessly integrate with the DraCor system, especially to

facilitate the extraction of character networks. With having both the Folger API operating on the

corpus of the Folger Shakespeare Library and the DraCor API operating on the slightly adapted

ShakeDraCor, this enables an interesting use case of being able to request data from those two

APIs that implement different functionalities. It also allows us to contrast both approaches of

designing APIs. Because both APIs are now documented in the same standardized format, we

have a uniform way of addressing the endpoints by their “operationId” in the OpenAPI file232.

folger_endpoint folger_operationId dracor_endpoint dracor_operationId

/{playcode}/text get_text

/corpora/{corpusname}/play/{playname}/spoken-

text play-spoken-text

/{playcode}/charText get_character_texts /corpora/{corpusname}/play/{playname}/cast get-cast

/{playcode}/charText/{ch

aracter_id}.html get_character_text_by_id

/corpora/{corpusname}/play/{playname}/spoken-

text-by-character

play-spoken-text-by-

character

/{playcode}/charText get_character_texts /corpora/{corpusname}/play/{playname}/cast/csv get-cast-csv

Tab. 08: Mapping Folger endpoints to DraCor endpoints

Out of the 21 DraCor API endpoints that accept GET requests, four could be considered offering

similar functionality to the endpoints implemented in the Folger API (see Tab. 08). They either

provide a list of characters of a play in different formats or return the spoken text by a character.

All other API endpoints offer supplementary functionality, which means that by combining the two

APIs a user wanting to analyze Shakespearean plays has additional possibilities in comparison

to using only one of the APIs. However, conducting actual research that would combine APIs

entails a lot of additional work, in particular writing parsers for the Folger API HTML responses.

231Cf. https://dracor.org/shake; cf. GitHub repository: https://github.com/dracor-org/shakedracor
232 If an OpenAPI documentation is published like the one on dracor.org, it is possible to address an

endpoint with the “operationId” as fragment identifier appended to the URL, e.g. the endpoint corpora of

the DraCor API can be located at https://dracor.org/doc/api#/public/list-corpora, where public being the

tag. This URL could also serve as an identifier (URI) in a RDF based setup.

https://dracor.org/shake
https://github.com/dracor-org/shakedracor
https://dracor.org/doc/api#/public/list-corpora

D7.1 On Programmable Corpora

 89

6.2 Bridging POSTDATA and DraCor as Programmable

Corpora233

In this section we give a brief overview of the POSTDATA system developed by the ERC funded

project “POSTDATA”234 focusing on the “PoetryLab API”, which allows for connecting a React

front-end to a triple store used for storing and querying the data on the analysis of poetry. We

then report on a demonstrator that we developed in the CLS INFRA project which extends the

functionality of the already implemented POSTDATA system and integrates POSTDATAs Linked

Open Linguistic Data (LLOD) (Chiarcos et al. 2013) via an API to an adapted DraCor-like front-

end. This exemplary implementation can also be seen as a way on how to bridge the gap between

the worlds of the “Semantic” and the “Programmable Web”.

6.2.1 Overview of POSTDATA components

The POSTDATA project developed a suite of open-source tools235 for

▪ A) the analysis of Spanish poetry, providing functionality for syllabification, scansion,

enjambment detection, rhyme detection, historical named entity recognition,

▪ B) for building new corpora,

▪ C) for corpora conversion to RDF.

A) The tools for the analysis of Spanish poetry are accessible using an API that contains calls to

a pipeline using the following tools:

▪ Rantanplan236, that is used for automatically analyzing the scansion of poems in Spanish,

which involves the measurement of quantitative characteristics of verses, the detection of

metrical patterns of verse lines, and the classification of stanza types. By relying on state-

of-the-art NLP technology (spaCy and the developed spaCy affixes237 for Spanish),

Rantanplan is able to identify up to 45 different stanza types of Spanish poetry.238

▪ Jollyjumper239, that detects enjambements, a common poetic device of extending a

syntactic unit (a sentence) over the boundary of a metric unit (a verse).

233 We thank Salvador Ros, Álvaro Pérez Pozo and Omar Khalil Gómez for the valuable insight into and

access to the POSTDATA system, without which the implementation of the prototype would not have
been possible.
234 https://postdata.linhd.uned.es
235 https://postdata.linhd.uned.es/results/poetrylab
236 https://github.com/linhd-postdata/rantanplan
237 https://github.com/linhd-postdata/spacy-affixes
238 Cf. https://postdata.linhd.uned.es/results/poetrylab/rantanplan/
239 https://github.com/linhd-postdata/jollyjumper

https://postdata.linhd.uned.es/
https://postdata.linhd.uned.es/results/poetrylab
https://github.com/linhd-postdata/rantanplan
https://github.com/linhd-postdata/spacy-affixes
https://postdata.linhd.uned.es/results/poetrylab/rantanplan/
https://github.com/linhd-postdata/jollyjumper

D7.1 On Programmable Corpora

 90

B) To retrieve and create new corpora, Averell240 is used. This tool allows downloading corpora

from several241 multilingual sources and transform the data into a common JSON format, which

is then further processed with the other components of the pipeline.

C) Finally, in order to convert the corpus to RDF, Horace242 is used. This tool transforms the

acquired results of the automatic analyses to a RDF representation, which is ingested into a

Stardog243 triple store instance, that serves as the central data store for the system.

With POSTDATAs central user-facing component, PoetryLab application244 a user of the

platform can search for poems by title or browse the collection by poem and author. After selecting

a single poem the results of a manual––which is not available for all poems––and an automatic

scansion analysis can be examined in detail (cf. Fig. 35).

Fig. 35: Analysis view of a single poem in POSTDATAs Poetry Lab App

240 https://github.com/linhd-postdata/averell
241 “10” according to the description of Averall on the POSTDATA website

https://postdata.linhd.uned.es/results/poetrylab/averell, but the overview of “Corpora and Datasets”
contains links to 12 repositories on GitHub and one dataset on Hugging Face, cf.
https://postdata.linhd.uned.es/corpus-y-datasets. Not all this data is available in the Knowledge Graph.
242 https://github.com/linhd-postdata/horace
243 https://www.stardog.com. While all the developed tools within the POSTDATA project are open-source

tools and are licensed under open licenses (e.g., Apache 2.0), Stardog is a proprietary software solution.
244 http://poetry.linhd.uned.es:3000/en, Code available on GitHub: https://github.com/linhd-

postdata/poetrylab

https://github.com/linhd-postdata/averell
https://postdata.linhd.uned.es/results/poetrylab/averell/
https://postdata.linhd.uned.es/corpus-y-datasets/
https://github.com/linhd-postdata/horace
https://www.stardog.com/
http://poetry.linhd.uned.es:3000/en
https://github.com/linhd-postdata/poetrylab
https://github.com/linhd-postdata/poetrylab

D7.1 On Programmable Corpora

 91

The user interface is powered by an underlying RESTful API245, which comprises of nine246

endpoints. The endpoints are mainly geared towards returning the data that is consumed by the

PoetryLab front-end. The API is documented with an OpenAPI specification, that is visualized

with SwaggerUI.

Fig. 36: : PoetryLab API visualized with SwaggerUI

In the following, we discuss some of the endpoints in their relation front-end functionality and also

touch upon some design decisions that were taken when implementing the API.

The PoetryLab application contains a search box in the header on almost every page

which allows for searching for authors (by name) and poems (by title). The functionality to query

for a certain author is provided by the API endpoint /author/{name}247. For example, if a user

245 The code of the API is available on GitHub: https://github.com/linhd-postdata/knowledge-graph-

queries. It can be accessed at http://poetry.linhd.uned.es:5005. The interactive Swagger documentation is
published at http://poetry.linhd.uned.es:5005/ui with the underlying OpenAPI specification, that is
referenced in this report, being available at <133>.
246 As of writing of this report only eight endpoints worked as expected. The endpoint /manifestations

is not fully implemented. Instead of returning a “200” status code and an object containing “TODO” as
value and key in the response body, the information, that the endpoint is planned but has not been fully
implemented yet, would be better conveyed by returning a status code of 501 “Not implemented”.
247 As an example of how API and front-end are interlinked in the case of POSTDATA we discuss this

endpoint in more detail. The interactive documentation of the endpoint is available at

http://poetry.linhd.uned.es:5005/ui/#/default/knowledge_graph_queries.get_author
https://github.com/linhd-postdata/knowledge-graph-queries
https://github.com/linhd-postdata/knowledge-graph-queries
http://poetry.linhd.uned.es:5005/ui/
http://poetry.linhd.uned.es:5005/ui/
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml

D7.1 On Programmable Corpora

 92

enters the string “Juan” into the search box and hits the search button, the results of the search

are displayed as shown in the screenshot below.

Fig. 37: Search results as displayed in the PoetryLab front-end

These are the rendered results, that are returned by a query to the above mentioned API endpoint

when requesting data from the URL http://poetry.linhd.uned.es:5005/author/Juan. The response

body contains a JSON array containing six results (of which we here include the first three as an

example only248), ranked by the value of the field with the key score:

[

 {

 "@id": "http://postdata.linhd.uned.es/resource/p_juan-del-valle-y-caviedes",

 "birthDate": "1652-01-01T00:00:00Z",

 "deathDate": "1692-01-01T00:00:00Z",

 "name": "Juan del Valle y Caviedes",

 "score": 1.0

 },

 {

 "@id": "http://postdata.linhd.uned.es/resource/p_juan-lopez-roman",

http://poetry.linhd.uned.es:5005/ui/#/default/knowledge_graph_queries.get_author. The endpoint to query

for a poem by title /poeticWork/{title} works in a similar way. Refer to the interactive

documentation of the endpoint at
http://poetry.linhd.uned.es:5005/ui/#/default/knowledge_graph_queries.get_poeticWork.
248 It would also be possible to achieve such a result by using the optional query parameter limit:

http://poetry.linhd.uned.es:5005/author/Juan?limit=3

http://poetry.linhd.uned.es:5005/author/Juan
http://poetry.linhd.uned.es:5005/ui/#/default/knowledge_graph_queries.get_author
http://poetry.linhd.uned.es:5005/ui/#/default/knowledge_graph_queries.get_poeticWork
http://poetry.linhd.uned.es:5005/author/Juan?limit=3

D7.1 On Programmable Corpora

 93

 "birthDate": "1583-06-24T00:00:00Z",

 "deathDate": "1663-09-24T00:00:00Z",

 "name": "Juan L\u00f3pez Rom\u00e1n",

 "score": 1.0

 },

 {

 "@id": "http://postdata.linhd.uned.es/resource/p_juan-de-hinojedo-xarava",

 "name": "Juan de Hinojedo Xarava",

 "score": 1.0

 }

]

Apart from “score”, which contains a ranking value generated by the full-text search algorithm of

the Stardog triple store, all other fields are populated with data from the Knowledge Graph, e.g.

the value of the field @id contains the URI of an instance of the class pdc:Person from the

“Ontopoetry Core Ontology”.249 Retrieving or knowing the URI is crucial, because the other

endpoint /author_profile/{uri}, which returns information on a single author, expects an

URI as the value of the path parameter uri.

One of the pages with more detailed information on a single author (including a profile

picture, that is fetched from Wikidata) is the profile of the Spanish poet Lope de Vega, which can

be accessed at

http://poetry.linhd.uned.es:5005/author_profile/http%3A%2F%2Fpostdata.linhd.uned.es%2Fres

ource%2Fp_lope-de-vega (see Fig. 38).

249 The documentation of the ontology can be accessed at

https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html. The person class is
defined here: https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html#Person.

http://poetry.linhd.uned.es:5005/author_profile/http%3A%2F%2Fpostdata.linhd.uned.es%2Fresource%2Fp_lope-de-vega
http://poetry.linhd.uned.es:5005/author_profile/http%3A%2F%2Fpostdata.linhd.uned.es%2Fresource%2Fp_lope-de-vega
https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html
https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html#Person

D7.1 On Programmable Corpora

 94

Fig. 38: Profile page of Lope de Vega in PoetryLab application

In the example, special characters in the URI identifying the author

(http://postdata.linhd.uned.es/resource/p_lope-de-vega) are escaped when used in the path

parameter of the API call. Although the URL

“http://poetry.linhd.uned.es:5005/author_profile/http://postdata.linhd.uned.es/resource/p_lope-

de-vega” equally works, we on purpose used the escaped URI which was generated by the

Swagger UI. It illustrates the challenge in designing meaningful endpoints for APIs that use HTTP-

URIs as identifiers for entities, which seems suitable when designing REST APIs for Linked Data.

According to RFC 3986 “[a] percent-encoding mechanism is used to represent a data octet in a

component when that octet's corresponding character is outside the allowed set or is being used

as a delimiter of, or within, the component.”250 In the case of the resulting URLs of the API

endpoint, the slash character “/” is used both as part of the identifier and as a delimiter in the

endpoint URL and should therefore generally be escaped. From an API design perspective using

250 https://www.rfc-editor.org/rfc/rfc3986#section-2.1

http://postdata.linhd.uned.es/resource/p_lope-de-vega
http://poetry.linhd.uned.es:5005/author_profile/http:/postdata.linhd.uned.es/resource/p_lope-de-vega
http://poetry.linhd.uned.es:5005/author_profile/http:/postdata.linhd.uned.es/resource/p_lope-de-vega
https://www.rfc-editor.org/rfc/rfc3986#section-2.1

D7.1 On Programmable Corpora

 95

full URIs in path parameters of APIs is a bit confusing and makes the URLs quite hard to read (for

humans). This might not be an argument from a technical perspective, but if one would––as we

do––argue that APIs should be considered not only interfaces for machines being consumed by

scripts and tools, but should also be used by human agents, then readability of URIs for human

users becomes a quite important aspect.

In the case of POSTDATA, in the PoetryLab front-end short IDs for authors are used

consequently, e.g., “lope-de-vega”, which might be a good practice. Although, in the case of the

POSTDATA Knowledge Graph these short IDs do not seem to be explicitly included (e.g., as an

CIDOC crm:E42_Identifier or a subclass thereof). Even though they are obviously derived

from the URI by some formal mechanism, the knowledge about the identifiers is moved from the

Knowledge Graph into the processing and thus makes it harder to go from front-end resp. API

back to the Knowledge Graph, e.g., when manually writing SPARQL Queries. A user wanting to

do so, would have to transform the short ID back into a full URI.

6.2.2 POSTDATAs Specification-first Approach in API Development

In developing the REST API, the POSTDATA project followed a specification-first approach that

was implemented by using “Connexion”251. The Python package takes an OpenAPI specification

and automatically maps the defined endpoints to custom Python functions based on the

“operationId” field in the specification.

This specification-first development approach prioritizes the API design process and thus

could be seen as a role model in implementing APIs for Programmable Corpora. The approach

allows for tightly integrating the modeling of literary objects and the API design process. In this

case, an intermediate step of programming an API––as is needed in code-first API development

approaches––is not necessary. The process of designing the API can take place before the

implementation, so that not technically adept domain experts (e.g., scholars of literary studies)

can be actively involved. However, a prerequisite for this is that the right tools (that do not

necessarily involve coding work)252 are available. This approach might not only speed up the

development process resulting in prototypes to be tested earlier, but also would allow literary

scholars to actively shape the API development process from the beginning.

251 https://pypi.org/project/connexion. Code repository on GitHub: https://github.com/spec-first/connexion
252 After a first evaluation of platforms that are usually used in API design and development, it seems that

Postman (https://www.postman.com) could serve as a platform, based on which such a design process
could be implemented. Postman can be considered the market leader in this segment, but it should be
noted that it is a commercial product and thus is not the ideal choice for a scholarly project that wants to
use freely available, self-hosted open-source tools.

https://pypi.org/project/connexion
https://github.com/spec-first/connexion
https://www.postman.com/

D7.1 On Programmable Corpora

 96

In the following, we will briefly highlight some of the technical aspects of the

implementation of POSTDATAs PoetryLab API.253 We will look at the /poeticWorks endpoint

that returns a list of instances of pd:PoeticWork254, i.e., the available poems.

In the module “core.py”, there are the functions that issue SPARQL queries to the triple

store and return the data as the response of the designated endpoint. The following Python code

snippet implements the above-mentioned endpoint255:

def get_poeticWorks():

""" Method corresponding to the poeticWorks endpoint
:return: JSON with the list of all poeticWorks in the knowledge graph
"""

 conn = get_db()
 query = QUERIES['poeticWorks']
 results = conn.graph(query, content_type=stardog.content_types.LD_JSON)
 jsonld_results = json.loads(results)
 compacted = jsonld.compact(jsonld_results, CONTEXT)
 graph = compacted.get("@graph")
 return graph

At first, a connection with the triple store is established using a designated function.256 Then, a

SPARQL query257 is loaded from a separate module, which includes a dictionary with all pre-

defined SPARQL queries258. The query that is used in the function is stored as a string, accessible

from the dictionary “QUERIES” by the key poeticWorks259.

PREFIX kos: <http://postdata.linhd.uned.es/kos/>
PREFIX pdc: <http://postdata.linhd.uned.es/ontology/postdata-core#>
CONSTRUCT{
 ?work pdc:title ?title;

253 The GitHub repository is available at https://github.com/linhd-postdata/knowledge-graph-queries. The

OpenAPI specification that is the foundation in the workflow can be found here <133>. The setup of the
API is performed in the module “app.py” <134>, where connexion is used to instantiate an API based on
the OpenAPI specification. The functions that are used to define the endpoints are in the module
“core.py” <135>.
254 https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html#PoeticWork.
255 Cf. <136>.
256 The package “pystardog” is used to communicate with the triple store:

https://pypi.org/project/pystardog. See the examples in the README on how to establish a connection to

the triple store. In the case of POSTDATA it is handled by the function get_db <137>, which, in turn,

relies on the function connect_to_database <138>.
257 Cf. <139>.
258 Cf. module “queries.py” <140>.
259 Cf. <141>.

https://github.com/linhd-postdata/knowledge-graph-queries
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/102d9a7a70e092340e6df30ee7db9e9306478153/knowledge_graph_queries/app.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py
https://postdata.linhd.uned.es/ontology/postdata-core/documentation/index-en.html#PoeticWork
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L10-L21
https://pypi.org/project/pystardog
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L211-L219
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L188-L208
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L77
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L30

D7.1 On Programmable Corpora

 97

 pdc:author ?creator;
 pdc:date ?date.
}
FROM <tag:stardog:api:context:local>
WHERE {
 ?work pdc:title ?title.
 ?work a pdc:PoeticWork.
 ?creation pdc:initiated ?work;
 pdc:hasAgentRole ?ag.
 ?ag pdc:hasAgent ?person;
 pdc:roleFunction kos:Creator.
 ?person pdc:name ?creator.
 OPTIONAL{
 ?creation pdc:hasTimeSpan ?sp.
 ?sp pdc:date ?date.
 }
} ORDER BY ?title

This SPARQL CONSTRUCT query is executed against the SPARQL endpoint of the triple store

and the results are transformed to a JSON-LD260 file , which is returned in the response of the

API endpoint. A single poem object that is contained in the returned array looks as follows:

{
 "@id": "http://postdata.linhd.uned.es/resource/pw_mira-de-amescua_viii-de-
los-prodigios-de-la-vara-y-capitan-de-israel-jornada-primera-faraon-rey",
 "author": "Mira de Amescua",
 "title": " - VIII - De Los prodigios de la vara y capitán de Israel.
Jornada primera, Faraón rey "
 }

6.2.3 Prototyping a DraCor-like API for POSTDATA

By developing this prototype, we intended to test how a DraCor-like REST API can be added on

top of POSTDATAs infrastructure, thus laying the foundation of what could possibly become

“PoeCor”, short for “Poetry Corpora”. With this prototype we are transferring the concept of

Programmable Corpora not only from drama to poetry, but there are also some crucial

transformations in regard to the underlying data model and the technology stack. The following

differences between the projects were to consider:

260 https://json-ld.org. The specification of JSON-LD can be accessed at https://www.w3.org/TR/json-ld.

The package “PyLD” is used to simplify the processing, e.g., the compacting and expanding, of this
format: https://pypi.org/project/PyLD

https://json-ld.org/
https://www.w3.org/TR/json-ld
https://pypi.org/project/PyLD

D7.1 On Programmable Corpora

 98

Core Entities: POSTDATA has poems and authors as its core entities, while DraCor focuses on

corpora and theater plays.

In the DraCor context, the entity “author” is not of such relevance, e.g., DraCor does not

have its own identifiers for authors, but uses Wikidata (or other external identifiers), whereas

POSTDATA has identifiers for authors (also because by using LOD technology, having URIs to

identify things is necessary), and, in the PoetryLab App front-end, uses URL patterns that

explicitly include author names.

The entity “corpus”, on the other hand, is not included in POSTDATAs ontology and does

not play a role in organizing the data. The data model is very expressive in regard to the analysis

process (Scansion Process261) and the results thereof (Scansion262) but does not provide

information on provenance or about a poem being part of a collection or corpus. So even though

the division of the given poems into subcorpora would make sense it cannot be performed

automatically with the metadata at hand. In DraCor, the notion of “corpus” is very relevant to the

way data is organized, which, for example, manifests itself in the pattern of the URLs of the API

endpoints, that in almost all cases address a single play in regard to the corpus it is part of.

In the case of the API prototype, we developed based on POSTDATAs infrastructure, we

theoretically allow for having multiple corpora, but hard-coded a single corpus “postdata” (as the

corpus name path parameter) into the API.

Data format: While DraCor is based on TEI-XML, POSTDATA relies on a homogenized JSON

serialization that is the basis for analysis and then transformed into RDF. Also, the textual data is

included in the triple store as literals, e.g. the content of a single verse line is attached to the verse

entity with a designated property (pdp:content263).

Data store: DraCor stores the data in an XML database; POSTDATA in a triple store.264

261 https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#ScansionProcess
262 https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#Scansion
263 https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#content.
264 The cooperation within the CLS INFRA project made it possible to directly access the production

instance of POSTDATAs Stardog. We also tested scenarios in which we set up a local instance of
Stardog and ingested (parts of) POSTDATAs RDF data, which also proved to be possible. The
POSTDATA project provides docker-copose/Docker files in the repositories of the individual components
of the system, that allow for a replication of the infrastructure. See for example the docker-compose of the
“knowledge-graph-queries” repository <142>. For a Dockerfile to run the Stardog triple store cf. <143>.
For development we used our own Docker image of Stardog: https://github.com/dh-network/stardog-
docker-compose. In this case, the database “PD_KG” had to be manually created using Stardog Studio
(https://www.stardog.com/studio), the data was ingested by running the following command in the

terminal from the unzipped folder containing the RDF data of the Knowledge Graph: for f in *.ttl;
do curl -X POST -H 'Content-Type:application/x-turtle' --data-binary @$f
http://admin:admin@localhost:5820/PD_KG ; done

https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#ScansionProcess
https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#Scansion
https://postdata.linhd.uned.es/OntoPoetry/Poetic/documentation/index-en.html#content
https://github.com/linhd-postdata/knowledge-graph-queries/blob/2d1805c48b44e2cce38dd948e166030103dad571/docker-compose.yml
https://github.com/linhd-postdata/postdata-stardog/blob/bafa3a8d42814400ae44d326bd43c71852ac58ac/Dockerfile
https://github.com/dh-network/stardog-docker-compose
https://github.com/dh-network/stardog-docker-compose
https://www.stardog.com/studio

D7.1 On Programmable Corpora

 99

Programming Language: While the front ends of both systems are based on the Javascript

library “React”, DraCor relies mainly on XQuery, POSTDATA on Python (in the implementation of

the backend and especially the API). Although it would be possible to manipulate RDF data265

also in XQuery (especially, in its XML serialization), because of its flexibility and the wide range

of available packages (especially, the “pystardog”, provided by the developers of Stardog to

natively connect to the triple store) the decision to use Python as a programming language is

obvious.

Processing: In the case of DraCor the analysis data (e.g., network- and count-based metrics)

need to be calculated based on the XML data or extracted network graphs. POSTDATA provides

ready-to-use analysis data in its Knowledge Graph, and therefore it is not necessary to implement

an elaborated processing layer that extracts and calculates these metrics. Still, there is a need to

aggregate metrics. For example, the information on the number of word tokens is available for a

single verse line. So in order to be able to return the number of words for a single stanza (or a

single poem), first we need to count the words connected to a single line (pdp:has_word266),

then the results of each line of the stanza need to be summed up.

The prototype we developed provides an API that feeds a front-end that was built based on the

DraCor front-end (cf. section 5.6)267. The “PoeCor POSTDATA connector API268 can also be used

stand-alone to investigate and further analyze the corpus, that is represented by POSTDATAs

Knowledge Graph.

In the current state of development, the API has six endpoints which are documented by

an OpenAPI specification269 (see Fig. 39 for a visualization in SwaggerUI). A description of the

functionality of the endpoints (and some thoughts on their design) can be found below:

265 Cf. for example the module “rdf.xqm” of the DraCor eXist application, that transforms TEI-XML to RDF.
266 http://postdata.linhd.uned.es/ontology/postdata-poeticAnalysis#hasWord.
267 GitHub Repository: https://github.com/dracor-org/poecor-frontend. The front-end has been deployed to

https://poecor.org, but operates on mock data that has been pre-generated with a Jupyter Notebook
<144>.
268 GitHub Repository: https://github.com/dh-network/postdata-2-dracor-api. The API has not been

deployed to the server yet. It can be run locally as a Docker container.
269 An OpenAPI specification is available at: <145>, see also Fig. 39.

http://postdata.linhd.uned.es/ontology/postdata-poeticAnalysis#hasWord
https://github.com/dracor-org/poecor-frontend
https://poecor.org/
https://github.com/dh-network/postdata-2-dracor-api/blob/e614a71b79572b372afa5f70582287a48af2ca80/query_tryouts_poetry_lab.ipynb
https://github.com/dh-network/postdata-2-dracor-api
https://github.com/dh-network/postdata-2-dracor-api/blob/ddf8e1af61cae6f7c6692092723c9d1f19350ddb/openapi.yaml

D7.1 On Programmable Corpora

 100

Fig. 39: OpenAPI specification of the API displayed in SwaggerUI

/info: returns information about the API, including the “name” of the service, a “description” and

a “version” number.

/corpora: provides an overview of available corpora. In the prototype, there is only the corpus

“postdata” available. Metrics per corpus can be included in the response by setting the optional

parameter “include” to “metrics”, which includes counts of “authors”, “poems”, “stanzas”, “verses”,

word tokens “words” and syllables (“grammatical_syllables” and “metrical_syllables”). This

endpoint returns the data that is used to render the cards of individual corpora. Fig. 40 shows a

card from the DraCor front-end next to its preliminary adaption in the “PoeCor” front-end (Fig. 41).

D7.1 On Programmable Corpora

 101

Fig. 40: DraCor corpus overview (“card view”) Fig. 41: PoeCor corpus overiew (“card view”)

/corpora/{corpusname}: returns metadata on a single corpus with metrics included (see

/corpora endpoint). Unlike the corresponding endpoint in the DraCor API (cf. section 5.3), this

endpoint does not return the contents of a corpus.

/corpora/{corpusname}/poems: returns a list of the poems in a corpus. In designing the

endpoints we decided to exclusively use plural nouns when devising URL patterns of endpoints.270

This allowed to move the functionality to list a corpus’ contents to a designated endpoint, which

now not only clearly distinguishes between metadata and contents, i.e. the metadata of individual

poems, but also allows to attach additional functionality to this new endpoint, like requesting

paged results with the parameters “limit” and “offset” (per default, a set of 500 results is returned,

i.e. offset=0, limit=500). Additionally, with the parameter “include” set to “authors” information on

the author of each returned poem can be included in the response. A further step in the

development of this endpoint will be to implement a mechanism of filtering the returned poems by

criteria, that are calculated on the basis of individual poems and returned by the

270 The DraCor API uses “play”, e.g., /corpora/{corpusname}/play/{playname}. The use of plural

nouns in the URL of endpoints is encouraged by guides on API design, e.g., “Rule: A plural noun should
be used for collection names” (Massé 2012: 17).

D7.1 On Programmable Corpora

 102

/corpora/{corpusname}/poems/{id} endpoint, e.g., number of stanzas or verses, rhyme

schema, and more.

 A DraCor-like overview of a single corpus would probably have to combine data from the

endpoints /corpora/{corpusname} and /corpora/{corpusname}/poems. Fig. 42 shows

an overview table that has been developed based on the corpus page in DraCor (cf. section

5.6.2). Currently, the page available on https://poecor.org/corpora/postdata renders mock data

that is not coming directly from an API.

Fig. 42: Corpus overview table with filter functionality

/corpora/{corpusname}/ids: returns a list of IDs of a certain entity type, e.g. poem or author.

In the current version “poem” is the default and only allowed value of the parameter “type”. This

endpoint is the result of a consequent separation of functionalities, but also a pragmatic necessity.

We decided not to use the full URIs of entities in the API as identifiers in the request URLs, but

derive shorter IDs by creating a truncated md5 hash of the URIs, e.g., of poems. This method

allows to generate unique identifiers (on the basis of unique identifiers, i.e., the URIs used in the

https://poecor.org/corpora/postdata

D7.1 On Programmable Corpora

 103

Knowledge Graph), which are all of equal length and relatively easy to compute. This approach

also has its downsides: An additional endpoint will have to be implemented that provides a means

of translating back from a generated ID to the full URI. Although hashing a string always returns

the same result and is thus a good means of creating unique identifiers of already unique strings,

it is not possible to transform the hash back to the full string.

/corpora/{corpusname}/poems/{id}: returns metadata and the results of the analysis of

some structural features of a poem. The analysis is based exclusively on an automatic scansion

generated by POSTDATAs system. This endpoint does complement the /scansion endpoint

that is available from PoetryLab API. For analysis purposes, POSTDATAs endpoint and the

corresponding interface in the PoetryLab application is best suited. Our endpoint summarizes

data that would otherwise had to be aggregated from the nested JSON-LD. The analysis data (in

a field with the key “analysis”) comprises information on the overall number of stanzas, lines,

words, and syllables (metrical and grammatical) of the whole poem, as well as aggregated metrics

per stanza (rhyme scheme, number of lines, number of words and syllables per line, metrical and

grammatical stress patterns).

D7.1 On Programmable Corpora

 104

Fig. 43: Front-end rendering of the data returned by /corpora/{corpusname}/poems/{id}

6.2.4 Notes on the Implementation

A likewise possible, but different way to dock an adapted DraCor front-end to POSTDATAs

PoetryLab API could have been to simply implement additional endpoints. In that case, the

straight-forward specification-first approach of POSTDATA would have made the following steps

necessary:

■ design additional endpoints and adapt the OpenAPI specification accordingly,

■ write additional functions for the module “core.py” (or make explicit, that this is added

functionality by adding the functions as a new module)

D7.1 On Programmable Corpora

 105

■ make sure that the “operationId” of the operation (path + method, e.g. GET) matches the

name of function271,

■ register the functions “in _init_.py”.

Even if this, in general, could have been implemented with less effort, there would be still

additional things to consider in regard to implementation: POSTDATA uses the bare compacted

JSON-LD to feed the front-end, which is not foreseen with, for example, the DraCor front-end.

Therefore, it would still have been necessary to implement a mechanism that would further

simplify the JSON-LD response further and to create a new data structure that would suffice the

needs of the DraCor front-end. It didn’t seem feasible to introduce this processing logic to the

POSTDATA Knowledge Graph Query system as implemented for the PoetryLab API, because it

would have unnecessarily blown up the otherwise sleek setup. We therefore decided to keep the

APIs separate, at least for now.

In the case of the eXist-db XQuery-based implementation of the DraCor API, the central

aspects are the XPath expressions and the XQuery functions (the “operations”) that are evaluated

or executed to extract information from the TEI encoded texts, resulting in the “features” that are

then available from several endpoints (cf. section 5.3 on DraCor API). In the case of POSTDATAs

approach, in which the data is stored in a Knowledge Graph, the foundation on which the

implementation rests are the SPARQL CONSTRUCT queries272, that define which information to

retrieve and how the JSON-LD object is structured in the response.

We followed POSTDATAs approach in foregrounding the SPARQL queries insofar as we

set up a separate structure to store the SPARQL queries. But, in the case of POSTDATA, the

queries are kept in a relatively flat data structure––a dictionary, which only includes the query as

a string. However, we wanted to implement the queries in a way that would allow us to attach

additional forms of documentation (a “label” and a “description”) and functionality (“inject URIs

into a template”, “execute a query”) to them. Therefore, the queries are created as subclasses

PdStardogQuery273 of a class SparqlQuery274 with the actual query hardcoded as an attribute

of either “query” or “template”, depending on whether there is a need of injecting URIs into a

template before execution. These classes inherit methods from SparqlQuery that allow to

271 Just to give one exampleIn the specification the endpoint /poeticWorks of the PoetryLab API has the

operationID “knowledge_graph_queries.get_poeticWorks” <146>; the function is called

get_poeticWorks in “core.py”. The mapping is handled by “connexion”, cf. chapter on “Routing” in the

documentation of connexion (https://connexion.readthedocs.io/en/latest/routing.html).
272 https://www.w3.org/TR/sparql11-query/#construct.
273 The class is defined in the module “pd_stardog_queries.py” <147>, which also contains its subclasses

representing the individual SPARQL queries.
274 The SPARQL related classes (DB, SparqlQuery, SparqlResults) are contained in the module

“sparql.py” <148>.

https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml#L53
https://connexion.readthedocs.io/en/latest/routing.html
https://www.w3.org/TR/sparql11-query/#construct
https://github.com/dh-network/postdata-2-dracor-api/blob/d7b4c3bcbb4abe0355d5c8169788ca9e31c20f34/pd_stardog_queries.py
https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py

D7.1 On Programmable Corpora

 106

manipulate a query template, send them to the triple store, and so on. The of the Stardog triple

store are instantiated as instances of a designated class SparqlResults that has methods,

which allow to “simplify”275 the results in the “SPARQL Query Results JSON Format”276.

Below is an example of such a “SPARQL Query Class” CountPoeticWorks: a simple

query that counts the number of poems in the knowledge graph (Fig. 44).

class CountPoeticWorks(PdStardogQuery):

 """SPARQL Query: Count instances of class pdc:PoeticWork"""

 label = "Number of Poems"

 description = """

 Count all instances of the class pdc:PoeticWork. These should be

all the poems in the graph.

 """

 query = """

 SELECT (COUNT(?poeticWork) AS ?count) FROM

<tag:stardog:api:context:local> WHERE {

 ?poeticWork a pdc:PoeticWork .

 }

 LIMIT 1000000

 """

Fig. 44: Query counting number of poems in POSTDATA knowledge graph

The central entities (collection of corpora, corpus, poem, author)277 are implemented as

designated classes, which use instances of the above-mentioned “SPARQL Query Classes” to

obtain results from the Stardog triple store. The code snippet below shows the implementation of

the method get_num_poems that uses sparql_num_poems, an instance of the class

CountPoeticWorks.

275 The “simplify” method is implemented here: <149>.
276 Specification cf. https://www.w3.org/TR/sparql11-results-json.
277 Each general entity class is defined in a separate module (“corpora.py”, “corpus.py”, “poem.py”,

“author.py”). Of these classes specialized subclasses are created, that are tailored towards the data
model employed in the POSTDATA system: the classes “PostdataCorpora”, “PostdataCorpus”,
“PostdataPoem” and “PostdataAuthor”. The classes can be found in the files, which filenames resemble
the one of the modules containing the general classes, but prefixed by “pd_”, e.g., “pd_corpus.py”. The
functionality to execute queries and transform the data are implemented with these classes. They can
also be used as stand-alone modules, as is demonstrated with the corresponding Jupyter Notebooks, e.g.
the notebook “test_corpus_class.py” demonstrates the stand-alone use of the class “PostdataCorpus”
<150>.

https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py#L528-L600
https://www.w3.org/TR/sparql11-results-json
https://github.com/dh-network/postdata-2-dracor-api/commit/ddf8e1af61cae6f7c6692092723c9d1f19350ddb

D7.1 On Programmable Corpora

 107

def get_num_poems(self) -> int:

 """Count poems in corpus.

 Uses a SPARQL Query of class "CountPoeticWorks" of the module

"pd_stardog_queries".

 Returns:

 int: Number of poems.

 """

 if self.num_poems:

 return self.num_poems

 else:

 if self.database:

 # Use the SPARQL Query of class "CountPoeticWorks" (set as

attribute of this class)

 self.sparql_num_poems.execute(self.database)

 # normally, the result would be a list containing a single

string value

 # by supplying a mapping to the simplify method the value

bound to the variable "count"

 # can be cast to an integer

 mapping = {"count": {"datatype": "int"}}

 self.num_poems =

self.sparql_num_poems.results.simplify(mapping=mapping)[0]

 return self.num_poems

 else:

 raise Exception("Database Connection not available.")

Fig. 45: Implementation of the method get_num_poems

By calling the method execute in the line

self.sparql_num_poems.execute(self.database) the SPARQL query is executed on

the database object “database”. The returned results are then transformed by evoking the method

simplify in the line self.num_poems =

self.sparql_num_poems.results.simplify(mapping=mapping)[0], which returns

the number of poems in the Knowledge Graph cast to an integer. This is specified by the mapping

that is passed to the simplify method. This way several attributes of a corpus can be fetched

and then output, for example, in the API.

The API is implemented with the module “api.py” using the Python package flask. The

documentation is generated with the package apidoc, that allows to generate an OpenAPI

specification from the docstring annotations. For example, the endpoint

D7.1 On Programmable Corpora

 108

/corpora/{corpusname} is implemented with the following function (cf. Fig. 46). The URL of

the endpoint is defined in the function decoration @api.route […], The docstring following the

function declaration is used in the OpenAPI specification; the data is retrieved and transformed in

the line that contains

“corpora.corpora[corpusname].get_metadata(include_metrics=True)”.278

@api.route("/corpora/<path:corpusname>", methods=["GET"])

def get_corpus_metadata(corpusname:str):

 """Corpus Metadata

 Args:

 corpusname: ID/name of the corpus, e.g. "postdata".

 get:

 summary: Corpus Metadata

 description: Returns metadata on a corpus. Unlike the DraCor

API the response does not contain information

 on included corpus items (poems). Use the endpoint

``/corpora/{corpusname}/poems`` instead.

 operationId: get_corpus_metadata

 parameters:

 - in: path

 name: corpusname

 description: Name/ID of the corpus.

 required: true

 example: postdata

 schema:

 type: string

 responses:

 200:

 description: Corpus metadata.

 content:

 application/json:

 schema: CorpusMetadata

 404:

 description: No such corpus. Parameter ``corpusname``

is invalid. A list of valid values can be

 retrieved via the ``/corpora`` endpoint.

 content:

278 The get_metadata method is implemented as a method of the class PostdataCorpus, cf. <151>.

https://github.com/dh-network/postdata-2-dracor-api/blob/5e41840e45b127d201e8a9580d4daa0e0ec81399/pd_corpus.py#L339-L374

D7.1 On Programmable Corpora

 109

 text/plain:

 schema:

 type: string

 """

 if corpusname in corpora.corpora:

 metadata =

corpora.corpora[corpusname].get_metadata(include_metrics=True)

 # Validate response with schema "CorpusMetadata"

 schema = CorpusMetadata()

 schema.load(metadata)

 return jsonify(schema.dump(metadata))

 else:

 return Response(f"No such corpus: {corpusname}", status=404,

 mimetype="text/plain")

Fig. 46: Implementation of the endpoint /corpora/{corpusname}

The API and the underlying modules were developed in a rapid prototyping process, resulting in

code that is somewhat unpolished and is less geared towards efficiency, but transparency. Efforts

have been made to ensure the re-use of components outside the API (which might be a

replacement for a designated API wrapper) and in documenting the internals, especially the

SPARQL queries. To make them self-explanatory, the queries themselves feature an explain

method that returns a description of the query. A first testing of the prototype revealed some

performance issues, which occur due to fetching properties from the triple store in several turns.

These must be resolved before a reliable version can be deployed on a server.

We are considering evolving the prototype and including a second source, i.e., the

“German Poetry Corpus”279 (Haider, Egger 2019; Haider 2021), which will probably have to

include a designated data store that is not RDF based. The prototype is a solid foundation for

such an endeavor, because we introduced general and implementation specific classes for the

core entities (corpus, poem, author). Such an abstraction layer should make it possible to

integrate systems that rely on different technology stacks altogether and thus realize a joint

Programmable Poetry Corpora System.

279 Repository on GitHub: https://github.com/tnhaider/DLK

https://github.com/tnhaider/DLK

D7.1 On Programmable Corpora

 110

7. Some Lessons Learned
This report covers the initial development cycles in prototyping on the Programmable Corpora

concept. In the course of the CLS INFRA project, further development cycles will follow, which

will be documented and reflected in a final report (Deliverable D7.4) in 2025. At this point, we

would like to conclude by noting four learnings that will also be of great importance for further

development.

■ The DraCor prototype we have reported on has already strikingly demonstrated the

potentials that the style of a “network-based software architecture” offers for a future

infrastructural ecosystem for CLS. Making the distributed resources and applications of

CLS interconnectable via APIs proves to be a promising approach suitable for beginners

in CLS as well as expert users. In this way, corpora that follow the concept of

Programmable Corpora can be, for example, provided with beginner-friendly front-ends

as well as be addressed directly from common programming languages (possibly via

appropriate API wrappers). The transferability and combinability of resources and

applications in a distributed system following the style of a “network-based software

architecture”, as we have showcased in section 7, seems particularly attractive to us.

Further research and development in Work Package 7 will focus on these aspects and

explore how other CLS tools can be connected to the DraCor prototype and how the

approach of the DraCor prototype can be transferred to other systems. In this way, the

first building blocks of an evolving infrastructural ecosystem for CLS will emerge.

■ APIs, as has been shown, are at the core of the research that is delivered in Work Package

7. In doing so, we have followed the ecological approach of a “natural growth” of APIs in

an environment of specific demands, as outlined by Aaron Swartz. In this sense, the

endpoints of the DraCor API have “grown” first from the structure of the corpus documents

(“document-based growth”), second from the needs of concrete research projects

(“research-driven growth”), third from the requirements of the front-end (“front-end-

oriented growth”). This development approach, which could be called “building a tactical

infrastructure”, has some major advantages: User needs can be met quickly, and no

resources are wasted on unused functions. At the same time, as noted in section 6, such

a development approach lacks systematicity and genericity. To counteract this and to push

the development in the direction of a long-term infrastructure, the alignment with a

systematic, ontology-based domain model for CLS is necessary.

■ Documentation is crucial to ensure the connectivity of the components in a network-based

software architecture. Standards for documentation, such as OpenAPI, should be as

widespread as possible. At the same time, such documentation usually covers only the

technical aspects. To make APIs semantic (and thus conceptually transparent), again, the

D7.1 On Programmable Corpora

 111

alignment with an ontology-based domain model for CLS via Linked Open Data is

required. Programmable Corpora and Semantic Web need to unite.

■ While the development of the DraCor prototype has been supported for some time by

funding from the European Commission under CLS INFRA, central to the development of

this infrastructure prototype is the involvement of a vibrant community of researchers who

integrate their corpora into DraCor and use DraCor in their research. We would like to

point out the crucial importance of this community-based prototyping approach, because

this approach leads to the fact that the “natural growth” Aaron Swartz was talking about

can actually take place in a real-life environment of scientific practice. – Last but not least,

we would like to thank this community.

D7.1 On Programmable Corpora

 112

References
Almas, Bridget, Hugh Cayless, Thibault Clérice, Vincent Jolivet, Pietro Maria Liuzzo, Jonathan

Robie, Matteo Romanello, and Ian Scott. “Distributed Text Services (DTS): A Community-

Built API to Publish and Consume Text Collections as Linked Data.” Journal of the Text

Encoding Initiative (2023). https://doi.org/10.4000/jtei.4352.

Bastian, Mathieu, Sebastien Heymann, and Mathieu Jacomy. “Gephi: An Open Source Software

for Exploring and Manipulating Networks.” International AAAI Conference on Weblogs and

Social Media. 2009. https://gephi.org/publications/gephi-bastian-feb09.pdf.

Börner, Ingo, Peer Trilcke, Carsten Milling, Frank Fischer, and Henny Sluyter-Gäthje.

“Dockerizing DraCor. A Container-Based Approach to Reproducibility in Computational

Literary Studies.” In DH2023. Book of Abstracts. Graz, [submitted].

Budde, Reinhard, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Züllighoven. “What Is

Prototyping?” Information Technology & People 6.2/3 (1992): 89–95.

https://doi.org/10.1108/EUM0000000003546.

Burnard, Lou, Christof Schöch, and Carolin Odebrecht. “In Search of Comity: TEI for Distant

Reading.” Journal of the Text Encoding Initiative 14 (2021).

https://doi.org/10.4000/jtei.3500.

Cayless, Hugh, and Raffaele Viglianti. “CETEIcean: TEI in the Browser.” Proceedings of

Balisage: The Markup Conference 2018. Washington, DC, 2018.

https://doi.org/10.4242/BalisageVol21.Cayless01.

Chiarcos, Christian, John McCrae, Philipp Cimiano, and Christiane Fellbaum. “Towards Open

Data for Linguistics: Linguistic Linked Data.” New Trends of Research in Ontologies and

Lexical Resources: Ideas, Projects, Systems, ed. by Alessandro Oltramari, Piek Vossen,

Lu Qin, and Eduard Hovy. Berlin, Heidelberg: Springer, 2013: 7–25.

https://doi.org/10.1007/978-3-642-31782-8_2.

Ďurčo, Matej, Vera Maria Charvat, Ingo Börner, Michał Mrugalski, and Carolin Odebrecht. “CLS

INFRA D6.1: Inventory of Existing Data Sources and Formats.” Zenodo, 2022.

https://doi.org/10.5281/zenodo.7520287.

Fielding, Roy Thomas. Architectural Styles and the Design of Network-Based Software

Architectures. University of California, 2000.

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

Fischer, Frank, Ingo Börner, Mathias Göbel, Angelika Hechtl, Christopher Kittel, Carsten Milling,

and Peer Trilcke. “Programmable Corpora: Introducing DraCor, an Infrastructure for the

Research on European Drama.” In DH2019. Book of Abstracts. Utrecht, 2019.

https://doi.org/10.5281/ZENODO.4284002.

Fischer, Frank, Anika Schultz, Christopher Kittel, Elisa Beshero-Bondar, Steffen Martus, Peer

Trilcke, Jana Wolf, et al. “Brecht Beats Shakespeare! A Card-Game Intervention

Revolving Around the Network Analysis of European Drama.” In DH2018. Book of

Abstracts. Mexico City, 2018: 595–96.

Floyd, Christiane. “A Systematic Look at Prototyping.” Approaches to Prototyping, ed. by

Reinhard Budde and Karin Kuhlenkamp. Berlin: Springer, 1984: 1–18.

https://doi.org/10.4000/jtei.4352
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://doi.org/10.1108/EUM0000000003546
https://doi.org/10.4000/jtei.3500
https://doi.org/10.4242/BalisageVol21.Cayless01
https://doi.org/10.1007/978-3-642-31782-8_2
https://doi.org/10.5281/zenodo.7520287
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://doi.org/10.5281/ZENODO.4284002

D7.1 On Programmable Corpora

 113

Gavin, Michael. Literary Mathematics: Quantitative Theory for Textual Studies. Stanford,

California: Stanford University Press, 2023.

Giovannini, Luca, Daniil Skorinkin, Peer Trilcke, Ingo Börner, Frank Fischer, Julia Dudar,

Carsten Milling, and Petr Pořízka. “Distributed Corpus Building in Literary Studies: The

DraCor Example.” In DH2023. Book of Abstracts. Graz, [submitted].

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,

Dynamics, and Function Using NetworkX.” Proceedings of the 7th Python in Science

Conference (SciPy2008), ed. by Gäel Varoquaux, Travis Vaught, and Jarrod Millman.

Pasadena, CA, 2008: 11–15

Haider, Thomas. “Metrical Tagging in the Wild: Building and Annotating Poetry Corpora with

Rhythmic Features.” Proceedings of the European Association for Computational

Linguistics. ArXiv. 2021. https://doi.org/10.48550/arXiv.2102.08858.

Haider, Thomas, and Steffen Eger. “Semantic Change and Emerging Tropes In a Large Corpus

of New High German Poetry.” Proceedings of the 1st International Workshop on

Computational Approaches to Historical Language Change. ArXiv. 2019

https://doi.org/10.48550/arXiv.1909.12136

Marcus, Solomon. Poetica Matematică. Bucureşti: Ed. Acad. R. S. România, 1970.

———. Mathematische Poetik. Frankfurt (Main): Athenäum, 1973.

Massé, Mark. REST API Design Rulebook: Designing Consistent RESTful Web Service

Interfaces. Beijing, Köln: O’Reilly, 2012.

Montani, Ines, Matthew Honnibal, Sofie Van Landeghem, Adriane Boyd, Henning Peters, Paul

O’Leary McCann, et al. “Explosion/SpaCy: V3.5.0: New CLI Commands, Language

Updates, Bug Fixes and Much More.” Zenodo. 2023.

https://doi.org/10.5281/zenodo.7553910.

Moretti, Franco. Distant Reading. London, New York: Verso, 2013.

———. Network Theory, Plot Analysis. Stanford Literary Lab. 2011.

https://litlab.stanford.edu/LiteraryLabPamphlet2.pdf

Mrugalski, Michał, Carolin Odebrecht, Vera Charvat, Ingo Börner, and Matej Durco. “CLS

INFRA D5.1. Review of the Data Landscape.” Zenodo. 2022.

https://doi.org/10.5281/zenodo.6861022.

Nadareishvili, Irakli, Ronnie Mitra, Matt McLarty, and Michael Amundsen. Microservice

Architecture: Aligning Principles, Practices, and Culture. Beijing: O´Reilly, 2016.

Naumann, Justus D., and A. Milton Jenkins. “Prototyping: The New Paradigm for Systems

Development.” MIS Quarterly 6.3 (1982): 29–44. https://doi.org/10.2307/248654.

Niles, Rebecca, and Michael Poston. “Re-Modeling the Edition: Creating the Corpus of Folger

Digital Texts.” Early Modern Studies after the Digital Turn, ed. by Laura Estill, Diane

Jakacki, and Michael Ullyot. Tempe,Toronto: Iter and the Arizona Center for Medieval and

Renaissance Studies, 2016: 119–46.

Redick, Stacey J. L, and Eric M. Johnson. “Mediating the Shakespeare User’s Digital

Experience.” The Routledge Handbook of Shakespeare and Interface, ed. by Clifford

Werier and Paul Budra. New York: Routledge, 2022: 268–82.

https://doi.org/10.48550/arXiv.2102.08858
https://doi.org/10.48550/arXiv.1909.12136
https://doi.org/10.5281/zenodo.7553910
https://litlab.stanford.edu/LiteraryLabPamphlet2.pdf
https://doi.org/10.5281/zenodo.6861022
https://doi.org/10.2307/248654

D7.1 On Programmable Corpora

 114

Revzina, Olga G., and Isaak I. Revzin. “Nekotorye Matematicheskie Metody Analiza

Dramaturgicheskogo Postroeniia.” Tochnye Metody v Issledovaniakh Kul’tury i Iskusstva

(Materialy k Simpoziumy), ed. by Nauchnyi sovet po kibernetike AN SSSR, Vserossiiskoe

teatral’noe obshchestvo, and NII Kul’tury Minesterstva RSFSR. Moscow, 1971. Vol. 2:

291–300.

Ruecker, Stan. “A Brief Taxonomy of Prototypes for the Digital Humanities.” Scholarly and

Research Communication 6.2 (2015). https://doi.org/10.22230/src.2015v6n2a222.

Sapogov, Vyacheslav Alexandrovich. “Nekotorye harakteristiki dramaturgičeskogo postroeniâ

komedii A. N. Ostrovskogo »Les« [Some Characteristics of the Dramatic Construction of

A. N. Ostrovsky’s Comedy »The Forest«].” A. N. Ostrovskij i russkaâ literatura [A. N.

Ostrovsky and Russian Literature], ed. by Vyacheslav Alexandrovich Sapogov. Kostroma:

Âroslavskij pedagogičeskij institut [Yaroslavl State Pedagogical Institute], 1974: 60–69.

Schöch, Christof, Frédéric Döhl, Achim Rettinger, Evelyn Gius, Peer Trilcke, Peter Leinen, Fotis

Jannidis, Maria Hinzmann, and Jörg Röpke. “Abgeleitete Textformate: Text und Data

Mining mit urheberrechtlich geschützten Textbeständen.” Zeitschrift für digitale

Geisteswissenschaften (2020). https://doi.org/10.17175/2020_006.

Schöch, Christof, Evgeniia Fileva, and Julia Dudar. “CLS INFRA D3.1 Baseline Methodological

User Needs Analysis.” Zenodo. 2022. https://doi.org/10.5281/zenodo.6389333.

Schöch, Christof, Roxana Patras, Tomaž Erjavec, and Diana Santos. “Creating the European

Literary Text Collection (ELTeC): Challenges and Perspectives.” Modern Languages

Open 1 1 (2021). https://doi.org/10.3828/mlo.v0i0.364.

Swartz, Aaron. “Aaron Swartz’s A Programmable Web: An Unfinished Work.” Synthesis

Lectures on the Semantic Web: Theory and Technology 3, no. 2 (2013): 1–64.

https://doi.org/10.1007/978-3-031-79444-5.

Tavolato, Paul, and Karl Vincena. “A Prototyping Methodology and Its Tool.” Approaches to

Prototyping, ed. by Reinhard Budde, Karin Kuhlenkamp, Lars Mathiassen, and Heinz

Züllighoven. Berlin, Heidelberg: Springer, 1984: 434–46. https://doi.org/10.1007/978-3-

642-69796-8_38.

Trilcke, Peer. “Social Network Analysis (SNA) als Methode einer textempirischen

Literaturwissenschaft.” Empirie in Der Literaturwissenschaft, ed. by Philip Ajouri, Katja

Mellmann, and Christoph Rauen. Münster: Mentis, 2013: 201–47.

Trilcke, Peer, Frank Fischer, Mathias Göbel, Dario Kampkaspar, and Christoph Kittel. “Network

Dynamics, Plot Analysis: Approaching the Progressive Structuration of Literary Texts.”

DH2017. Book of Abstracts. Montreal, 2017: 437–41.

https://dh2017.adho.org/abstracts/071/071.pdf.

Trilcke, Peer, Christopher Kittel, Nils Reiter, Daria Maximova, and Frank Fischer. “Opening the

Stage – A Quantitative Look at Stage Directions in German Drama.” In DH2020. Book of

Abstracts, ed. by Laura Estill and Jennifer Guiliano, 2020. https://dh2020.adho.org/wp-

content/uploads/2020/07/337_OpeningtheStageAQuantitativeLookatStageDirectionsinGe

rmanDrama.html.

Trilcke, Peer, Evgeniya Ustinova, Ingo Börner, Frank Fischer, and Carsten Milling. “Detecting

Small Worlds in a Corpus of Thousands of Theatre Plays. A DraCor Study in Comparative

https://doi.org/10.22230/src.2015v6n2a222
https://doi.org/10.17175/2020_006
https://doi.org/10.5281/zenodo.6389333
https://doi.org/10.3828/mlo.v0i0.364
https://doi.org/10.1007/978-3-031-79444-5
https://doi.org/10.1007/978-3-642-69796-8_38
https://doi.org/10.1007/978-3-642-69796-8_38
https://dh2017.adho.org/abstracts/071/071.pdf
https://dh2020.adho.org/wp-content/uploads/2020/07/337/_OpeningtheStageAQuantitativeLookatStageDirectionsinGermanDrama.html
https://dh2020.adho.org/wp-content/uploads/2020/07/337/_OpeningtheStageAQuantitativeLookatStageDirectionsinGermanDrama.html
https://dh2020.adho.org/wp-content/uploads/2020/07/337/_OpeningtheStageAQuantitativeLookatStageDirectionsinGermanDrama.html

D7.1 On Programmable Corpora

 115

Literary Network Analysis.” Computational Drama Analysis: Achievements and

Opportunities, ed. by Melanie Andresen, Nils Reiter, Benjamin Krautter, and Janis Pagel,

[27 pages]. Berlin: De Gruyter, [in press]. Preprint [Conference Version, Cologne 2022]:

https://github.com/dracor-org/small-world-paper/raw/conference-

version/Detecting_Small_World_Networks__in_a_Huge_Multilingual_Corpus_of_Theater_

Plays.pdf.

Wendell, Inna. A Statistical Analysis of Genre Dynamics: Evolution of the Russian Five-Act

Comedy in Verse in the Eighteenth and Nineteenth Centuries. UCLA, 2021.

https://escholarship.org/uc/item/9rr5k9p7.

Wiedmer, Nathalie, Janis Pagel, and Nils Reiter. “Romeo, Freund Des Mercutio: Semi-

Automatische Extraktion von Beziehungen zwischen Dramatischen Figuren.” DHd2020.

Book of Abstracts. Paderborn, 2020: 194–200. https://doi.org/10.5281/zenodo.4621778.

Yarkho, Boris I. “Speech Distribution in Five-Act Tragedies (A Question of Classicism and

Romanticism).” Journal of Literary Theory 13.1 (2019): 13–76. https://doi.org/10.1515/jlt-

2019-0002.

https://github.com/dracor-org/small-world-paper/raw/conference-version/Detecting_Small_World_Networks__in_a_Huge_Multilingual_Corpus_of_Theater_Plays.pdf
https://github.com/dracor-org/small-world-paper/raw/conference-version/Detecting_Small_World_Networks__in_a_Huge_Multilingual_Corpus_of_Theater_Plays.pdf
https://github.com/dracor-org/small-world-paper/raw/conference-version/Detecting_Small_World_Networks__in_a_Huge_Multilingual_Corpus_of_Theater_Plays.pdf
https://escholarship.org/uc/item/9rr5k9p7
https://doi.org/10.5281/zenodo.4621778
https://doi.org/10.1515/jlt-2019-0002
https://doi.org/10.1515/jlt-2019-0002

D7.1 On Programmable Corpora

 116

Code References
<1> https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-

galotti.xml#L11

<2> https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-

galotti.xml#L122

<3>https://github.com/dracor-

org/romdracor/blob/e80db098a89e842174cf76dd0ffb56b5449d351d/tei/ad_lat.xml#L173-L175

<4> https://github.com/dracor-org/dracor-

api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/metrics.xqm#L49-L118

<5> https://github.com/dracor-org/dracor-

api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L263-L286

<6> https://github.com/dracor-org/dracor-

api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L103-L116

<7> https://github.com/dracor-org/dracor-api/tree/645ed31d091f4ea57b5513be2b88a9340102b0f6/modules

<8> https://github.com/dracor-org/dracor-api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm

<9> https://github.com/dracor-org/dracor-

api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm#L845-L873

<10> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L65-L87

<11> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L163-L190

<12 https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L143-L161

<13 https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L401-L417

<14 https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L436-L475

<15> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L197

<16> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L202

<17 https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L192-L220

<18> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L243-L245

<19> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L213-L217

<20> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663

<21> function dutil:get-corpus-metadata https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626

<22> function api:get-corpus-metadata https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685

https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L11
https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L11
https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L122
https://github.com/dracor-org/gerdracor/blob/3dc874101e2d10d687510aeb5ff8a907331843c1/tei/lessing-emilia-galotti.xml#L122
https://github.com/dracor-org/romdracor/blob/e80db098a89e842174cf76dd0ffb56b5449d351d/tei/ad_lat.xml#L173-L175
https://github.com/dracor-org/romdracor/blob/e80db098a89e842174cf76dd0ffb56b5449d351d/tei/ad_lat.xml#L173-L175
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/metrics.xqm#L49-L118
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/metrics.xqm#L49-L118
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L263-L286
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L263-L286
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L103-L116
https://github.com/dracor-org/dracor-api/blob/ac5a6816ce68efc845aef19a80558f6f956b3cc8/modules/util.xqm#L103-L116
https://github.com/dracor-org/dracor-api/tree/645ed31d091f4ea57b5513be2b88a9340102b0f6/modules
https://github.com/dracor-org/dracor-api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm
https://github.com/dracor-org/dracor-api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm#L845-L873
https://github.com/dracor-org/dracor-api/blob/e03b629bc74cfb10299213fb17abfabfd063a666/modules/api.xqm#L845-L873
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L65-L87
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L65-L87
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L163-L190
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L163-L190
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L143-L161
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L143-L161
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L401-L417
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L401-L417
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L436-L475
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L436-L475
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L197
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L197
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L202
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L202
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L192-L220
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L192-L220
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L243-L245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L243-L245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L213-L217
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L213-L217
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L663
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L516-L626
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685

D7.1 On Programmable Corpora

 117

<23> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L595-L598

<24> function api:corpus-meta-data-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L687-L701

<25> function api:get-corpus-meta-data-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685

<26> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L22-L63

<27> function api:play-info https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L764-L786

<28> function dutil:get-play-info https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L897-L1014

<29> function api:play-metrics https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843

<30> function dutil:get-play-metrics https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072

<31> function api:play-rdf https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L940-L961

<32> function api:play-tei https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L845-L873

<33> function dutil:get-doc https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L77-L91

<34> function dutil:get-segments https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L263-L286

<35> function api:cast-info https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1399-L1421

<36> function dutil:dutil:cast-info https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1074-L1136

<37> function api:cast-info-csv-ext https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1457-L1464

<38> function api:cast-info-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1423-L1455

<39> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1433

<40> function api:spoken-text https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1565-L1611

<41> function dutil:get-speech-filtered https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L161-L235

<42> function dutil:get-speech https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L118-L136

https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L595-L598
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L595-L598
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L687-L701
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L687-L701
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L667-L685
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L22-L63
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L22-L63
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L764-L786
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L764-L786
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L897-L1014
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L897-L1014
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L940-L961
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L940-L961
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L845-L873
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L845-L873
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L77-L91
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L77-L91
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L263-L286
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L263-L286
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1399-L1421
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1399-L1421
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1074-L1136
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1074-L1136
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1457-L1464
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1457-L1464
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1423-L1455
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1423-L1455
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1433
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1433
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1565-L1611
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1565-L1611
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L161-L235
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L161-L235
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L118-L136
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L118-L136

D7.1 On Programmable Corpora

 118

<43> function api:get-spoken-text-by-character https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1638-L1647

<44> function local:get-text-by-character https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1613-L1636

<45> function api:spoken-text-by-character-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1685-L1716

<46> function api:spoken-text-by-character-json https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1666-L1683

<47> https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-

galotti.xml#L159-L176

<48> function api:stage-directions https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1718-L1741

<49> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1738-L1739

<50> function api:stage-directions-with-speakers https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1743-L1769

<51> function api:play-metrics https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843

<52> function dutil:get-play-metrics https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072

<53> function api:networkdata-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L963-L1013

<54> function api:networkdata-gexf https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1037-L1110

<55> function api:networkdata-graphml https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1112-L1194

<56> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L985-L997

<57> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1058-L1070

<58> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1133-L1145

<59> https://github.com/dracor-org/dracor-

api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L62-L72

<60> https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-

galotti.xml#L90-L94

<61> function api:relations-csv https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1197-L1245

<62> function dutil:get-relations https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1144-L1180

<63> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1247-L1318

https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1638-L1647
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1638-L1647
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1613-L1636
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1613-L1636
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1685-L1716
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1685-L1716
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1666-L1683
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1666-L1683
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L159-L176
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L159-L176
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1718-L1741
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1718-L1741
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1738-L1739
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1738-L1739
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1743-L1769
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1743-L1769
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L821-L843
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1016-L1072
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L963-L1013
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L963-L1013
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1037-L1110
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1037-L1110
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1112-L1194
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1112-L1194
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L985-L997
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L985-L997
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1058-L1070
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1058-L1070
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1133-L1145
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1133-L1145
https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L62-L72
https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L62-L72
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L90-L94
https://github.com/dracor-org/gerdracor/blob/bfadf6b5844d4e05ea0501898a23c21f71c10cb3/tei/lessing-emilia-galotti.xml#L90-L94
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1197-L1245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1197-L1245
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1144-L1180
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1144-L1180
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1247-L1318
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1247-L1318

D7.1 On Programmable Corpora

 119

<64> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L951

<65> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1320-L1397

<66> https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1771-L1792

<67> function dutil:get-plays-with-character https://github.com/dracor-org/dracor-

api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1182-L1206

<68> https://github.com/dracor-org/gerdracor/blob/d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c/tei/goethe-faust-

eine-tragoedie.xml#L75-L77

<69> function metrics:get-network-metrics https://github.com/dracor-org/dracor-

api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L49-L118

<70> https://github.com/dracor-org/dracor-

metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L18-L36

<71> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L38

<72> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L71

<73> https://github.com/dracor-org/dracor-

metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L72-L73

<74> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L74

<75> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L75

<76> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L39

<77> https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L40

<78> React component “TopNav” https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/TopNav.js

<79> React component “Footer”

https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js

<80> function fetchInfo in App.tsx https://github.com/dracor-org/dracor-

frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/App.tsx#L27-L43

<81> https://github.com/dracor-org/dracor-

frontend/blob/ea545e97e5eb654b3730a45925703f32f1648212/src/types.ts#L1-L6

<82> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js#L74-L96

<83> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Home.js

<84> https://github.com/dracor-org/dracor-

frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js

<85> https://github.com/dracor-org/dracor-

frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js#L79-L89

<86> https://github.com/dracor-org/dracor-

frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/CorpusCard.js

<87> https://github.com/dracor-org/dracor-

frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js#L25-L45

https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L951
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L951
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1320-L1397
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1320-L1397
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1771-L1792
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/api.xqm#L1771-L1792
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1182-L1206
https://github.com/dracor-org/dracor-api/blob/3215fde0c34cc51a51386728775cbb3c058ae06f/modules/util.xqm#L1182-L1206
https://github.com/dracor-org/gerdracor/blob/d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c/tei/goethe-faust-eine-tragoedie.xml#L75-L77
https://github.com/dracor-org/gerdracor/blob/d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c/tei/goethe-faust-eine-tragoedie.xml#L75-L77
https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L49-L118
https://github.com/dracor-org/dracor-api/blob/b78724b3ab2009901b52818ad9af741e95976042/modules/metrics.xqm#L49-L118
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L18-L36
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L18-L36
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L38
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L71
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L72-L73
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L72-L73
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L74
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L75
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L39
https://github.com/dracor-org/dracor-metrics/blob/fc3d3d3f6e1185c447678dc8113dd6c4a0a58141/main.py#L40
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/TopNav.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/TopNav.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/App.tsx#L27-L43
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/App.tsx#L27-L43
https://github.com/dracor-org/dracor-frontend/blob/ea545e97e5eb654b3730a45925703f32f1648212/src/types.ts#L1-L6
https://github.com/dracor-org/dracor-frontend/blob/ea545e97e5eb654b3730a45925703f32f1648212/src/types.ts#L1-L6
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js#L74-L96
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Footer.js#L74-L96
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Home.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/Home.js
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js#L79-L89
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/Corpora.js#L79-L89
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/CorpusCard.js
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/CorpusCard.js
https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js#L25-L45
https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js#L25-L45

D7.1 On Programmable Corpora

 120

<88> https://github.com/dracor-org/dracor-

frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js

<89> https://github.com/dracor-org/dracor-

frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js

<90> https://github.com/dracor-org/dracor-

frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L104

<91> https://github.com/dracor-org/dracor-

frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L115-L122

<92> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js

<93> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L51-L70

<94> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L114-L166

<95> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L97

<96> https://github.com/dracor-org/dracor-

frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/PlayDetailsHeader.js

<97> https://github.com/dracor-org/dracor-

frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js

<98> https://github.com/dracor-org/dracor-

frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L19

<99> https://github.com/dracor-org/dracor-

frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L18-L54

<100> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js

<101> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js#L29-L39

<102> https://github.com/dracor-org/dracor-

frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L3-L36

<103> https://github.com/dracor-org/dracor-

frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L38-L59

<104> https://github.com/dracor-org/dracor-

frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/CastList.js

<105> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js

<106> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L37-L63

<107> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L14-L21

<108> https://github.com/dracor-org/dracor-

frontend/tree/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution

<109> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js

https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js
https://github.com/dracor-org/dracor-frontend/blob/10498ca94530452de1e1b8306301577226c0c361/src/components/Corpus.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L104
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L104
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L115-L122
https://github.com/dracor-org/dracor-frontend/blob/7af2edc988813fab99f4d1fdcb7c15a290558760/src/components/CorpusIndex.js#L115-L122
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L51-L70
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L51-L70
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L114-L166
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L114-L166
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L97
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L97
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/PlayDetailsHeader.js
https://github.com/dracor-org/dracor-frontend/blob/e4377a561728fc961c8a9412a136dd46f692840d/src/components/PlayDetailsHeader.js
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L19
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L19
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L18-L54
https://github.com/dracor-org/dracor-frontend/blob/dab5c4c6e13b79bf06a176d32ba07b7ee4b080dc/src/components/AuthorInfo.js#L18-L54
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js#L29-L39
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/NetworkGraph.js#L29-L39
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L3-L36
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L3-L36
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L38-L59
https://github.com/dracor-org/dracor-frontend/blob/9933527844f6187e01a20ad06b8497141445f43c/src/network.js#L38-L59
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/CastList.js
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/CastList.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L37-L63
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L37-L63
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L14-L21
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/RelationsGraph.js#L14-L21
https://github.com/dracor-org/dracor-frontend/tree/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution
https://github.com/dracor-org/dracor-frontend/tree/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js

D7.1 On Programmable Corpora

 121

<110> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js

#L74-L88

<111> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js

<112> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js#

L86-L132

<113>

https://github.com/innawendell/European_Comedy/blob/a0ffe348031579278990cb29a14c799985adbdfb/Russ

ian_Comedies/Russian_Comedies.tsv

<114>

https://github.com/innawendell/European_Comedy/blob/466c2d2bed597ee7dd850b61445554d8fc173c30/TA

GS_EXPLANATION.md#2-russian-tei-files

<115>

https://github.com/innawendell/player/blob/85a4173ea41146f0ab852cf7b328358575e0280a/player/russian_tei

_functions.py

<116>

https://github.com/innawendell/European_Comedy/blob/7b96d1e43d31acab85c8431a915039082813c126/Ru

ssian_Comedies/TEI_files/R_1.xml#L1036-L1047

<117> https://github.com/lehkost/dramavis/pull/16/commits/db960b36d305ee3a3275335209d10d57afdf6e60

<118> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFisc

her.js

<119> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFisc

her.js#L31-L40

<120> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFisc

her.js#L14-L29

<121> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFisc

her.js#L53-L100

<122> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L102

<123> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L138

<124> https://github.com/dracor-org/dracor-

frontend/blob/1a108a52f43536bdab7269850d9cfbcb8e7ce64f/src/components/TEIPanel.js

<125> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SourceInfo.js

<126> https://github.com/dracor-org/dracor-

frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L140

<127> https://github.com/dracor-org/dracor-

frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/Segments.tsx

https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js#L74-L88
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js#L74-L88
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Sapogov.js#L74-L88
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js#L86-L132
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js#L86-L132
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/Yarkho.js#L86-L132
https://github.com/innawendell/European_Comedy/blob/a0ffe348031579278990cb29a14c799985adbdfb/Russian_Comedies/Russian_Comedies.tsv
https://github.com/innawendell/European_Comedy/blob/a0ffe348031579278990cb29a14c799985adbdfb/Russian_Comedies/Russian_Comedies.tsv
https://github.com/innawendell/European_Comedy/blob/466c2d2bed597ee7dd850b61445554d8fc173c30/TAGS_EXPLANATION.md#2-russian-tei-files
https://github.com/innawendell/European_Comedy/blob/466c2d2bed597ee7dd850b61445554d8fc173c30/TAGS_EXPLANATION.md#2-russian-tei-files
https://github.com/innawendell/player/blob/85a4173ea41146f0ab852cf7b328358575e0280a/player/russian_tei_functions.py
https://github.com/innawendell/player/blob/85a4173ea41146f0ab852cf7b328358575e0280a/player/russian_tei_functions.py
https://github.com/innawendell/European_Comedy/blob/7b96d1e43d31acab85c8431a915039082813c126/Russian_Comedies/TEI_files/R_1.xml#L1036-L1047
https://github.com/innawendell/European_Comedy/blob/7b96d1e43d31acab85c8431a915039082813c126/Russian_Comedies/TEI_files/R_1.xml#L1036-L1047
https://github.com/lehkost/dramavis/pull/16/commits/db960b36d305ee3a3275335209d10d57afdf6e60
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L31-L40
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L31-L40
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L31-L40
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L14-L29
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L14-L29
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L14-L29
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L53-L100
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L53-L100
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SpeechDistribution/TrilckeFischer.js#L53-L100
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L102
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L102
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L138
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L138
https://github.com/dracor-org/dracor-frontend/blob/1a108a52f43536bdab7269850d9cfbcb8e7ce64f/src/components/TEIPanel.js
https://github.com/dracor-org/dracor-frontend/blob/1a108a52f43536bdab7269850d9cfbcb8e7ce64f/src/components/TEIPanel.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SourceInfo.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/SourceInfo.js
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L140
https://github.com/dracor-org/dracor-frontend/blob/a553f004df3ede7de1cc26be9dd50b8942fe794d/src/components/Play.js#L140
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/Segments.tsx
https://github.com/dracor-org/dracor-frontend/blob/27c7fa7edfbabe9512c1232f6d9d33ee0b20fa3e/src/components/Segments.tsx

D7.1 On Programmable Corpora

 122

<128> https://github.com/dracor-org/dracor-

frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js

<129> https://github.com/dracor-org/dracor-

frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L18-L29

<130> https://github.com/dracor-org/dracor-

frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L134

<131> https://github.com/ingoboerner/folger-shakespeare-

openapi/blob/a1bb3b82c777d4dc5350bc09362b86f8eb444c83/folger-shakespeare-api-doc.ipynb

<132> https://github.com/ingoboerner/folger-shakespeare-

openapi/blob/47800fb3a6ccc0de0f8d9281d3ac4559da7caa99/openapi.yaml

<133> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.ym

l

<134> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/102d9a7a70e092340e6df30ee7db9e9306478153/knowledge_graph_queries/app.py

<135> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py

<136> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L10-L21

<137>https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L211-L219

<138> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L188-L208

<139> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L77

<140> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py

<141> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L30

<142> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/2d1805c48b44e2cce38dd948e166030103dad571/docker-compose.yml

<143> https://github.com/linhd-postdata/postdata-

stardog/blob/bafa3a8d42814400ae44d326bd43c71852ac58ac/Dockerfile

<144> https://github.com/dh-network/postdata-2-dracor-

api/blob/e614a71b79572b372afa5f70582287a48af2ca80/query_tryouts_poetry_lab.ipynb

<145> https://github.com/dh-network/postdata-2-dracor-

api/blob/ddf8e1af61cae6f7c6692092723c9d1f19350ddb/openapi.yaml

<146> https://github.com/linhd-postdata/knowledge-graph-

queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.ym

l#L53

<147> https://github.com/dh-network/postdata-2-dracor-

api/blob/d7b4c3bcbb4abe0355d5c8169788ca9e31c20f34/pd_stardog_queries.py

<148> https://github.com/dh-network/postdata-2-dracor-

api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py

https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L18-L29
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L18-L29
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L134
https://github.com/dracor-org/dracor-frontend/blob/6cff1feb7c2ceab9df48cfe70a994fd8d63bf785/src/components/DownloadLinks.js#L134
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/a1bb3b82c777d4dc5350bc09362b86f8eb444c83/folger-shakespeare-api-doc.ipynb
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/a1bb3b82c777d4dc5350bc09362b86f8eb444c83/folger-shakespeare-api-doc.ipynb
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/47800fb3a6ccc0de0f8d9281d3ac4559da7caa99/openapi.yaml
https://github.com/ingoboerner/folger-shakespeare-openapi/blob/47800fb3a6ccc0de0f8d9281d3ac4559da7caa99/openapi.yaml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/102d9a7a70e092340e6df30ee7db9e9306478153/knowledge_graph_queries/app.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/102d9a7a70e092340e6df30ee7db9e9306478153/knowledge_graph_queries/app.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L10-L21
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L10-L21
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L211-L219
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L211-L219
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L188-L208
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/core.py#L188-L208
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L77
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L77
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L30
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/queries.py#L2-L30
https://github.com/linhd-postdata/knowledge-graph-queries/blob/2d1805c48b44e2cce38dd948e166030103dad571/docker-compose.yml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/2d1805c48b44e2cce38dd948e166030103dad571/docker-compose.yml
https://github.com/linhd-postdata/postdata-stardog/blob/bafa3a8d42814400ae44d326bd43c71852ac58ac/Dockerfile
https://github.com/linhd-postdata/postdata-stardog/blob/bafa3a8d42814400ae44d326bd43c71852ac58ac/Dockerfile
https://github.com/dh-network/postdata-2-dracor-api/blob/e614a71b79572b372afa5f70582287a48af2ca80/query_tryouts_poetry_lab.ipynb
https://github.com/dh-network/postdata-2-dracor-api/blob/e614a71b79572b372afa5f70582287a48af2ca80/query_tryouts_poetry_lab.ipynb
https://github.com/dh-network/postdata-2-dracor-api/blob/ddf8e1af61cae6f7c6692092723c9d1f19350ddb/openapi.yaml
https://github.com/dh-network/postdata-2-dracor-api/blob/ddf8e1af61cae6f7c6692092723c9d1f19350ddb/openapi.yaml
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml#L53
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml#L53
https://github.com/linhd-postdata/knowledge-graph-queries/blob/e742c9b34dab10cbccd0da502ac69afe7e382c9a/knowledge_graph_queries/openapi/openapi.yml#L53
https://github.com/dh-network/postdata-2-dracor-api/blob/d7b4c3bcbb4abe0355d5c8169788ca9e31c20f34/pd_stardog_queries.py
https://github.com/dh-network/postdata-2-dracor-api/blob/d7b4c3bcbb4abe0355d5c8169788ca9e31c20f34/pd_stardog_queries.py
https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py
https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py

D7.1 On Programmable Corpora

 123

<149> https://github.com/dh-network/postdata-2-dracor-

api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py#L528-L600

<150> https://github.com/dh-network/postdata-2-dracor-api/commit/ddf8e1af61cae6f7c6692092723c9d1f19350ddb

<151> https://github.com/dh-network/postdata-2-dracor-

api/blob/5e41840e45b127d201e8a9580d4daa0e0ec81399/pd_corpus.py#L339-L374

<152> https://github.com/dracor-org/dracor-

frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/PlayMetrics.js

https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py#L528-L600
https://github.com/dh-network/postdata-2-dracor-api/blob/1999ba51cfa2b35b1e35d24609466168d106bd38/sparql.py#L528-L600
https://github.com/dh-network/postdata-2-dracor-api/commit/ddf8e1af61cae6f7c6692092723c9d1f19350ddb
https://github.com/dh-network/postdata-2-dracor-api/blob/5e41840e45b127d201e8a9580d4daa0e0ec81399/pd_corpus.py#L339-L374
https://github.com/dh-network/postdata-2-dracor-api/blob/5e41840e45b127d201e8a9580d4daa0e0ec81399/pd_corpus.py#L339-L374
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/PlayMetrics.js
https://github.com/dracor-org/dracor-frontend/blob/0db19a0b59f8253bccf688dcec70539d64099752/src/components/PlayMetrics.js

	Index
	List of Figures
	List of Tables
	About this Deliverable
	1. Publishable Summary
	2. Introduction and Methodology
	2.1 Towards an Infrastructural Ecosystem for CLS
	2.2 A Prototyping Approach

	3. CLS Research in Digital Ecosystems between Embeddedness and Instability: Some Key Considerations
	4. The DraCor Prototype in Action. Four Showcases
	4.1 Showcase 1: One-Click Download of Modeled Text Data
	4.2 Showcase 2: Geo-Mapping Locations of First Performances
	4.3 Showcase 3: Extracting Stage Directions for NLP
	4.4 Showcase 4: Plotting Network Measures for Thousands of Plays

	5. Description of the DraCor Prototype
	5.1 Corpora
	5.2 DraCor Data Storage
	5.2.1 GitHub Repositories
	5.2.2 eXist-db

	5.3 DraCor API
	5.3.1 Implementation
	5.3.2 OpenAPI Documentation
	5.3.3 Functionality and Endpoints
	5.3.3.1 Information on a Corpus
	5.3.3.2 Information on a Play
	5.3.3.3 Information on Key Constituents of a Play
	Segments
	Characters
	Spoken Text
	Stage Directions

	5.3.3.4 Network Data
	5.3.3.5 Cross-Corpora Queries

	5.3.4 API Wrappers

	5.4 DraCor Metrics Service
	5.5 DraCor SPARQL Endpoint
	5.6 DraCor Front-End
	5.6.1 Landing Page: List of Corpora
	5.6.2 Corpus Page
	5.6.3 View of a Single Play
	5.6.3.1 Tab “Network”
	5.6.3.2 Tab “Relations”
	5.6.3.3 Tab “Speech Distribution”
	Excursus: On the Research-Driven Diagrams in the “Speech Distribution” Tab
	Sapogov 1974
	Yarkho 1997 [2019]
	Trilcke, Fischer et al. 2017

	5.6.3.4 Tab “Full Text”
	5.6.3.5 Tab “Downloads”
	Network Data
	List of Characters
	Spoken Text
	Full Text
	Stage Directions

	6. Prototyping APIs for CLS. Some Reflections and Two Additional API Experiments
	6.1 Relating APIs using OpenAPI: The Example of the Folger Shakespeare API
	6.1.1 Discussion of the Folger Shakespeare API
	6.1.2 ‘Swaggerization’ of the Folger Shakespeare API
	6.1.3 Mappings of ShakeDraCor and the Folger Shakespeare API

	6.2 Bridging POSTDATA and DraCor as Programmable Corpora
	6.2.1 Overview of POSTDATA components
	6.2.2 POSTDATAs Specification-first Approach in API Development
	6.2.3 Prototyping a DraCor-like API for POSTDATA
	6.2.4 Notes on the Implementation

	7. Some Lessons Learned
	References
	Code References

