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Abstract

Machine learning models, especially ensemble and tree-based approaches, offer great
promise to legislative scholars. However, they are heavily underutilized outside of nar-
row applications to text and networks. We believe this is because they are difficult to
interpret: while the models are extremely flexible, they have been criticized as “black
box” techniques due to their difficulty in visualizing the effect of predictors on the out-
come of interest. In order to make these models more useful for legislative scholars, we
introduce a framework on integrating machine learning models with traditional para-
metric approaches. We then review three interpretative plotting strategies that scholars
can use to bring a substantive interpretation to their machine learning models. For each,
we explain the plotting strategy, when to use it, and how to interpret it. We then put
these plots in action by revisiting two recent articles from Legislative Studies Quarterly.
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Introduction
Machine learning (ML) techniques, especially tree-based ones, are growing in popularity in political
science (Green and Kern, 2012; Streeter, 2019; Benoit, Munger, and Spirling, 2019; Kim, Alvarez,
and Ramirez, 2020). Typically focused on maximizing predictive accuracy, supervised ML methods
have often been criticized as a “black-box” approach since it is difficult to make inferences about the
effect that a particular predictor has on the outcome of interest.1 Despite recent articles in political
science espousing the benefits of ML models
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(c.f., Montgomery and Olivella, 2018), ML model interpretation has typically focused on predictive
accuracy rather than visualizing the relationship between the predictors and the outcome (Kaufman,
Kraft, and Sen, 2019; Anastasopoulos and Bertelli, 2020) (with some exceptions, Green and Kern
(2012); Suzuki (2015); Muchlinski et al. (2016); Kim, Alvarez, and Ramirez (2020)). This “black-box”
complexity has kept machine learning models from more prevalent usage in legislative studies; we
could only find 16 uses of machine learning models in Legislative Studies Quarterly from 2010 to
2020, despite their broader growth in political science. Moreover, these articles were almost entirely
confined to network analysis (such as Bendix and MacKay, 2017; Metz and Jäckle, 2016; Bonvecchi,
Calvo, and Stein, 2016) or text analysis (c.f., Baumann, Debus, and Müller, 2015; Proksch et al.,
2019; Goet, Fleming, and Zubek, 2020).

We argue that, with proper guidance on how to visualize the relationship between a predictor and
an outcome, machine learning models can be incredibly useful to legislative scholars. In particular,
we recommend the use of machine learning models and visualizations as a complementary approach
for fine-tuning parametric models and potentially revealing nonlinear relationships. Extending a
strategy first briefly discussed in Funk, Paul, and Philips (2021), we suggest that scholars engage in
the following sequence:

1. Estimate a parametric model that tests theoretically-grounded hypotheses.

2. Use a machine learning approach on the same set of theoretical predictors to evaluate the
robustness of the initial parametric tests.

3. Adjust the initial parametric model to account for any nuances revealed in the machine learn-
ing approach.

In this supplemental role—data-informed but not data-dredging—ML models can help scholars in-
vestigate potential misspecifications that traditional parametric models may overlook. For example,
a ML approach can account for non-linear effects often involved in models of legislative activity (for
instance, logarithmic or quadratic effects of age, ideology, or seniority: Bowler, McElroy, and Muller,
2020; Crosson et al., 2019). Such models can also offer a unifying framework for truncated variables
with many zeroes, like fundraising (Bonica, 2020) and lobbyist spending (McKay, 2020). Finally,
certain ML models allow legislative scholars to investigate a variety of potential interactions, as
predictors
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are inherently conditional instead of interactions being specified parametrically (Anderson, Box-
Steffensmeier, and Sinclair-Chapman, 2003; Osborn et al., 2019; Howard and Owens, 2020, among
many others). Our goal is to encourage legislative scholars to consider ML models not as opaque
“black-box” approaches that inhibit theoretical inference, but rather a powerful tool to uncover hid-
den, complex relationships that parametric models might miss.

To facilitate the use of machine learning models, we first provide a brief background on common
tree-based machine learning approaches, as well as present a framework for integrating them with
traditional parametric models. We then introduce three graphical interpretation tools: Variable Im-
portance Plots, Partial Dependence Plots and Individual Conditional Expectation plots. For each,
we define what the plot illustrates, how to interpret it, and when to use it, noting both the plots’
respective benefits and constraints. We illustrate the utility of these models and plots for legisla-
tive scholars by revisiting two recent articles from Legislative Studies Quarterly. These examples
offer substantive breadth from both US and non-US legislatures, and also illustrate the modeling
flexibility of our ML approach (one illustrates a classification example for a binary variable, the
other example is for a continuous outcome). Further, when we apply the machine learning approach
as a supplement to the authors’ original grounded theoretical parametric models, we uncover sub-
stantively interesting non-linearities and interactions that illustrate how ML tools can be used to
reinforce and invigorate novel tests of theoretical expectations.

A Primer on Machine Learning Approaches
Generally, ML algorithms specify a continuous or categorical outcome of interest as a function of
k predictors for i observations f (xi). These are mapped onto the dependent variable. Typical ML
applications focus on predictive accuracy. One extremely common ML approach are Random Forests,
a tree-based non-parametric approach to classifying or predicting outcomes (Breiman, 2001). The
core of tree-based algorithms start with a Classification and Regression Tree, or CART model, which
works as follows. Along the range of one of our predictors, the algorithm selects a “cutpoint,” or
value that best partitions the data into two regions. Optimal partitions (sometimes called a greedy
approach) are simply those which maximize our predictive ability—typically
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the proportion correctly predicted (if the dependent variable is categorical) or mean squared error
(MSE) (if the dependent variable is continuous).

This is better illustrated through an example, which we present in Figure 1. Imagine we are trying
to classify whether a legislator will vote yes (shown as gray circles) or no (black squares) on a bill,
using two predictor variables, legislator age and whether their district is electorally competitive or
not. The CART model first finds an optimal cutpoint; in Figure 1a this is a split along legislator age
at 60, which partitions the dataspace into regions R1 and R2. Given this first split, our best guess
is that any legislator in R1 (i.e., less than 60) will vote no (leading to a 30% misclassification rate
since 3 of the 10 observations in R1 are gray circles), and in R2 (greater than or equal to 60) will vote
yes (this region also has a 30% missclassification rate). Successive splits can be made which further
partition the dataspace in a given region. In Figure 1b, the CART model now partitions R2 into
two regions—R3 contains legislators in highly competitive districts (for which we now predict black
squares) while R2 contains legislators in non-competitive districts (in which we perfectly predict gray
circles).

We can improve on predictive ability by conducting additional splits. CART models can be succinctly
depicted as trees, as done in Figure 1c, which shows each split, or “node,” that was done in Figures 1a
and 1b. In normal applications with many predictors, CART models would continue growing a tree—
in effect continuing to partition subsequent data-spaces—until some stopping criterion is reached
(e.g., stop when there are only 5 observations left in a node), leading to a “terminal node.” With our
newly-created CART model, we can feed new observations in to make predictions. For instance, a
75 year old legislator in a very competitive district is likely to vote yes on a bill since they would
end up in the R3 terminal node. It is also worthwhile to compare the CART approach to standard
regression. While a linear regression would find that competitive districts are more likely to have
legislators vote no, and would conclude that as age increases legislators are more likely to vote yes,
it lacks the sharp (and inherently non-linear) cutpoints that CART models contain. This allows for
more complicated functional forms than are often feasible in parametric models.

The above description describes the construction of a single tree, which tends to overfit data in real-
world examples. Random Forests—the machine learning approach we use here—innovate
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on CARTs in two ways. First, Random Forests bootstrap the data—given a dataset of size N,
randomly draw N observations with replacement; do this many times, creating B bootstrapped
datasets—which allows the construction of hundreds or even thousands of CARTs. This process
is called bagging. Thus, instead of making a single prediction, Random Forests create an “ensemble”
of predictions by averaging over all trees (hence the “Forest” in Random Forest). Second, by forcing
the algorithm to choose from a random subset of predictors at each node, trees end up becoming
decorrelated from one another.2 Rather than having a series of trees that all essentially make the
same sorting choices (which would offer little leverage over a single decision tree), we can further
boost predictive accuracy by constructing a series of forcibly decorrelated trees (Hastie, Tibshirani,
and Friedman, 2013).

The bagging procedure also produces a set of “out-of-bag” observations. These observations occur
because of the nature of Random Forest models. Growing B trees requires taking B bootstrapped
samples of the original dataset. As with standard bootstrapping procedures, N observations are
drawn (i.e., randomly draw N observations with replacement, which is the same number of the total
observations in the dataset). A bootstrapped sample will include roughly two-thirds of all unique
observations in the original dataset, meaning that approximately one-third of the sample observa-
tions were never drawn in a particular bootstrap sample (Hastie, Tibshirani, and Friedman, 2013).
It is this one-third that is the “out-of-bag” sample, since these observations were not used to train a
particular regression tree (these out-of-bag samples of course differ across the B trees, just like the
bootstrap samples randomly vary from tree to tree). Out-of-bag samples are quite useful; since they
were not included in the bootstrap sample for tree b, they can be used as an out-of-sample prediction.

Finally, notice that the cutpoints illustrated in Figure 1 are generated based on predictive ability.
While this limits the hypothesis testing ability of machine-learning models (i.e. we cannot create
statistical tests of whether a linear relationship exists between two variables), they offer an extraor-
dinary insight into potentially nuanced, non-linear or even interactive relationships between vari-
ables, which is why we advocate for their use. Consider a simple example of a quadratic relationship
between a predictor x and some outcome. If using a parametric model, failure to include
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both x and x2 can lead to omitted variable bias and a linear fit will poorly approximate the underlying
relationship. With tree-based models, users do not need to specify any functional form; the model
will automatically find the quadratic relationship on the basis of the predictive ability. The same
intuition can be extended to interactions. In parametric models interaction terms must be specified
and included, typically assuming linear interactive relationships (but see Hainmueller, Mummolo,
and Xu, 2019). Given tree-based model’s iterative approach to finding cutpoints, any interactions
between variables that increase predictive ability will be included. This is one of the main sources of
leverage in the machine-learning approach to model building, if not hypothesis testing.

We focus rather exclusively on Random Forests. While many other ML approaches exist, we think
Random Forests are particularly useful to legislative scholars for several reasons. First, they allow
us to model complex, potentially non-linear relationships as well as hidden interactions; as Mont-
gomery and Olivella (2018, p. 729) put it, “standard models are often insufficiently flexible to capture
nuances in the data—such as complex nonlinear functional forms and deep interactions—when no
clear a priori expectations exist.” Second, Random Forests allow the inclusion of a substantial num-
ber of covariates, unlike parametric approaches which run the risk of an overly-saturated model.
Estimating a Random Forest with a additional potential predictors allows us to see how well the key
predictors from the parametric model hold up against a large(r) group of potential covariates. If the
Random Forest model shows that predictors of theoretical interest also have large explanatory power
relative to an unconstrained set of predictors, this provides evidence of the importance of these expla-
nations. Or, the Random Forest might help adjudicate between which additional predictors to include
as controls, depending on which are indicated to have predictive power.3 Last, Random Forests are
popular ML tools that have been used elsewhere in political science (Suzuki, 2015; Muchlinski et al.,
2016; Funk, Paul, and Philips, 2021), including legislative politics (Bonica, 2018), helping ensure
Random Forest models employed by legislative scholars would find wider audiences within political
science.

However, this approach does come with some limitations. First, if basic parametric assumptions
can be met, then traditional approaches, like OLS or logistic regression, may have lower bias than
Random Forests (Muchlinski et al., 2016).
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Second, machine learning models do not allow for traditional null-hypothesis statistical significance
testing. In other words, if we have specified the functional form correctly, not only are traditional
parametric estimates easier to interpret, we can also create measures of uncertainty for them. How-
ever, in the cases in which researchers cannot meet regression assumptions, or when they have
nonlinear or conditional expectations about their data generating process, then ML approaches may
actually strengthen inferences.

Integrating Machine Learning Models with Parametric
Models
As previewed in the introduction, we recommend using ML models as robustness checks. Users can
estimate their original, theoretically grounded parametric model specification, then re-estimate the
same set of predictors using a Random Forest model, which can then be used to gain insight into
their original findings. Based on these new findings, users can fine-tune their parametric models,
yielding better specified models along with measures of uncertainty.

Specifically, we propose leveraging ML’s fully non-parametric approach after executing a standard
theoretical parametric model, which is limited in its ability to capture complex data generating pro-
cesses, such as conditional and nonlinear effects. The replication of a theoretically-grounded para-
metric model using ML models and visualizations allow researchers to leverage the greater flexibility
in order to refine their understanding of theoretically interesting relationships under examination.
ML findings may mirror the results from the initial linear models, serving as a traditional robust-
ness check. Alternatively, this second set of findings could reveal interactions or non-linearities that
users can approximate in their linear models using covariates such as interaction terms or splines.
The shadow side of this data-driven technique is the potential for data-mining. That is, a researcher
could hypothetically mine a large dataset for the best predictors rather than grounding their model
specification in theory. Our three-step approach should help obviate this concern: as with any model,
we should always start with theory before moving to estimation, allowing us to leverage the benefits
of data-driven modeling that is still rooted in theory.

To make machine learning models effective, however, we need to resolve their most glaring deficiency:
the difficulty in visualizing
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or interpreting the effects of predictors on the outcome. To better interpret these models, a series of
graphical tools—the most popular of which we discuss below—have been created to assist users. All
of the ones we cover, with the exception of Variable Importance Plots, can be used with any model,
not just Random Forests. However, they are uncommon in parametric models since estimates tend
to be easy to interpret (e.g., by examining coefficients, marginal effects, etc.). We explain these three
common graphical interpretation tools essential to using Random Forests in legislative scholarship
below.

Graphic Interpretation Tools

Variable Importance Plots
What it is: A Variable Importance Plot (VIP) helps indicate which variables of interest are strong
predictors. While there are several different ways to create a measure of variable “importance” in
Random Forest models, the basic idea is as follows (Breiman, 2001). After estimating all trees, take
each of the out-of-bag observations (those observations for which the tree was not estimated on)
and permute (i.e., reshuffle) a predictor. The justification is that permutation, “effectively voids the
effect of a variable, much like setting a coefficient to zero in a linear model" (Hastie, Tibshirani,
and Friedman, 2013, p. 593). The out-of-bag observations with the permuted predictor are then fed
through their corresponding tree, from which we calculate the prediction error (either mean squared
error for a continuous dependent variable, or the classification error rate for a categorical dependent
variable). The overall decrease in accuracy is therefore the difference between this prediction error
when the variable is permuted, and the prediction error on the out-of-bag observations when the
variable is not permuted. This procedure is done for each predictor. More formally, given some
variable of interest, say xs, we can first obtain the average out-of-bag prediction error for all trees
for which xs was included for at least one split. This average prediction error is compared to another
average where xs is randomly permuted.4 VIPs show the scaled difference between the original
prediction and the permutation.5
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How to interpret it: VIPs are typically shown with all predictors lined up from most to least impor-
tant, where each value shows the average decrease in accuracy, scaled by its standard deviation in
order to normalize the measures.6 The more “important” predictors have a much larger decrease
in accuracy (i.e. permuting results in large decreases in predictive accuracy); the larger the values,
the better the predictor does at reducing prediction error. Typically, the y-axis of a VIP is percent
reduction in prediction error, so we can interpret individual values as the percent of prediction error
reduced by the inclusion of any particular variable. When interpreting the y-axis of a VIP, users
should note the relative differences in prediction error reductions.7 Thus, while VIPs are mostly
used to show relative importance between predictors, implying that their scales are not constant
from model to model, they do have one very intuitive value. A value of zero indicates that a variable
is no better at predictive accuracy than random noise.

When to use it: VIPs are among the first plots that a scholar should produce after estimating a ma-
chine learning model. They are often the best initial insight into which predictors are doing the most
“work” in predicting or classifying the dependent variable. With a VIP in hand, then, scholars can
argue for the relative importance of a particular variable in predicting an outcome (as a robustness
check to their theoretical specification), using the VIP to identify whether the scholar’s predictor is
among the most important in a large set of predictors. Since Random Forests are not at risk of over-
saturation like parametric models, VIPs allow researchers to evaluate how well their theoretically
important covariate(s) predict their outcome of interest compared to the covariates included in their
original model as well other possible predictors that a parametric model would be over-saturated
by (if included). Take for instance Funk, Paul, and Philips (2021), who examine the relationship
between women’s legislative representation and government spending. They use VIPs to discern
whether women’s representation even appears to be associated with spending, and find that, relative
to other common determinants of government spending, women’s representation is very important.
Additionally, we can use VIPs to ensure that no important control variables are omitted from future
models. If a parametric model is to be used in future analyses (which may run the risk of being
overparameterized), the user might take the top 10, 15 or 20 most important predictors, as shown
from a VIP,
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since they tend to be highly predictive of the outcome of interest. However, we do not believe that
just because a theoretically-important variable is not the most important predictor means it should
be thrown out of future parametric models. Instead, VIPs help show the explanatory power of each
predictor relative to one another, as well as relative to a meaningful “null” of zero predictive power.

Partial Dependence Plots
What it is: One common way to visualize the results of ML models is thorough Partial Depen-
dence Plots (PDPs), which show the average marginal effects on the prediction using training data
(Friedman, 2001). Let xis be our independent variable of interest for observation i, and xic =
{xi1, xi2, · · · , xic} be all predictors not including xis. Given our prediction function, f̂ (xi) (where
xi ∈ {xis,xic}), then the partial dependence function is (Greenwell, 2017):

fPDP (xs)=Exs [ f̂ (xs,xc)]=
∫

f̂ (xs,xc)pc(xc)dxc (1)

where:

• fPDP (xs) is our PDP prediction for variable xs

• Exs [ f̂ (xs,xc)] is the expected value/probability of yi, given our prediction function f̂ (xs,xc)

•
∫

f̂ (xs,xc)pc(xc)dxc is the integral across our prediction function ( f̂ (xs,xc)) times the marginal
probability density, pc(xc), of all control variables xc, which is given as: pc(xc)= ∫

p(x)dxs

In practice, this is estimated as:

f̄PDP (xs)=
∑N

i=1 f̂ (i)(xs,xic)

N
(2)

The intuitive explanation here is that we hold all control variables, xic, at their actual value for
each observation i. We then set xs to a single value of xs for all observations (e.g., fix xs = 1 for all
observations). Next, this fixed value of xs (as well as the
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corresponding xic values specific to each observation) is run through the prediction function, f̂ (i)(xs,xic),
in order to obtain a prediction for every observation i. We then fix xs to the next value (e.g., xs = 2),
calculate new predictions, and continue this process of iterating across all values of xs for which we
want to create the PDP. As a final step, we average over all resulting predictions in order to obtain
the average predicted value of the outcome, f̄PDP (xs), given each value of xs. This forms the PDP.
This same logic can be extended to multiple independent variables, allowing us to create PDPs that
investigate interactive relationships between predictors.

How to interpret it: A PDP shows the expected value of the outcome—given a particular value of
one variable—after accounting for the average effects of all other predictors (Hastie, Tibshirani, and
Friedman, 2013). A PDP will show the observed range of an independent variable along an x-axis
with the predicted value (or probability of classification, if the dependent variable is categorical) of
the outcome along the y-axis. It should be interpreted, then, as the predicted value of the dependent
variable across the range of an independent variable, after accounting for the average effects of all
other predictors. There is no universal standard for what constitutes a “large” effect in a PDP, so
users should be careful to place the effects on the scale of the dependent variable. Another option is
to compare the size of the PDP effect to the effects estimated through the parametric model.

When to use it: Any time a scholar has a particular variable of interest—i.e., a theoretically important
variable—they should consider investigating the PDP for the relevant independent variable. This is
the first, most informative plot on the nature of the relationship between some variable of interest
and the dependent variable. As an aside, since the PDP shows an expected value while averaging
over other predictors, the plot contains only a single prediction line. For a discipline increasingly
accustomed to errors in predictions (Kastellac and Leoni, 2007), a lack of uncertainty may be un-
satisfying. However, given the non-parametric nature of machine learning models, it is not possible
(and arguably inconsistent with the approach) to specify or calculate traditional parametric tools of
inference, like standard errors or confidence
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intervals. But, since the PDP is averaging over the N predictions in Equation 2, it is possible to em-
ulate a “confidence interval” (though it should not be referred to as such) by additionally calculating
the standard deviation (or some other quantity) of the N individual predictions and plotting it, in
addition to the PDP line. While this approach does not provide the same hypothesis testing leverage
as a traditional standard error or confidence interval, it can be used to investigate other interesting
questions, such as where the PDP diverges considerably or where there is more or less heterogeneity
in the predictions.8 The more commonly accepted method of addressing this heterogeneity in the
individual predictions, though, is another plot entirely, which we discuss below.

Individual Conditional Expectation Plots
What it is: One critique of PDPs is that by only showing the average prediction across observations,
they might overlook heterogeneity in the effects. Individual Conditional Expectation (ICE) plots
(Goldstein et al., 2015) can account for this by showing individual predictions, f̂ (i)(xs), rather than
the average, as done with PDPs. The average/PDP can even be indicated in the ICE plot by overlaying
it with a distinctive color or line type. As it is common to show the actual observed xi value for each
ICE line, only a percentage of all the individual ICE curves are typically shown when there is a
high number of observations for the sake of clarity.9 Two extensions of ICE plots involve centering
all curves around a fixed point (a “c-ICE” plot) as well as taking the first derivative of the curves
(“d-ICE”); for brevity we discuss these variants in the Online Appendix.

How to interpret it: Like a PDP, the ICE plot will show the the observed range of an independent
variable along an x-axis with the predicted value/probability of the outcome along the y-axis. Recall
that it differs from the PDP by showing individual conditional expectations, so there will be multiple
lines. Each line illustrates an individual expectation. The user decides how many individual expec-
tations to show (driven largely by how many will fit). If the user is randomly sampling lines to draw,
as with any randomly generated plot, a seed should be set to ensure reproducibility.
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When to use it: Researchers should use an ICE plot if they anticipate a potential relationship to be
heterogeneous, such that the PDP obscures individual relationships. As a corollary, if the average
relationship describes the fit well, and there is no evidence of substantial individual-level hetero-
geneity, the PDP should suffice. Users can evaluate this by simply comparing the ICE plot to the
PDP plot for the same variable: if most lines in the ICE plot look similar to the average (the PDP),
the PDP would present the same information with more clarity. Last, ICE plots can be used to show
the relationship between xs and a second variable through the use of shading. Let xz be some other
predictor. If xz is categorical, f̂ (i) can be shaded by the value of xiz. If xz is continuous, shades can
be assigned according to whether xiz is on either side of some threshold—such as the median, mean,
or certain percentiles—or a shade gradient can be used, making these thresholds more continuous-
feeling.

Taken together, these three visualization tools form the core toolkit for an analyst looking to use
ML models as a robustness check of a theoretical specification. With them, the analyst can evaluate
which predictors are most important in explaining a variable as well as evaluate the nature of the
relationship between an independent variable and the dependent variable. We next illustrate how
these tools can be applied in practice through replicating two recent articles from Legislative Studies
Quarterly.

Example 1: Howard and Owens (2020)
Howard and Owens (2020) (henceforth HO) examine the conditions under which bills bypass US
Senate committee proceedings. The authors use a cross-sectional time-series of Senate “S" bills from
1985 to 2014 and find that bills introduced by ideologically extreme minority-party members of the
Senate are more likely to bypass Senate committee proceedings. HO estimate a logistic regression
model for their dichotomous bypass dependent variable, measured so that “1” represents a bill by-
passing committee and “0” represents taking a bill to committee.10 A central piece to HO’s argument
is that “institutionally weak" bill sponsors have incentives to take a more individualistic approach to
introducing a bill to the Senate floor. We were able to replicate their logistic model exactly, as shown
in Table 1.
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Table 1: Replicating Howard and Owens (2020): Predicting Bypass

Coefficient Standard Error
Polarization -0.130 (0.015)∗

Cosponsors -0.007 (0.004)∗

Bills Introduced -0.002 (0.002)
Extremity 0.004 (0.004)
Time Remaining -0.025 (0.003)∗

Sponsor Seniority 0.006 (0.005)
Duplicate Bill 0.486 (0.088)∗

Committee Chair 0.665 (0.124)∗

Floor Leader 1.318 (0.339)∗

Minority Sponsor -0.434 (0.221)∗

Up for Election 0.127 (0.050)∗

Nontrivial Bill 0.784 (0.114)∗

Party Bill 0.911 (0.247)∗

Extremity * Minority 0.007 (0.006)
Minority * Cosponsors 0.012 (0.006)∗

(Intercept) 6.076 (0.933)∗

Log Likelihood -13837.45
N 48006

Note: Dependent variable is if the bill bypassed Senate committee,
replicating Howard and Owens (2020), Table 2, Model 1. Includes fixed

effects for Congresses and policy area. Two-tailed tests. ∗ p < 0.05.

We then use a Random Forest modeling approach, expecting that the machine learning model will
replicate the authors’ main findings while additionally uncovering hidden interactions between the
authors’ primary variables of interest.11 Notice, for instance, in Table 1 that the theoretical inter-
action between minority status and member extremity needs to be explicitly parameterized in order
to be estimated (Hainmueller, Mummolo, and Xu, 2019). Notice also that other variables emerge
as conventionally statistically significant, but the original authors focus on interpreting the explicit
interactions. To help illustrate the value of machine learning models and to put the plots above into
action, we create VIP, PDP and ICE plots from the Random Forest model.

Variable Importance Plot

Figure 2 shows the VIP. This plot orders the predictors by the amount of error they reduce in the
model, thus indicating their
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Figure 2: Variable Importance Plot. HO’s Key Theoretical Variables Are Important Predic-
tors (Omitting Labels for Fixed Effects)

“importance.” The greater the value of mean decrease accuracy on the y-axis, the better the predictor
does at reducing prediction error. Recall that a value of zero on the y-axis indicates that a variable’s
predictive accuracy is no better than random noise. HO include a variety of fixed effects (for Con-
gresses, policy areas, and years): we omit their labels on the plot to help provide clarity about which
substantive predictors provide the most predictive ability. The leverage of the plot is that the VIP
provides not only a check of the theory but also encourages us to investigate the variables we were
not expecting to exert influence.
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The VIP reveals that the predictive ability of HO’s key predictors, denoted by black bars, are far
from zero and relatively better at reducing prediction error compared to other covariates in the
model. HO’s main explanatory variables fall within the top 13 most important predictors. The
ideological extremity of sponsors is the fourth most important predictor for the bypass outcome;
the mean squared error of a randomly permuted extremity variable increases by over 100 percent
relative to the actual variable. Thus, we would conclude that including the extremity variable is
important if we are trying to predict bypass outcomes. In addition, we find that the committee
chair variable is the ninth most important and minority-party member is the thirteenth. However,
we also discover interesting nuance to HO’s theoretical story, as the most important predictor is
chamber polarization (which HO discuss very little). Overall, the VIPs confirm the importance of
HO’s explanatory variables of interest, but indicate an opportunity to explore the nature of the effects
of chamber polarization (an increasingly important predictor of Senate behavior: e.g. Basinger and
Mak (2020)), which we examine in further detail below.

Partial Dependence Plot

Using the VIP plot in Figure 2 as a guide, we can investigate HO’s original theoretical variables of
interest, in particular being attentive to their relationship with polarization. The first PDP is shown
in Figure 3 and shows the predicted value that a bill will bypass a Senate committee for each value
member extremity, after accounting for the average effects of all other predictors in the model. Fig-
ure 3a displays a traditional PDP with a single line for the expected value of the dependent variable.
Figure 3b adds a shaded region, which represents the standard deviation of the N individual predic-
tions. This shaded region is not a confidence interval; however, it does indicate some heterogeneity in
the predictions, which we can further explore in an ICE plot. The PDP reveals a more nuanced pic-
ture of the positive association between ideological extremity and the likelihood to bypass committee
than the one we find in HO’s analysis. The relationship between these two variables is non-linear.
The distribution of the predicted values is convex with the lowest inflection point around 35 on the
ideological extremity scale, which ranges from 0 to 100. A positive relationship between ideological
extremity and the probability of



182

0.08

0.12

0.16

0.20

0 25 50 75 100
Extremity

P
re

di
ct

ed
 V

al
ue

(a) Traditional PDP

0.0

0.1

0.2

0.3

0 25 50 75 100
Extremity

P
re

di
ct

ed
 V

al
ue

(b) PDP, with One Standard Deviation
Shaded

Figure 3: Partial Dependence Plots: Member Extremity

bypassing committee does not occur until after this point. Once ideological extremity surpasses the
midway point (50), the predicted values steeply increase, suggesting that as sponsors become more
ideologically extreme, they become much more likely to bypass committee to introduce their bill to
the floor of the Senate. We also note that predicted value of bypassing committee increases the most
sharply after 75 on the ideological extremity scale after which point, the number of observed values
for the predictor decreases. This means that relatively few observations are explaining the highest
predictions. Taken together, the PDP suggests that both moderate and extreme members are the
most likely to have their bills bypass committee: suggesting potentially interesting nuances with
regard to (bi)partisanship.

To test the nonlinear relationship observed in Figure 3 within a parametric framework, we could
create a knot based on the inflection point observed at an ideological extremity score of 35 using a
linear spline approach. For example, if the regression coefficient for the effect of ideological extremity
on bypassing below the 35 extremity score knot were not statistically significant and the coefficient
above the 35 threshold point were statistically significant, this would suggest that ideological ex-
tremity only matters for bypassing behavior after a certain threshold level. We could recommend
that researchers use AIC and BIC tests to assess whether or not a piecewise estimator is a better fit
compared to a
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traditional linear estimator, which specifies the extremity covariate in its original form. The smaller
the AIC/BIC test statistic, the better the relative fit of the model given the data. So, if the AIC/BIC
test statistics are smaller for the piecewise regression compared to the original linear model specifi-
cation, then this provides further support for a nonlinear data generating process. The relationship
displayed in Figure 3 could also be interpreted as quadratic. We could include a quadratic term in a
traditional logistic regression by squaring the ideological extremity independent variable. Squaring
the extremity variable is a more blunt approach to capturing the nonlinear relationship between
ideological extremity and bypassing committee; however it is simpler than a linear spline approach.
If the squared variable were statistically significant, this would provide support for a nonlinear re-
lationship between ideological extremity and bypassing committee. Our larger point, though, is that
the ML model encourages us to examine more closely whether there is a potential non-linearity,
complemented by theory, that is not well captured in the parametric approach.

Yet another benefit of ML models is that they are inherently interactive as well as being inherently
non-parametric (as shown above). In the next two PDPs, we interact ideological extremity with the
two other key explanatory variables to see if and how they condition this fundamental finding. In
Figure 4a, we find

0.08

0.12

0.16

0.20

0 25 50 75 100
Extremity

P
re

di
ct

ed
 V

al
ue

Minority

Majority Member

Minority Member

(a) Conditioned by Minority Status.

0.08

0.12

0.16

0.20

0 25 50 75 100
Extremity

P
re

di
ct

ed
 V

al
ue

Committee

Committee Chair

Not Committee Chair

(b) Conditioned by Committee Chair Status.
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partial support for HO’s key interactive hypothesis that minority-party membership conditions how
ideological extremity affects likelihood to bypass. Minority sponsors that fall under the most extreme
ideologically quadrant (75-100) appear to be 0.02-0.03 more likely to bypass committee than major-
ity sponsors. Prior to this cutpoint at 75 on ideological extremity scale, majority-party members are
more likely by approximately 0.02 to bypass committee compared to minority-party members. Fig-
ure 4a not only portrays the conditional nature of relationship between ideological extremity and
minority-party membership on the outcome of interest, but it also uncovers non-linear relationships,
which cannot be uncovered in HO’s original analysis due to their logistic regression model’s para-
metric linearity assumption. In Figure 4b, we show that the nature of the relationship between
ideological extremity and bypassing committee is the same for committee and non-committee chairs
(the form of the PDP line is pretty similar for both party statuses). Ideological extremity does not
appear to be conditional on committee chairmanship, though being a committee chair does produce
a large, positive intercept shift. Observing this relationship might lead us to test further features
of the authors’ original theory: especially given recent research about the continued deference to
committee leaders, even in an era of high polarization (Curry, 2019).

We can use PDPs to investigate interactions among any two predictors without needing to specify
it formally in the model. For instance, HO treat chamber polarization as a control variable and
give it little attention in their discussion of the results, but the VIP suggests it is one of the most
important predictors. As such, we might want to explore the effects of polarization with a set of
PDPs that explore chamber polarization’s independent and conditional effects on the outcome of
interest. As shown in Figure 5, chamber polarization has a negative effect on the likelihood to bypass
committee, affirming HO’s general finding. Interestingly, the plot suggests that when the distance
between the two parties’ median members falls approximately between 60 and 67, the decline in
likelihood to bypass is the most steep. As we move along the x-axis after this range, the predicted
values for bypassing begin to level out, such that bypassing is extremely unlikely (less than 5%) after
polarization reaches 70. Figure 5 suggests that there are non-linearities in chamber polarization’s
effects, impossible to observe in the logistic regression framework but possible under the machine
learning framework.
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Figure 5: Partial Dependence Plot: Polarization

Next, we explore possible interactions between chamber polarization and HO’s three key explana-
tory variables. While Figure 6a shows that there may be some overlap in how party member status
affects likelihood to bypass for the middle range of polarization, we see that increases in chamber
polarization lead to less bypassing for both majority- and minority-party members. We find no evi-
dence of an interaction between committee chairmanship and chamber polarization in Figure 6b, but
we do see a somewhat large, positive intercept shift for committee chairs.

Finally, we illustrate a strategy for PDPs between continuous variables. Figure 6c that shows an
interaction between two
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Figure 6: Interactive Partial Dependence Plots: Polarization

continuous variables: ideological extremity and chamber polarization. This time, the area of the
plotted space is colored by the predicted value of the dependent variable, similar to a heat map, with
lighter shades representing higher predicted values.12 We find evidence of a conditional relationship
in the lower half of the plot. At lower levels of chamber polarization, bill sponsors of across the
ideological extremity spectrum become more like to bypass committee. However, as chamber polar-
ization increases, we see that only the most ideologically extreme sponsors remain likely to bypass
committee. At high levels of chamber polarization,
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bill sponsors below the 75th percentile of ideological extremity become much less likely to engage
in bypassing. This interesting nuance echoes the increasing importance of ideological members and
partisanship in a polarized Congress (e.g. Finocchiaro and Rohde, 2008).

Individual Conditional Expectation Plot

Readers might be skeptical of a single line’s ability to average over possible predictions, like the
PDP presumes. The ICE plot addresses this skepticism: it shows many of the individual conditional
expectations that the PDP is averaging over. It would be impractical to show every individual ex-
pectation, since we have many observations. This impracticality is illustrated in 7a: the space is so
dense that no single line is observable. As a remedy, we randomly sample 500 sets of predictions to
show in Figure 7b.

To explore possible heterogeneity, which might be overlooked by PDPs, we show the ICE plot for HO’s
main finding that ideological extreme sponsors are more likely to bypass legislative committees to
introduce a bill. This ICE plot is shown in Figure 7. The average of all of the lines is the thick, dark
black line which represents the PDP (as seen in Figure 7b). The thinner lines
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are the individual conditional expectations: the more divergence exists between these and the PDP,
the more evidence there is for heterogeneity.

The greatest heterogeneity is observed in the region of Extremity from 30 to 75, or members who are
moderately ideological but not extremely so. In this region, the same increase in Extremity would
have different effects on the probability of bypass, leaving the other characteristics of the model
unchanged. When considering moderately ideological members, then, there’s evidence that changes
in extremity could either increase or decrease the overall probability of bypass. We can compare this
to the original PDP in Figure 3a, where increase in extremity are assumed to uniformly increase the
probability of bypass. The ICE plot suggests the relationship is more nuanced. This suggestion is
further illustrated in 6: changes in the probability of bypass, given an increase in extremity (moving
from left to right) for moderate members (from 30 âĂŞ 50 on the x-axis) increases (moves from gray to
white) in low polarized environments (lower on the y-axis) but decreases (moves from gray to black) in
more polarized environments (higher on the y-axis). It’s for this reason that ICE plots are sometimes
said to “reveal interactions and individual differences” (Wright, 2018, p. 8).

Here, it seems like the heterogeneity is concentrated at levels of extremity under 75. There are
many observations that diverge considerably, both in functional form and in predicted probability,
suggesting that averaging over the expectations in the PDP might not be desirable. This provides
additional evidence that the linear functional form assumed by the original model masks consider-
able non-linearity.

None of this discussion is meant to critique HO’s original theory or findings. Instead, we simply
seek to illustrate that the machine learning approach suggests some interesting functional forms
that may not be well captured by the parametric model. Marrying these machine learning insights
with HO’s original theory could produce substantively interesting parametric tests of an enriched
theoretical story.

Example 2: Poyet and Raunio (2020)
For our second example, we revisit Poyet and Raunio (2020) (henceforth PR), who examine the impact
of electoral vulnerability on legislative speechmaking. Their main findings are that as
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intra-party vulnerability (“1 minus the margin between the number of votes separating the MP and
the first nonelected challenger and the total number of votes”, p. 13) increases, speeches by members
of parliament (MP) decline. Moreover, when intra-party competition is high, the less vulnerable to
an intra-party defeat an MP is, and the more speeches the MP will deliver. In contrast, they do not
find evidence for two of their other hypotheses: (1) that the higher the inter-party vulnerability (the
rank of the election within the party list), the greater number of speeches, and (2) that at high levels
of intra-party vulnerability, opposition MPs will deliver more speeches than government MPs. PR
find these results using a negative binomial regression on data from the Finnish Parliament between
1995 and 2019. The dependent variable is the number of speeches that an MP delivers over a single
term. The model is strictly replicated in Table 2.

Like in Example 1, we use a Random Forest modeling approach to replicate the findings from their
negative binomial regression and interpret it using our graphical tools. PR include an interaction
between intra-party vulnerability and party score in the district, but, like Example 1, our machine
learning approach and graphical interpretation allows us to uncover potential

Table 2: Replicating Poyet and Raunio (2020): Predicting Speeches

Coefficient Standard Error
Female -0.167 (0.043)∗

Intra-party Vulnerability -0.030 (0.283)
Inter-party Vulnerability 0.055 (0.078)
Party Score 0.086 (0.022)∗

Intra-party Vulnerability * Party Score -0.090 (0.023)∗

Group Leader -0.005 (0.091)
Party Leader 0.010 (0.105)
Committee Chair 0.071 (0.064)
Minister 0.240 (0.072)∗

Opposition Major -0.314 (0.051)∗

Size of Party 0.002 (0.003)
Seniority 0.014 (0.013)
Exposure 1.025 (0.070)∗

(Intercept) 5.438 (0.276)∗

Log Likelihood -7488.31
N 1228

Note: Dependent variable is if the number of speeches, replicating
Poyet and Raunio (2020), Table 2, Model 3, in the Supplemental Appendix.

Two-tailed tests. Includes fixed effects for terms and parties. ∗ p < 0.05.
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non-linearity and possible interactions without needing to introduce them parametrically.

Variable Importance Plot

We examine VIPs to see how prominent PR’s four key independent variables—intra-party vulnera-
bility, inter-party vulnerability, a dichotomous variable for whether the MP is in government, and
the share of votes going to an MP’s party in their district (their “party score”)—are in terms of pre-
dictive ability. As shown in Figure 8, all four variables—depicted here by black bars—are important
predictors, illustrated by their non-zero reductions in prediction error and by that the fact that their
inclusion in the model
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reduces more prediction error than many of the other predictors. In fact, the most important pre-
dictor is intra-party vulnerability. This contrasts with many of the fixed effects PR include, among
them legislative terms and party fixed effects. The VIP suggests that PR’s key variables go a long
way towards explaining differences in speechmaking activity between MPs. It also shows variables
which likely should be included in future models of speechmaking due to their relative importance
in Figure 8, among them exposure (number of days an MP spent in parliament) as well as whether
the MP is a party leader or a minister. To be clear, just because some theoretically-important predic-
tors, such as inter-party vulnerability, are in the middle in terms of relative predictive importance
does not mean they should be excluded from the model. The VIP simply indicates that particular
theoretical variable is not the most important in predicting the dependent variable.

Partial Dependence Plot

Given that all four of PR’s key theoretical variables were some of the most important predictors
in their model, we next move to Partial Dependence Plots in order to add nuance to PR’s findings.
Take for instance their finding of the negative relationship between intra-party vulnerability and
speechmaking. As shown in Figure 9, we reach a similar conclusion using a PDP. Recall that the PDP
is showing us the predicted value of the number of legislative speeches across the range of intra-party
vulnerability, averaging over the effects of all other predictors. We make an additional insight to PR’s
initial finding in that at very low levels of intra-party vulnerability (intra-party vulnerability ranges
from zero to one, with one being the most vulnerable) there appears to be no relationship (or perhaps
even a slight positive one) with speechmaking, as shown by the flat PDP line on the left side of Figure
9. We also note a peculiar spike in the number of speeches given when intra-party vulnerability is
about 0.8. To account for the seemingly null effect at low levels of intra-party vulnerability within a
parametric framework, we could create a knot at 0.35 in intra-party vulnerability to see if there is a
difference in the slopes and statistical significance below and above the 0.35 breakpoint.

While we find support for PR’s conclusions regarding intra-party vulnerability, we reach a slightly
different conclusion regarding their finding of no relationship between inter-party vulnerability
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Figure 9: Partial Dependence Plot: Intra-party Vulnerability

and speechmaking. As shown in Figure 10, there does appear to be a negative relationship when
inter-party vulnerability lies between one and two. While these effects in Figure 10 are much smaller
than those shown in Figure 9, they are still substantial; an MP with an inter-party vulnerability of
two makes about 30 less speeches than one with a vulnerability value of one. Therefore, Figure 10
suggests that there might be something different about very low or very high inter-party vulnerabil-
ity MPs (where there is no relationship with speechmaking) and middle-vulnerability MPs (where
there is a strong negative relationship), something which we cannot see using standard estimation
techniques. Additionally, we note the considerable non-linearity in the relationship between inter-
party vulnerability
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Figure 10: Partial Dependence Plot: Inter-party Vulnerability

and speechmaking. However, a parametric model would restrict this relationship to being linear
across its entire range: in essence drawing a straight line from the top-left corner of Figure 10 to
the bottom-right corner. At low levels of inter-party vulnerability, the predicted values of speeches
fluctuate between a 10-point range. After a score of 1 in inter-party vulnerability, we observe a steep
decline in the predicted values of the number speeches, which then levels off around an inter-party
vulnerability score of 1.75. These findings suggest that there may be a small interval—between
1 and 1.75 in inter-party vulnerability—when we observe large changes in the predicted values of
speeches. While we caution readers and authors not to become overly-reliant on these figures (recall
that there
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are no satisfactory measures of uncertainty when using PDPs), we could further probe this unex-
plored feature of the authors’ original theory by creating a piecewise regression by creating knots at
1 and 1.75 in the inter-party vulnerability variable. We would find support for this result within a
parametric framework if the 1-1.75 region of inter-party vulnerability were negative and statistically
significant, while the below-1 and above-1.75 regions were not statistically significant, although this
latter finding may not be surprising given the paucity of observations above 1.75.

In Figure 11 we plot an interactive PDP between party score (on the vertical axis) and intra-party
vulnerability (horizontal). This is a PDP depiction of PR’s hypothesis that intra-party
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competition and the party’s electoral district performance are conditional on one another. Our find-
ings align with with PR’s in that it is only at very high levels of intra-party vulnerability (between
0.85 and 1) that the predicted speeches decrease rapidly as party score increases. However, this effect
appears to be conditional on party score, since the prediction declines from over 300 speeches when
the party score is less than 5 to around 200 when the party score is around 10. While this effect can
be seen at other levels of intra-party vulnerability in Figure 11, the decline in speeches appears to
be far less drastic. For party score, we find that the predicted number of speeches generally decline,
regardless of party score, as the level of intra-party vulnerability declines.

Again, though, the virtue of the machine learning and visual interpretation approach is that it allows
the analyst to examine interesting non-linear functional forms without having to introduce them
specifically in the model. For instance, observe the PDP of party score in the district in Figure 12.
As a reminder, PR’s initial negative binomial regression found a positive relationship between party
score and number of speeches. The PDP, though, suggests this effect might actually be quadratic.
When the party score in the district is very low, speechmaking is actually the highest. Then there is a
steep decline in speechmaking through the first quartile of party score. At that point, speechmaking
begins to rise as party score rises. The machine learning approach allows for us to uncover the
initial non-linearities, which we can then test in a more traditional, parametric framework with the
inclusion of an interaction term of party score squared with intra-party vulnerability or a linear
spline that creates a breakpoint at a party score of 10. Either approach would allow for the formal
test of a non-linear hypothesis.

Individual Conditional Expectation Plot

Finally, we illustrate how an ICE plot can be used to verify the averaged relationships observed in
the PDP. For instance, if we didn’t have a theoretical reason to expect a quadratic relationship as
observed in Figure 12, we could check whether the PDP was averaging over individual observations
faithfully to the underlying data. Accordingly, we show the ICE plot for party score in Figure 13.
Since there are much fewer observations in Example 2,
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Figure 12: Partial Dependence Plot: Party Score

relative to Example 1, we plot the full set of individual conditional expectations.

Figure 13 shows us similar results to the PDP in Figure 12. Where the individual relationships are
the most dense, we can see a distribution of predicted values that follow that single prediction line
in the PDP. There is steep decline in the predicted value of number of speeches that occurs until
a party score of 10. From a party score of 0 to 10, the densest predictions in Figure 13 fall from
approximately 250-300 to 125-200. The greatest amount of heterogeneity—where the individuals
lines are less concentrated and similar—occurs on left half of the x-axis, specifically to the left of
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Figure 13: ICE Plot: Party Score.

a party score of 20. Notice too that some of the individual expectations are predicted to be at 700 at
low levels of party score, which might drive the averaged PDP much higher in this range. Overall,
the pattern looks similar to the PDP, but the individual relationships indicate some heterogeneity
around the averaged value in the initial range of party score, where the observed effect is the largest.

Conclusion
While ML models are complicated, they are an accessible tool for verifying the robustness of tradi-
tional, parametric models, as
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demonstrated by their common use in other disciplines. We believe that machine learning models
remain a major untapped resource for legislative scholars in particular whose theories often bear
the non-linear characteristics that would benefit from more flexible models. We push back against
the expectation that machine learning models are too “black-box” to be of any use by showing how
researchers can use a suite of plots—among them VIP, PDP and ICE plots—to uncover important
covariates and nuanced, potentially non-linear relationships in their data.13 Using examples from
existing legislative research, we provide a template for how scholars can use tree-based models and
plots to improve the cogency and robustness of their work.14

Our primary advice to political scientists and other interested scholars is to use the machine learning
visualization techniques discussed in this study as a robustness check for the findings derived from
theoretically-driven parametric models, which constitute the bulk of traditional, statistical inference.
While parametric models are relatively simple to interpret for a wide audience, they are constrained
in their ability to infer nuanced, non-linear, and even hidden relationships in the data. Users can
compare their parametric models—which are highly interpretable yet subject to substantial model
assumptions—with their machine learning model to check that the former is properly specified. Us-
ing VIPs, users can observe the extent to which their most theoretically interesting variables are
the best at reducing prediction error. PDP and ICE plots provide visual insight into the black box
of machine learning, providing clear and nuanced depictions of the relationships in the data under
analysis. From these visualizations, users can adjust their initial parametric tests to more closely
account for nonlinearities and interactions with covariates such as cubic terms or linear splines. Af-
ter estimating these updated parametric models, researchers can derive measures of uncertainty for
these nonlinear functional forms.15 Or, if the machine learning approach suggests many predictors
are important, and a parametric model would be a poor fit, users might consider switching entirely
to a machine learning approach that can handle many predictors. In sum, tree-based models, along
with VIP, PDP, and ICE plots, allow for a more flexible assessment of the relationships under exam-
ination. These tools reveal important insights into potentially uncovered findings.
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Notes
1For instance, no coefficients are estimated nor are hypothesis tests conducted, unlike traditional paramet-

ric models like regression. For more on this, see the Online Appendix.
2The number of trees, stopping criterion, and number of subset predictors to choose at each node are “hyper-

parameters” typically chosen through cross-validation in order to avoid any subjective user-specific decisions.
The use and optimization of hyperparameters is also detailed in the Online Appendix.

3As we note elsewhere, if a predictor of theoretical interest has relatively low predictive importance, re-
searchers should not “throw away" their theory, but rather reconsider and possibly revise their theory.

4We describe VIPs for Random Forest models, although similar importance measures exist for other types
of tree-based ensemble models, such as Gradient Boosting Machines.

5This measure is often scaled by the standard deviation of these differences.
6As an alternative, users might choose to show the average total decrease in node impurities (using the

residual sum of squares for a continuous dependent variable or the Gini index for categorical) after splitting,
whereby variables can be considered important if, when they are used at a node split, they do a good job in
partitioning the data into correctly classified groups (categorical dependent variable) or improve predictive
accuracy (continuous dependent variable) (Hastie, Tibshirani, and Friedman, 2013).

7Users should only include theoretically relevant variables in their VIP to begin with in order to avoid data
mining. The benefit of a VIP is that users are not restricted in their selection of the number of theoretically
interesting covariates.

8There is no consensus on whether emulating “confidence intervals” in this way is desirable; we elaborate
on this point in the Online Appendix.

9Moreover, it is common to distinguish the actual observed value of xs for each individual i, typically by
using a dot or some other marker.

10The authors also model the method by which the bill bypasses committee proceedings (unanimious consent
versus the Rule XIV procedure) with a multinomial logistic regression, but we focus on the binary bypass
indicator.

11We include HO’s Congress and policy area fixed effects as a series of dummy variables: the solution the
most closely emulates the authors’ original modeling choice. However, fixed effects in machine learning models
might take other forms: for a full discussion, see the Online Appendix.

12The bottom right of the plot is not predicted as it is not observed: there are no observations with extreme
members but low polarization, so the model is unable to classify these cases.

13Of course, there are other additional graphical strategies one might consider that we did not cover here,
such as local interpretable model-agnostic explanations (LIME) (Molnar, 2020).

14In the Online Appendix, we step through model estimation in exacting detail.
15For an example of how to implement this parametric-machine learning-parametric estimation process, see

(Funk, Paul, and Philips, 2020).
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