

**Research Articles** 

Nitrate Reduction

How to cite: International Edition: German Edition:

: doi.org/10.1002/anie.202214830 doi.org/10.1002/ange.202214830

Angewandte

Chemie www.angewandte.org

# Single-entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of $Cu_2O$ and $Co_3O_4$ for Converting $NO_3^-$ to $NH_3$

Jian Zhang, Wenhui He, Thomas Quast, João R. C. Junqueira, Sascha Saddeler, Stephan Schulz, and Wolfgang Schuhmann\*

Abstract: Electrochemically converting nitrate to ammonia is an essential and sustainable approach to restoring the globally perturbed nitrogen cycle. The rational design of catalysts for the nitrate reduction reaction (NO<sub>3</sub>RR) based on a detailed understanding of the reaction mechanism is of high significance. We report a  $Cu_2O + Co_3O_4$  tandem catalyst which enhances the NH<sub>3</sub> production rate by  $\approx 2.7$ -fold compared to Co<sub>3</sub>O<sub>4</sub> and  $\approx$ 7.5-fold compared with Cu<sub>2</sub>O, respectively, however, most importantly, we precisely place single Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub> cube-shaped nanoparticles individually and together on carbon nanoelectrodes provide insight into the mechanism of the tandem catalysis. The structural and phase evolution of the individual  $Cu_2O + Co_3O_4$ nanocubes during NO3RR is unveiled using identical location transmission electron microscopy. Combining single-entity electrochemistry with precise nano-placement sheds light on the dynamic transformation of single catalyst particles during tandem catalysis in a direct way.

#### Introduction

Ammonia (NH<sub>3</sub>) is an essential raw material in fertilizers, the chemical industry, and emerging energy conversion processes.<sup>[1]</sup> Presently, the production of NH<sub>3</sub> relies on the energy-intensive Haber-Bosch process, which is a gas-phase reaction between H<sub>2</sub> and N<sub>2</sub> under high temperature and

[\*] J. Zhang, Dr. W. He, Dr. T. Quast, Dr. J. R. C. Junqueira, Dr. S. Saddeler, Prof. Dr. W. Schuhmann Analytical Chemistry—Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry, Ruhr University Bochum Universitätsstr. 150, 44780 Bochum (Germany) E-mail: wolfgang.schuhmann@rub.de

Dr. S. Saddeler, Prof. Dr. S. Schulz Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen Universitätsstr. 7, 45141 Essen (Germany)

◎ 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made. pressure.<sup>[2]</sup> Alternatively, the electrochemical N<sub>2</sub> reduction reaction (NRR) driven by renewable energy is increasingly discussed as a more sustainable route for NH<sub>3</sub> production at room temperature.<sup>[3]</sup> However, the NRR has suffered an ultra-low yield rate for NH<sub>3</sub> caused by the high dissociation energy of the inherent stable N $\equiv$ N triple bond (941 kJmol<sup>-1</sup>),<sup>[4]</sup> which until now, prevents its practical application.<sup>[5]</sup> In stark contrast to the NRR, the nitrate (NO<sub>3</sub><sup>-</sup>) reduction reaction (NO<sub>3</sub>RR) stands out as a promising route due to the relatively lower energy for dissociating N=O double bond (204 kJmol<sup>-1</sup>),<sup>[6]</sup> allowing much faster reaction kinetics for NH<sub>3</sub> production.<sup>[7]</sup> NO<sub>3</sub><sup>-</sup> is widely available in industrial wastewater and groundwater, and hence the NO<sub>3</sub>RR can also address environmental pollution problems simultaneously.<sup>[8]</sup>

Developing a high-performance NO<sub>3</sub>RR catalyst based on a rational catalyst design strategy is the prerequisite to achieving highly efficient NO<sub>3</sub><sup>-</sup> to NH<sub>3</sub> conversion.<sup>[9]</sup> "Tandem catalysis" has been successfully reported for complex multi-electron transfer reactions, e.g. the CO<sub>2</sub> reduction reaction, in which the synergistic action of multiple components of a catalyst can break down the sequential reaction steps to optimized active sites catalyzing each step.<sup>[10]</sup> \*NO<sub>2</sub> (\* denotes a surface-adsorbed species) and the related intermediates are critical for the eight-electrons transfer during the NO<sub>3</sub>RR, and hence a tandem strategy can facilitate the NO<sub>3</sub><sup>-</sup> to NH<sub>3</sub> conversion.<sup>[11]</sup> Very recently, we have proposed a Co- and Cu-based tandem catalysts for the NO<sub>3</sub>RR, in which the NO<sub>3</sub><sup>-</sup> to NH<sub>3</sub> conversion can be divided into an initial NO<sub>3</sub><sup>-</sup> reduction step under formation of  $NO_2^-$  catalyzed by a Cu phases followed by the  $NO_2^-$  to NH<sub>3</sub> conversion performed by the Co phases.<sup>[12]</sup> However, although our previous report provides experimental evidence for the tandem catalysis of NO3RR via in situ scanning electrochemical microscopy (SECM), due to the complexity of the multi-metal active phases derived from metal-organic frameworks (MOF) at the nanoscale, the tandem effect of the two catalysts and especially structural re-modelling and interfacial effects due to possible alloying during the reaction need to be further elucidated.<sup>[13]</sup> More importantly, gaining knowledge about the dynamic evolution of different metal phases during tandem reactions is highly challenging and until now impossible to be directly visualized, which is vital for a deep understanding of tandem catalysis for NO<sub>3</sub>RR. In recent years, the development of single entity electrochemistry (SEE)<sup>[14]</sup> and especially the single-particle-on-the-nanoelectrode technique<sup>[15–18]</sup> provided direct insight into the intrinsic activity of a given electrocatalyst as well as structural evolution at the nanoscale accessible when combined with identical location TEM.<sup>[19]</sup> Hence, we consider SEE suitable to unveil the tandem effect between two catalysts during NO<sub>3</sub>RR.

In this work, we report  $Cu_2O + Co_3O_4$  tandem  $NO_3RR$  catalysts obtained by physically mixing of  $Cu_2O$  and  $Co_3O_4$  nanocubes. The  $Cu_2O + Co_3O_4$  catalyst shows a superior 85.4 % Faradaic efficiency of  $NH_3$  formation ( $FE_{NH_3}$ ) and a high  $NH_3$  yield rate ( $Y_{NH_3}$ ) of 12.76 mgh<sup>-1</sup>cm<sup>-2</sup> at -0.3 V vs RHE which exceeds that of  $Co_3O_4$  by  $\approx 2.7$ -fold and that of  $Cu_2O$  by  $\approx 7.5$ -fold, respectively. To provide direct microscopic evidence for tandem catalysis of  $Cu_2O + Co_3O_4$  at the nanoscale and the interactions between the  $Cu_2O$  and  $Co_3O_4$  nanocubes, we established a carbon nanoelectrode (CNE) platform, which enables us to precisely control the relative locations of single similarly sized  $Cu_2O$  and  $Co_3O_4$  nanocubes by means of a micromanipulator arm inside a scanning

electron microscope (SEM). We confirmed the sequential tandem catalysis of single  $Cu_2O$  and  $Co_3O_4$  particles on a nanoelectrode and monitored the structural and phase evolution caused by tandem catalysis during the reaction.

#### **Results and Discussion**

#### Performance of Electrochemical Nitrate Conversion

First, the tandem catalyst was prepared by physical mixing of Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub> nanocubes on a carbon paper, in the following named Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub>. We deliberately decided to use cubes which are exposing the (1 0 0) lattice to avoid contributions from different lattice orientations and hence different catalytic activity to the overall response. SEM images and energy dispersive X-ray (EDX) mapping (Figure 1a) show randomly distributed Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub> nanocubes on the carbon surface. The size of both Cu<sub>2</sub>O and



**Figure 1.** a) SEM image of  $Cu_2O + Co_3O_4$  on a carbon paper electrode and corresponding EDX elemental mapping. b) Linear sweep voltammograms (LSV) at a scan rate 5 mV s<sup>-1</sup> in 0.1 mol L<sup>-1</sup> NO<sub>3</sub><sup>-</sup> and 0.1 mol L<sup>-1</sup> NaOH. c) Faradaic efficiencies and d) yield rate for NH<sub>3</sub> on  $Cu_2O$ ,  $Co_3O_4$ , and  $Cu_2O + Co_3O_4$ . Error bars denote the standard deviations from at least three independent measurements. e) Yield rate, FE and selectivity comparisons of  $Cu_2O$ ,  $Co_3O_4$  and  $Cu_2O + Co_3O_4$  at -0.3 V (vs RHE). Error bars denote the standard deviations from at least three independent measurements. f) Chronoamperometric stability test at -0.3 V (vs RHE) and corresponding NH<sub>3</sub> FEs as well as yield rate of  $Cu_2O + Co_3O_4$ .

Angew. Chem. Int. Ed. 2023, e202214830 (2 of 8)

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 $Co_3O_4$  nanocubes are predominantly in the range of 200– 300 nm (Figure S1). EDX confirms the presence of Cu, Co, O and C, with an atomic ratio of Cu to Co of 2.8:1, as determined by inductively coupled plasma mass spectrometry (ICP-MS; Figure S2 and inset of Figure S2). Raman spectra were recorded to gain insight into the phase constitution of the Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> electrode showing a series of intense Raman peaks at 216, 415, 485, 523, 525, 621, 629 and 693 cm<sup>-1</sup>, which can be ascribed to the characteristic vibrational modes of Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub> (Figure S3).<sup>[20-22]</sup>

The NO<sub>3</sub>RR catalytic activity was assessed by linear sweep voltammetry (LSV) in 0.1 mol L<sup>-1</sup> NaOH containing  $0.1 \text{ mol } L^{-1} \text{ NO}_3^{-1}$ . The NO<sub>3</sub>RR activity of Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> electrode can be initially determined by the pronounced increased current density in the presence of NO<sub>3</sub><sup>-</sup> compared to bare carbon paper and the less cathodic overpotential as in the absence of  $NO_3^-$  (Figure S4). Plots in Figure 1b show that the mixed  $Cu_2O + Co_3O_4$  electrode has a much higher current density (normalized by geometric area) than the only Cu<sub>2</sub>O or Co<sub>3</sub>O<sub>4</sub> modified electrodes, indicating its increased NO<sub>3</sub>RR activity. To compare the catalytic activity more precisely, the double-layer capacitance  $(C_{dl})$  as a measure for the electrochemically active surface area (ECSA) was determined and used to normalize the current density (Figure S5). Even after normalization by the  $C_{dl}$ (Figure S6), the mixed  $Cu_2O + Co_3O_4$  modified electrode exhibited the highest activity. Comparing the required potentials of the electrodes to reach a current density of  $20 \text{ mA cm}^{-2}$  (kinetic area with negligible impact of mass transfer) normalized by geometric area (Figure S7), we find that the mixed  $Cu_2O + Co_3O_4$  catalyst needs an overpotential of 40 mV which is 122 and 209 mV more positive than that of the Cu<sub>2</sub>O or the Co<sub>3</sub>O<sub>4</sub> modified electrodes, respectively. Furthermore, the overpotentials normalized by the  $C_{dl}$ follow a similar trend, indicating that Cu<sub>2</sub>O+Co<sub>3</sub>O<sub>4</sub> exhibits a favourable reaction kinetics towards the NO<sub>3</sub>RR.

The Faradaic efficiencies for the products (NH<sub>3</sub> and  $NO_2^{-}$ ) of the three electrodes show a significant difference (Figures S8-S11). Cu<sub>2</sub>O alone exhibits only 18.8 % FE for NH<sub>3</sub>, and Co<sub>3</sub>O<sub>4</sub> does not produce any NH<sub>3</sub> at -0.1 V. In stark contrast to the single materials,  $Cu_2O + Co_3O_4$  shows a relatively higher  $FE_{NH_3}$  of 65.1 % (Figure 1c), which cannot be explained simply through the individual contributions of Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub>. Explicitly, Cu<sub>2</sub>O exhibits a very high inherent selectivity towards the formation of NO<sub>2</sub><sup>-</sup> at -0.1 V. This is also consistent with results of Cu-based  $NO_3RR$  catalysts, which desorb  $*NO_2^-$  on the Cu surface much easier to form stable NO<sub>2</sub><sup>-</sup> thus preventing further reduction to  $NH_3$ .<sup>[23]</sup>  $Cu_2O + Co_3O_4$  shows a higher selectivity of 81.2 % for NH<sub>3</sub> over NO<sub>2</sub><sup>-</sup> at -0.1 V compared to 29.5 % selectivity of Cu2O (Figure S12), suggesting a suppressed NO2<sup>-</sup> but simultaneously boosted NH3 selectivity on the  $Cu_2O + Co_3O_4$  surface. These results perfectly correspond to the characteristics of tandem catalysis, in which NO2-, generated from Cu<sub>2</sub>O as the primary product, is transferred to the nearby Co<sub>3</sub>O<sub>4</sub> surface for subsequent conversion of  $NO_2^-$  to  $NH_3$ . At more negative applied potentials, the  $Cu_2O + Co_3O_4$  exhibits a high NH<sub>3</sub> selectivity suppressing the  $NO_2^-$  selectivity by tandem catalysis hence showing a maximum FE of 85.4 % for  $NH_3$  at -0.3 V.

The  $NH_3$  yield rate  $(Y_{NH_3})$  of all three catalysts is presented in Figure 1d. The three electrodes show a linearly increasing  $Y_{NH_3}$  with increasing applied negative potentials, and the  $Cu_2O + Co_3O_4$  electrode stands out due to the much higher  $Y_{NH_3}$  of 3.23, 8.03, 12.76, and 14.72 mg h<sup>-1</sup> cm<sup>-2</sup> at -0.1, -0.2, -0.3 and -0.4 V (vs RHE), respectively. The Y  $_{\rm NH_3}, FE_{\rm NH_3}$  as well as the selectivity of the three catalysts at a potential of -0.3 V are shown in Figure 1e. The comparison of the  $Y_{NH_3}$  shows a volcano shape, and the  $Y_{NH_3}$  of  $Cu_2O +$  $Co_3O_4$  is  $\approx\!2.7\text{-fold}$  that of  $Co_3O_4$  and  $\approx\!7.5\text{-fold}$  that of  $Cu_2O$ , respectively. The high  $Y_{NH_3}$  together with the FE and selectivity toward NH3 of Cu2O+Co3O4 shows its superior performance, which is superior with respect to most recently reported NO<sub>3</sub>RR catalysts (Table S1). Furthermore, the durability of  $Cu_2O + Co_3O_4$  was investigated by chronoamperometry at a potential of -0.3 V, and the FE<sub>NH<sub>3</sub></sub>, as well as  $Y_{\rm NH_3}$ , were analyzed by collecting the post-electrolysis electrolyte after each 2 h. In Figure 1f, the i-t curve shows a relatively stable trend after replacing with new electrolyte solution each 2 h, and the  $FE_{NH_3}$  as well as the  $Y_{NH_3}$  in each cycle only fluctuate negligibly indicating high NO3RR stability.

To determine the origin of the detected NH<sub>3</sub> and to confirm the determined  $Y_{\rm NH_3}$ , <sup>1</sup>H NMR spectroscopy was applied to investigate the NH<sub>3</sub> formation on Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> in more detail (Figure S13).<sup>[24]</sup> <sup>1</sup>H NMR spectra show two typical peaks of <sup>15</sup>NH<sub>4</sub><sup>+</sup> after being electrolyzed in 0.1 mol L<sup>-1</sup> NaOH containing 0.1 mol L<sup>-1</sup> <sup>15</sup>NO<sub>3</sub><sup>-</sup>, confirming that the formed NH<sub>3</sub> originated from the reduction of NO<sub>3</sub><sup>-</sup> (Figure S13c). The amount of <sup>14</sup>NH<sub>4</sub><sup>+</sup> quantified by <sup>1</sup>H NMR is close to that determined by UV–Vis spectrophotometry, confirming the reliability of the results (Figure S13d).

A detailed understanding of the intrinsic activity and structure evolution of  $Cu_2O + Co_3O_4$  is required to unveil the reaction mechanism which is the basis for the observed superior NO<sub>3</sub>RR performance. Deriving the intrinsic activity of a nanosized catalyst material is challenging from the results of macroelectrode experiments due to mass transfer limitations (planar diffusion), local pH changes caused by proton-coupled electron-transfer reactions, and film effects such as the conductivity of the catalyst particle film, the presence of binder materials etc. (Figure 2a).<sup>[18,25]</sup> Catalyst particles scratched off from a macroelectrode after an electrochemical experiment are not necessarily representative for the evolution of the structural morphology. Hence, to directly establish structure-activity relationships and elucidate the tandem electrocatalysis of individual Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub> nanocubes alone but also their synergistic reaction, single-entity electrochemistry combined with identical location transmission electron microscopy was established.

We built on a previously suggested single-nanoparticleon-a-nanoelectrode technique and first placed a single  $Cu_2O$ nanocube on the tip of a carbon nanoelectrode (CNE) was used to demonstrate the feasibility of the single-entity electrochemistry approach for the NO<sub>3</sub>RR. CNEs with a flat disk surface were fabricated by focus ion beam (FIB) milling (Figure S14) according to an earlier reported strategy,<sup>[26]</sup>



## **Research Articles**



*Figure 2.* a) Schematic diagram of the macroelectrode electrochemistry and the process for fabrica-ting single nanoparticle electrochemistry. b)– d) TEM images of the three pristine single Cu<sub>2</sub>O nanocubes on nanoelectrodes. (e and f) 1<sup>st</sup> CV and 5<sup>th</sup> CV of single Cu<sub>2</sub>O nanocubes in 0.1 mol L<sup>-1</sup> NaOH containing either 0.1 mol L<sup>-1</sup> NO<sub>3</sub><sup>-</sup> or 0.1 mol L<sup>-1</sup> NO<sub>2</sub><sup>-</sup> and pure 0.1 mol L<sup>-1</sup> NaOH with a scan rate of 50 mV s<sup>-1</sup>. g)–i) STEM images of a Cu<sub>2</sub>O nanocube before (g), after the 1<sup>st</sup> CV cycle (h), and after the 5<sup>th</sup> CV cycles (i) in 0.1 mol L<sup>-1</sup> NaOH containing 0.1 mol L<sup>-1</sup> NO<sub>3</sub><sup>-</sup> at a scan rate of 50 mV s<sup>-1</sup>. j)–l) EDX elemental mapping of a Cu<sub>2</sub>O nanocube before (j), after the 1<sup>st</sup> CV cycle (k), and after the 5<sup>th</sup> CV cycles (l) in 0.1 mol L<sup>-1</sup> NaOH containing 0.1 mol L<sup>-1</sup> NO<sub>3</sub><sup>-</sup> at a scan rate of 50 mV s<sup>-1</sup>.

Angew. Chem. Int. Ed. 2023, e202214830 (4 of 8)

 $\textcircled{\sc c}$  2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

followed by surface functionalization by diamine grafting to enhance the connection between CNE surface and the single particle. As illustrated in Figure 2a and Figure S15, a single well-defined Cu<sub>2</sub>O nanocube was then selected, picked up, and precisely placed onto the tip of a CNE with a robotic micromanipulator system inside the SEM chamber. TEM images (Figure 2b–d) and EDX mapping (Figure S16) show three single Cu<sub>2</sub>O nanocubes on CNE assemblies (Cu<sub>2</sub>O\_ CNE) with the nanocubes firmly attached to the CNEs.

The NO<sub>3</sub>RR activity of single Cu<sub>2</sub>O\_CNE assemblies was investigated by CV under the same conditions as used for the macroelectrode experiments. Notably, all CVs for single particles on CNEs are limited to 5 cycles due to the much faster reaction and speed of structure evolution compared to that on macroelectrodes.<sup>[15-17]</sup> Figures 2e and f show the significantly increased current and lower overpotentials in electrolyte containing NO<sub>3</sub><sup>-</sup> or NO<sub>2</sub><sup>-</sup>, indicating that the electrocatalytic activity is due to NO<sub>x</sub><sup>-</sup> reduction. Moreover, a deactivation process was observed in both NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> containing electrolytes with an increasing number of CV cycles (Figure S17),<sup>[27]</sup> indicating a change in the surface activity of Cu-based NO<sub>x</sub>RR electrocatalysts.

The Cu<sub>2</sub>O\_CNE nano-assemblies were investigated using identical location TEM to visualize the structural evolution of a single nanocube after different numbers of CV cycles in the electrolyte containing  $NO_3^{-}$ . The cubic structure was preserved (Figures 2g and h) after the 1<sup>st</sup> CV, but Cu started to leach out from the edge of the cube after the 1st CV cycle, as confirmed by the diminished Cu distribution in the EDX mapping (Figures 2j and k). EDX line scans before and after the 1st CV show a decreased content of O, suggesting the reduction of Cu<sub>2</sub>O to metallic Cu (Figure S18). After the 5th CV cycle, Cu leaching becomes more pronounced, but the basic cubic structure is still maintained (Figures 2i and 1). Cu<sub>2</sub>O nanocubes show a similar structure evolution if investigated in an electrolyte containing  $NO_2^-$  or in the absence of any  $NO_r^-$  species (Figures S19 and S20).

This is supposedly due to the concomitant hydrogen evolution reaction at more negative potentials.<sup>[27]</sup> This hypothesis is supported by the improved structure stability before and after 5 CV cycles when the potential scan is limited to more positive potentials of less than -0.4 V (Figures S21 and S22). To provide direct visual evidence for the dynamic transformation of  $Cu_2O + Co_3O_4$  during tandem catalysis, a  $Cu_2O + Co_3O_4$  single particle arrangement with precise nano-placement of a single Cu<sub>2</sub>O and a single Co<sub>3</sub>O<sub>4</sub> nanocube was intended. Figure 3a illustrates how we fabricate a single-entity assembly with a single Cu<sub>2</sub>O and a single Co<sub>3</sub>O<sub>4</sub> cube placed together on one CNE to form a defined  $Cu_2O + Co_3O_4$  tandem catalyst. Firstly, a single Cu<sub>2</sub>O nanocube was placed on a specific location of the CNE using the micromanipulator arm inside the SEM. Subsequently, the micromanipulator arm picked up the Co<sub>3</sub>O<sub>4</sub> nanocube and placed it next to the Cu<sub>2</sub>O nanocube on the same CNE (Figures S23 and S24). Before placing the Co<sub>3</sub>O<sub>4</sub> nanocube, the moving speed of the micromanipulator was adjusted to fine mode, and the previously placed Cu<sub>2</sub>O was used as reference for placing the Co<sub>3</sub>O<sub>4</sub> nanocube accurately at the envisaged position on the CNE surface. Both cubes were carefully selected under SEM control before their placement on the CNE. The two particles nanoassemblies were then characterized by TEM, STEM, and corresponding EDX elemental line scans (Figure 3b–d). Three different relative placements of the two nanocubes were obtained, namely a CNE modified with two cubes next to each other ( $Cu_2O + Co_3O_4$ \_CNE-1), two partially overlapping cubes ( $Cu_2O + Co_3O_4$ \_CNE-2) and two spatially separated cubes ( $Cu_2O + Co_3O_4$ \_CNE-3).

The electrochemical activity of the  $Cu_2O + Co_3O_4$  nanoelectrode assemblies was investigated in the presence of  $NO_3^-$  and a single  $Co_3O_4$  particle alone was also compared as control (Figure S25). The  $Cu_2O + Co_3O_4$ \_CNE nanoassemblies exhibited substantially different catalytic activities compared to a single  $Cu_2O$  nanocube. The ratio of the change of reduction current at 0.35 V was compared to the 1st CV (Figure 3e), as a descriptor of the  $NO_3RR$  activity change trend of different single-particle nano-assemblies with increasing CV cycles.

In stark contrast to the single Cu<sub>2</sub>O or Co<sub>3</sub>O<sub>4</sub> cubes alone, Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub>\_CNE-1 and Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub>\_CNE-2 show a substantially increased NO<sub>3</sub>RR current with the number of the CV cycles, indicating a continuously growing activity of Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> for the NO<sub>3</sub>RR. This result can be well explained by assuming tandem catalysis in the case of Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub>, in which the NO<sub>3</sub>RR on Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> can be divided into two sequential steps of the reduction of NO<sub>3</sub><sup>-</sup> to NO<sub>2</sub><sup>-</sup> on Cu<sub>2</sub>O followed by the conversion of NO<sub>2</sub><sup>-</sup> to NH<sub>3</sub> at the close-by located Co<sub>3</sub>O<sub>4</sub> particle.

EDX mapping (Figures 3f and g) shows that both particles still existed on the CNE with a relatively independent form after 5 CV cycles, which excludes the possibility of alloying between the two particles during the reaction.  $Cu_2O + Co_3O_4$ CNE-3 (two particles placed with a gap of around 100 nm) exhibits a similar activation process in the first 3 cycles in Figure 3e, suggesting that the tandem catalysis also works with two separated particles suggesting that the primarily produced  $NO_2^-$  can transfer to the nearby  $Co_3O_4$  to finish the subsequent conversion of NO<sub>2</sub><sup>-</sup> to NH<sub>3</sub>, and simultaneously excludes any possibility of interfacial effects for improving NO<sub>3</sub>RR activity. Then the reduction current decreased in the last two CVs, which is similar to the changes for the single particles alone. This result, together with the finding that all Cu was dissolved after 5 CV cycles (Figure 3h) further support the proposed tandem catalysis mechanism.

Cu<sub>2</sub>O in Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> nanoelectrode assemblies shows a drastic morphology change compared to a single Cu<sub>2</sub>O nanoelectrode assembly (Figures S26 and S27). At the same experimental conditions, the cubic structure of Cu<sub>2</sub>O completely collapsed due to the massive leaching of Cu after 5 CV cycles in Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> nanoelectrode assemblies. This result can be well explained based on our previous study about tandem catalysis system, which high oxidative and corrosive nitrogen dioxide (NO<sub>2</sub>) is produced at the Cubased phase during NO<sub>3</sub>RR tandem catalysis (NO<sub>3</sub><sup>-</sup> to NO<sub>2</sub><sup>-</sup>),<sup>[12]</sup> which greatly accelerates Cu leaching. On the other side, Co<sub>3</sub>O<sub>4</sub> in Cu<sub>2</sub>O + Co<sub>3</sub>O<sub>4</sub> nanoelectrode assemblies maintained the cubic structure after 5 CV cycles similar to

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

GDCh

## **Research Articles**

Angewandte



*Figure 3.* a) Schematic diagram of the fabrication process of two particles nanoelectrode assemblies. b)–d) TEM, STEM images, and corresponding EDX line scans of  $Cu_2O + Co_3O_4$ \_CNE-1 (b),  $Cu_2O + Co_3O_4$ \_CNE-2 (c),  $Cu_2O + Co_3O_4$ \_CNE-3 (d). e) Plots showing the change in the ratio of the reduction current of  $Cu_2O$ ,  $Co_3O_4$ ,  $Cu_2O + Co_3O_4$ \_Ananoelectrode assemblies at -0.35 V (vs. RHE) compared to the 1<sup>st</sup> CV. f)–h) EDX mapping of  $Cu_2O + Co_3O_4$ \_CNE-1 (f),  $Cu_2O + Co_3O_4$ \_CNE-2 (g),  $Cu_2O + Co_3O_4$ \_CNE-3 (h) before (top) and after 5 CV cycles (bottom).

the single  $Co_3O_4$  nanoelectrode assembly (Figure S28). This can be ascribed to the fact that  $Co_3O_4$  mainly converts  $NO_2^$ to  $NH_3$  during tandem catalysis avoiding the formation of  $NO_2$ . The structure evolution of  $Cu_2O + Co_3O_4$  on the carbon nanoelectrode during  $NO_3RR$  corresponds well to results from macroelectrodes. The cubic structure of  $Cu_2O$ was completely disintegrated after ten hours of chronoamperometric electrolysis, while the cubic structure of  $Co_3O_4$ was well preserved (Figure S29). Post-electrocatalysis EDX line scans show that the  $Cu_2O$  in  $Cu_2O + Co_3O_4$ \_CNE-1 and  $Cu_2O + Co_3O_4$ \_CNE-2 kept the high O content due to the high oxidative  $NO_2$  (Figures S30 and 31), which is in stark contrast to single Cu<sub>2</sub>O (Figure S18).  $Co_3O_4$  in Cu<sub>2</sub>O +  $Co_3O_4$  nanoelectrode assemblies shows a decreased O content, indicating the conversion of  $Co_3O_4$  to lower oxidation states during the reaction (Figures S32 and S33).

To further confirm that the structural evolution in  $Cu_2O + Co_3O_4$  is caused by tandem catalysis, a single  $Cu_2O$  particle was placed on the top of a single  $Co_3O_4$  particle with only the  $Co_3O_4$  particle in contact to the CNE surface denoted as  $Cu_2O + Co_3O_4$ \_CNE-4 (Figure S34), in which electron transfer from the CNE to  $Cu_2O$  is limited by the relatively poor conductivity of  $Co_3O_4$ .<sup>[28]</sup> We expect that in this configuration tandem catalysis is largely suppressed and

the  $Cu_2O$  particle should not experience a drastic morphology change. The preservation of the cubic structure of  $Cu_2O$  after 5 CV cycles is shown in Figure S35.

In situ Raman spectroelectrochemistry under variation of the applied potentials in the presence of  $0.1 \text{ mol } \text{L}^{-1} \text{ NO}_3^{-1}$ provides real-time insight into the phase evolution of the catalysts. All in situ Raman measurements were conducted in 0.01 mol L<sup>-1</sup> NaOH for protecting the water immersion objective, and 0.045 mol L<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub> was added to keep the ionic strength and the concentration of Na<sup>+</sup> identical to a 0.1 mol L<sup>-1</sup> NaOH solution. The Raman spectra of Cu<sub>2</sub>O (Figure 4a) during the NO<sub>3</sub>RR shows two bands at 982 and 1050 cm<sup>-1</sup>, which are ascribed to the characteristic vibration modes of  $SO_4^{2-}$  and  $NO_3^{-}$ .<sup>[22,29]</sup> Notably, the peaks at 716 and  $817 \text{ cm}^{-1}$  are from the carbon paper (Figure S36). The initially sharp Raman bands of Cu2O at 218, 415, 523 as well as 628 cm<sup>-1</sup> start to weaken with increasing negative potentials, suggesting the reduction of Cu<sub>2</sub>O to metallic Cu, which is consistent with the phase conversion observed in the single  $Cu_2O$  CNE assembly (Figure S18). The characteristic  $Co_3O_4$ Raman peaks evolution at different applied potentials are shown in Figure 4b. The bands at 690 and 522 cm<sup>-1</sup>, assigned to the  $A_{1g},\ F_{2g}$  vibrational modes of  $\mathrm{Co}_3\mathrm{O}_4$  are weak at potentials above -0.1 V, and the  $F_{2g}$  peak disappeared at -0.2 V.<sup>[21]</sup> Simultaneously, a Raman peak of Co(OH)<sub>2</sub> at 615 cm<sup>-1</sup> emerged and increased in intensity with increasing negative potentials,<sup>[30]</sup> which indicates the conversion of the  $Co_3O_4$  phase to a lower oxidation state of  $Co(OH)_2$  during the reaction. Raman peaks of  $Co_3O_4 + Cu_2O$  (Figure 4c) show similar phase evolution characteristics of both Co<sub>3</sub>O<sub>4</sub> and Cu<sub>2</sub>O alone. Two Raman peaks of CuO emerged at -0.1 V at 295 and 347 cm<sup>-1</sup> due to oxidation of Cu<sup>0</sup> by the initially formed intermediate nitrogen dioxide (NO<sub>2</sub>), assuming that this is the only oxidative species produced during NO<sub>3</sub>RR in Ar-saturated electrolyte<sup>[12,31]</sup> This also explains the high O content after 5 CV cycles in  $Cu_2O + Co_3O_4$  nanoelectrode assemblies (Figures S31 and S32).

#### Conclusion

We evaluated physically mixed  $Cu_2O + Co_3O_4$  nanocubes as a tandem electrocatalyst for converting NO<sub>3</sub><sup>-</sup> to NH<sub>3</sub> on a carbon paper macroelectrode and demonstrated significantly improved performance of  $Co_3O_4 + Cu_2O$  for  $NO_3^-$  to  $NH_3$ reduction with Cu<sub>2</sub>O or Co<sub>3</sub>O<sub>4</sub> alone. An 85.4 % FE<sub>NH2</sub> and a high  $Y_{NH_3}$  of 12.76 mg h<sup>-1</sup> cm<sup>-2</sup> was attained at an applied potential of -0.3 V vs RHE. To gain in-depth understanding of the synergistic action of both types of nanocube catalysts and to decipher mechanistic details of the tandem catalysis between Cu<sub>2</sub>O and Co<sub>3</sub>O<sub>4</sub>, we established a single entity  $Cu_2O + Co_3O_4$  nanocubes on a CNE tip approach with a precisely controlled placement of the two particles relative to each other. Single entity  $Cu_2O + Co_3O_4$  nano-electrochemistry combined with identical location TEM revealed tandem catalysis by investigating the intrinsic activity changes and unveiled the structural evolution before and after the reaction. The phase evolution process observed from the single entity of  $Cu_2O + Co_3O_4$  was further evidenced by in situ Raman spectroelectrochemistry.

#### Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement CasCat [833408]) and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy–EXC 2033–390677874–RESOLV. J. Z. gratefully acknowledges the financial support for his PhD studies from the Chinese Scholarship Council (CSC). This work was supported by the "Center for Solvation Science ZEMOS" funded by the German Federal Ministry of Education and Research BMBF and by the Ministry of Culture and Research of



*Figure 4.* a)–c) In situ Raman spectroelectrochemistry of  $Cu_2O$  (a),  $Co_3O_4$  (b),  $Cu_2O + Co_3O_4$  (c) at different applied potentials in electrolytes containing 0.1 mol L<sup>-1</sup> NO<sub>3</sub><sup>-</sup>, 0.045 mol L<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub> and 0.01 mol L<sup>-1</sup> NaOH.

Angew. Chem. Int. Ed. 2023, e202214830 (7 of 8)

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

## GDCh

Nord Rhine-Westphalia. The authors are grateful to Martin Trautmann for ICP-MS measurements. Open Access funding enabled and organized by Projekt DEAL.

#### **Conflict of Interest**

The authors declare no conflict of interest.

#### Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

**Keywords:** Identical Location Transmission Electron Microscopy • Nanoelectrode • Nitrate Reduction Reaction • Single-Entity Electrochemistry • Tandem Catalysis

- a) V. Rosca, M. Duca, M. T. de Groot, M. T. M. Koper, *Chem. Rev.* **2009**, *109*, 2209; b) C. H. Christensen, T. Johannessen, R. Z. Sørensen, J. K. Nørskov, *Catal. Today* **2006**, *111*, 140; c) X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, P. Dumas, Y. Shen, *Nature* **2015**, *528*, 51.
- [2] a) S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu, *Science* 2020, *369*, 780; b) V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, *Joule* 2020, *4*, 142; c) H. Liu, *Chin. J. Catal.* 2014, *35*, 1619.
- [3] a) D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. Ferrero Vallana, A. N. Simonov, *Joule* 2020, *4*, 1186; b) H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S.-Z. Qiao, *Adv. Mater.* 2019, *31*, 1902709; c) L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, *Adv. Mater.* 2018, *30*, 1800191.
- [4] a) G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771; b) B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290.
- [5] X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.
- [6] A. Stirling, I. Pápai, J. Mink, D. R. Salahub, J. Chem. Phys. 1994, 100, 2910.
- [7] a) P. H. van Langevelde, I. Katsounaros, M. T. Koper, *Joule* 2021, 5, 290; b) Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, *Chem. Soc. Rev.* 2021, *50*, 6720.
- [8] a) W. Teng, N. Bai, Y. Liu, Y. Liu, J. Fan, W.-X. Zhang, *Environ. Sci. Technol.* 2018, 52, 230; b) Y. Fernández-Nava, E. Marañón, J. Soons, L. Castrillón, *Bioresour. Technol.* 2008, 99, 7976.
- [9] G. A. Cerrón-Calle, T. P. Senftle, S. Garcia-Segura, Curr. Opin. Electrochem. 2022, 35, 101062.
- [10] a) Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai, P. Yang, *Nat. Chem.* **2011**, *3*, 372; b) S. Overa, T. G. Feric, A.-H. A. Park, F. Jiao, *Joule* **2021**, *5*, 8; c) P. B. O'Mara, P. Wilde, T. M. Benedetti, C. Andronescu, S. Cheong, J. J. Gooding, R. D. Tilley, W. Schuhmann, *J. Am. Chem. Soc.* **2019**, *141*, 14093; d) J. R. C. Junqueira, P. B. O'Mara, P. Wilde, S. Dieckhöfer, T. M. Benedetti, C. Andronescu, R. D. Tilley, J. J. Gooding, W. Schuhmann, *ChemElectroChem* **2021**, *8*, 4848; e) G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, *Nat. Energy* **2020**, *5*, 605.

- [11] a) H. Niu, Z. Zhang, X. Wang, X. Wan, C. Shao, Y. Guo, Adv. Funct. Mater. 2021, 31, 2008533; b) M. Duca, J. R. Weeks, J. G. Fedor, J. H. Weiner, K. A. Vincent, ChemElectroChem 2015, 2, 1086.
- [12] W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, *Nat. Commun.* **2022**, *13*, 1129.
- [13] a) Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, *Joule* 2018, 2, 2551; b) E. L. Clark, C. Hahn, T. F. Jaramillo, A. T. Bell, *J. Am. Chem. Soc.* 2017, *139*, 15848; c) T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, *J. Am. Chem. Soc.* 2018, *140*, 5791.
- [14] L. A. Baker, J. Am. Chem. Soc. 2018, 140, 15549.
- [15] J. Zhang, T. Quast, W. He, S. Dieckhöfer, J. R. C. Junqueira, D. Öhl, P. Wilde, D. Jambrec, Y.-T. Chen, W. Schuhmann, *Adv. Mater.* 2022, *34*, 2109108.
- [16] T. Quast, S. Varhade, S. Saddeler, Y.-T. Chen, C. Andronescu, S. Schulz, W. Schuhmann, *Angew. Chem. Int. Ed.* **2021**, *60*, 23444; *Angew. Chem.* **2021**, *133*, 23634.
- [17] T. Quast, H. B. Aiyappa, S. Saddeler, P. Wilde, Y.-T. Chen, S. Schulz, W. Schuhmann, *Angew. Chem. Int. Ed.* **2021**, *60*, 3576; *Angew. Chem.* **2021**, *133*, 3619.
- [18] H. B. Aiyappa, P. Wilde, T. Quast, J. Masa, C. Andronescu, Y.-T. Chen, M. Muhler, R. A. Fischer, W. Schuhmann, *Angew. Chem. Int. Ed.* **2019**, *58*, 8927; *Angew. Chem.* **2019**, *131*, 9021.
  [19] M. Arenz, A. Zana, *Nano Energy* **2016**, *29*, 299.
- [17] M. Alche, A. Zana, *Null Energy* 2010, 29, 299.
   [20] Y. Deng, A. D. Handoko, Y. Du, S. Xi, B. S. Yeo, *ACS Catal.* 2016, 6, 2473.
- [21] V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C 1988, 21, 199.
- [22] Y. Zhao, X. Chang, A. S. Malkani, X. Yang, L. Thompson, F. Jiao, B. Xu, J. Am. Chem. Soc. 2020, 142, 9735.
- [23] F.-Y. Chen, Z.-Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich, H. Wang, *Nat. Nanotechnol.* **2022**, *17*, 759–767.
- [24] R. Y. Hodgetts, A. S. Kiryutin, P. Nichols, H.-L. Du, J. M. Bakker, D. R. MacFarlane, A. N. Simonov, ACS Energy Lett. 2020, 5, 736.
- [25] a) P. Wilde, S. Barwe, C. Andronescu, W. Schuhmann, E. Ventosa, *Nano Res.* **2018**, *11*, 6034; b) J. Ryu, A. Wuttig, Y. Surendranath, *Angew. Chem. Int. Ed.* **2018**, *57*, 9300; *Angew. Chem.* **2018**, *130*, 9444.
- [26] P. Wilde, T. Quast, H. B. Aiyappa, Y.-T. Chen, A. Botz, T. Tarnev, M. Marquitan, S. Feldhege, A. Lindner, C. Andronescu, et al., *ChemElectroChem* **2018**, *5*, 3083.
- [27] E. Pérez-Gallent, M. C. Figueiredo, I. Katsounaros, M. T. Koper, *Electrochim. Acta* 2017, 227, 77.
- [28] S. A. Makhlouf, Z. H. Bakr, K. I. Aly, M. S. Moustafa, Superlattices Microstruct. 2013, 64, 107.
- [29] a) M. Xu, J. P. Larentzos, M. Roshdy, L. J. Criscenti, H. C. Allen, *Phys. Chem. Chem. Phys.* **2008**, *10*, 4676; b) N. Bodappa, M. Su, Y. Zhao, J.-B. Le, W.-M. Yang, P. Radjenovic, J.-C. Dong, J. Cheng, Z.-Q. Tian, J.-F. Li, *J. Am. Chem. Soc.* **2019**, *141*, 12192.
- [30] a) J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C 2010, 114, 111; b) Y.-C. Liu, J. A. Koza, J. A. Switzer, Electrochim. Acta 2014, 140, 359.
- [31] a) A. P. Litvinchuk, A. Möller, L. Debbichi, P. Krüger, M. N. Iliev, M. M. Gospodinov, J. Phys. Condens. Matter 2013, 25, 105402; b) L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, P. Krüger, J. Phys. Chem. C 2012, 116, 10232.

Manuscript received: October 8, 2022

Accepted manuscript online: December 5, 2022 Version of record online:

Angew. Chem. Int. Ed. 2023, e202214830 (8 of 8)

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Angewandte International Edition Chemie



## **Research Articles**



## **Research Articles**

Nitrate Reduction

J. Zhang, W. He, T. Quast, J. R. C. Junqueira, S. Saddeler, S. Schulz, W. Schuhmann\* \_\_\_\_\_ e202214830

Single-entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of  $Cu_2O$  and  $Co_3O_4$  for Converting  $NO_3^-$  to  $NH_3$ 



A rational catalyst design strategy is vital for a highly efficient conversion of  $NO_3^$ to  $NH_3$ .  $Cu_2O + Co_3O_4$  tandem catalyst exhibit a much higher  $NH_3$  yield rate than the single component alone. More importantly, we confirmed tandem catalysis by placing individual single  $Cu_2O$ and  $Co_3O_4$  on carbon nanoelectrode. Using single-entity electrochemistry and identical-location TEM we unveiled the dynamic transformation caused by tandem catalysis.