Angewandte Chemie www.angewandte.org

Nitratreduktion

Zitierweise: Internationale Ausgabe: Deutsche Ausgabe:

e: doi.org/10.1002/anie.202214830 doi.org/10.1002/ange.202214830

Einzelpartikel-Elektrochemie belegt die dynamische Transformation von Cu_2O und Co_3O_4 während der Tandemkatalyse zur Umwandlung von NO_3^- in NH_3

Jian Zhang, Wenhui He, Thomas Quast, João R. C. Junqueira, Sascha Saddeler, Stephan Schulz, und Wolfgang Schuhmann*

Abstract: Die elektrochemische Umwandlung von Nitrat in Ammoniak ist ein wichtiger und nachhaltiger Ansatz zur Wiederherstellung des weltweit gestörten Stickstoffkreislaufs. Die rationale Entwicklung von Katalysatoren für die Nitratreduktionsreaktion (NO3RR) auf der Grundlage eines detaillierten Verständnisses des Reaktionsmechanismus ist von großer Bedeutung. Wir berichten über einen $Cu_2O + Co_3O_4$ -Tandemkatalysator, der die NH₃-Produktionsrate im Vergleich zu Co₃O₄ um das \approx 2.7-fache und im Vergleich zu Cu₂O um das \approx 7.5fache steigert. Am wichtigsten ist jedoch, dass wir einzelne würfelförmige Cu₂O- und Co₃O₄-Nanopartikel einzeln und zusammen auf Kohlenstoff-Nanoelektroden platzieren, was einen Einblick in den Mechanismus der Tandemkatalyse ermöglicht. Die Struktur- und Phasenentwicklung der einzelnen Cu₂O+Co₃O₄-Nanowürfel während der NO3RR wird mit Hilfe der Transmissionselektronenmikroskopie an identischer Stelle belegt. Die Kombination von Einzelpartikel-Elektrochemie mit präziser Nanopositionierung wirft ein direktes Licht auf die dynamische Umwandlung einzelner Katalysatorpartikel während der Tandemkatalyse.

Dr. S. Saddeler, Prof. Dr. S. Schulz

Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen Universitätsstr. 7, 45141 Essen (Deutschland)

Einleitung

Ammoniak (NH₃) ist ein wichtiger Rohstoff für Düngemittel, für die chemische Industrie und neue Energieumwandlungsprozesse.^[1] Derzeit erfolgt die Herstellung von NH₃ nach dem energieintensiven Haber-Bosch-Verfahren, einer Gasphasenreaktion zwischen H₂ und N₂ bei hoher Temperatur und unter hohem Druck.^[2] Alternativ wird die elektrochemische N2-Reduktionsreaktion (NRR), die mit erneuer-Energien betrieben wird, baren zunehmend als nachhaltigerer Weg für die NH3-Produktion bei Raumtemperatur diskutiert.^[3] Allerdings ist die Ausbeute an NH₃ bei der NRR aufgrund der hohen Dissoziationsenergie der inhärent stabilen N≡N-Dreifachbindung (941 kJ mol⁻¹) sehr gering,^[4] was ihre praktische Anwendung bislang verhindert.^[5] Im Gegensatz zur NRR ist die Nitrat (NO₃⁻)-Reduktionsreaktion (NO₃RR) vielversprechend, da die Energie für die Dissoziation der N=O-Doppelbindung relativ gering ist (204 kJ mol⁻¹),^[6] was eine wesentlich schnellere Reaktionskinetik für die NH3-Produktion ermöglicht.^[7] NO3⁻ ist in Industrieabwässern und im Grundwasser weit verbreitet, so dass die NO3RR auch gleichzeitig ein Problem der Umweltverschmutzung lösen kann.^[8]

Die Entwicklung eines leistungsstarken NO3RR-Katalysators auf der Grundlage einer rationalen Katalysatordesignstrategie ist die Voraussetzung für eine hocheffiziente Umwandlung von NO₃⁻ in NH₃.^[9] Die "Tandem-Katalyse" wurde erfolgreich für komplexe Multi-Elektronentransfer-Reaktionen, z.B. die CO2-Reduktionsreaktion, eingesetzt, bei der die synergistische Wirkung mehrerer Komponenten eines Katalysators die sequentiellen Reaktionsschritte an optimierten aktiven Zentren katalysieren.^[10] *NO₂ (* bezeichnet eine an der Oberfläche adsorbierte Spezies) und die zugehörigen Zwischenprodukte sind für den Acht-Elektronen-Transfer während der NO3RR entscheidend, und daher kann eine Tandemstrategie die Umwandlung von NO₃⁻ in NH₃ erleichtern.^[11] Erst kürzlich haben wir einen Tandemkatalysator auf Co- und Cu-Basis für die NO3RR vorgeschlagen, bei dem die Umwandlung von NO3- in NH3 aufgeteilt werden kann in einen anfänglichen NO3-Reduktionsschritt unter Bildung von NO2-, der von Cu-Phasen katalysiert wird, gefolgt von der Umwandlung von NO2⁻ in NH₃, die von den Co-Phasen durchgeführt wird.^[12] Obwohl unser früherer Bericht experimentelle Beweise für die Tandem-Katalyse von NO₃RR mittels in situ elektrochemischer Rastermikroskopie (SECM) liefert, muss der Tandem-Ef-

Angew. Chem. 2023, e202214830 (1 of 9)

 ^[*] J. Zhang, Dr. W. He, Dr. T. Quast, Dr. J. R. C. Junqueira, Dr. S. Saddeler, Prof. Dr. W. Schuhmann Analytical Chemistry – Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry, Ruhr University Bochum Universitätsstr. 150, 44780 Bochum (Deutschland) E-mail: wolfgang.schuhmann@rub.de

^{© 2022} Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH. Dieser Open Access Beitrag steht unter den Bedingungen der Creative Commons Attribution Non-Commercial NoDerivs License, die eine Nutzung und Verbreitung in allen Medien gestattet, sofern der ursprüngliche Beitrag ordnungsgemäß zitiert und nicht für kommerzielle Zwecke genutzt wird und keine Änderungen und Anpassungen vorgenommen werden.

fekt der beiden Katalysatoren und insbesondere die strukturelle Modulierung und die Grenzflächeneffekte aufgrund möglicher Legierungsbildung während der Reaktion aufgrund der Komplexität der aktiven Multimetallphasen, die von metallorganischen Gerüstverbindungen (MOF) im Nanomaßstab abgeleitet sind, weiter aufgeklärt werden.^[13] Noch wichtiger ist, dass die Aufklärung der dynamische Entwicklung der verschiedenen Metallphasen während der Tandemreaktion eine große Herausforderung darstellt und bisher nicht direkt sichtbar gemacht werden konnte, was für ein tiefes Verständnis der Tandemkatalyse der NO3RR von entscheidender Bedeutung ist. In den letzten Jahren hat die Entwicklung der Single-Entity-Elektrochemie (SEE)^[14] und insbesondere der Single-Particle-on-the-Nanoelectrode-Technik^[15-18] einen direkten Einblick in die intrinsische Aktivität eines gegebenen Elektrokatalysators sowie in die strukturelle Entwicklung auf der Nanoskala ermöglicht, die in Kombination mit "identical location" TEM zugänglich ist.^[19] Daher halten wir die SEE für geeignet, um den Tandemeffekt zwischen zwei Katalysatoren während der NO₃RR aufzudecken.

In dieser Arbeit berichten wir über Cu₂O+Co₃O₄-Tandem-NO₃RR-Katalysatoren, die durch physikalisches Mischen von Cu₂O- und Co₃O₄-Nanowürfeln hergestellt werden. Der Cu₂O+Co₃O₄-Katalysator zeigt eine überragende Faraday-Effizienz für die NH₃-Bildung (FE_{NH₂}) von 85.4 % hohe NH₃-Ausbeuterate und eine (\mathbf{Y}_{NH_2}) von $12.76 \text{ mg h}^{-1} \text{ cm}^{-2}$ bei -0.3 V gegen RHE, die die von Co₃O₄ um das \approx 2.7-fache und die von Cu₂O um das \approx 7.5-fache übersteigt. Um direkte mikroskopische Beweise für die Tandemkatalyse von Cu₂O+Co₃O₄ auf der Nanoskala und den Wechselwirkungen zwischen den Cu2O- und Co3O4-Nanowürfeln zu erbringen, haben wir eine Kohlenstoff-Nanoelektroden-Plattform (CNE) aufgebaut, die es uns ermöglicht, die relativen Positionen einzelner, ähnlich großer Cu₂O- und Co₃O₄-Nanowürfel mit Hilfe eines Mikromanipulatorarms in einem Rasterelektronenmikroskop (SEM) präzise zu kontrollieren. Wir haben die sequentielle Tandemkatalyse einzelner Cu₂O- und Co₃O₄-Partikel auf einer Nanoelektrode bestätigt und die durch die Tandemkatalyse verursachte Struktur- und Phasenentwicklung während der Reaktion beobachtet.

Ergebnisse und Diskussion

Leistung der elektrochemischen Nitratumwandlung

Zunächst wurde der Tandemkatalysator durch physikalisches Mischen von Cu₂O- und Co₃O₄-Nanowürfeln auf einem Kohlenstoffpapier hergestellt, im Folgenden Cu₂O + Co₃O₄ genannt. Wir haben uns bewusst für die Verwendung von Würfeln entschieden, die die (100)-Facette zur Lösung exponieren, um zu vermeiden, dass unterschiedliche Gitterorientierungen und damit unterschiedliche katalytische Aktivitäten zur Gesamtreaktion beitragen. SEM-Bilder und energiedispersive Röntgenaufnahmen (EDX) (Abbildung 1a) zeigen zufällig verteilte Cu₂O- und Co₃O₄-Nanowürfel auf der Kohlenstoffoberfläche. Die Größe sowohl

der Cu₂O- als auch der Co₃O₄-Nanowürfel liegt überwiegend im Bereich von 200-300 nm (Abbildung S1). EDX bestätigt das Vorhandensein von Cu, Co, O und C, mit einem Atomverhältnis von Cu zu Co von 2.8:1, wie durch induktiv gekoppelte Plasmamassenspektrometrie (ICP-MS; Abbildung S2 und Einschub in Abbildung S2) bestimmt wurde. Um einen Einblick in die Phasenkonstitution der Cu₂O+ Co₃O₄-Elektrode zu erhalten, wurden Raman-Spektren aufgezeichnet, die eine Reihe intensiver Raman-Peaks bei 216, 415, 485, 523, 525, 621, 629 und 693 cm⁻¹ zeigen, die den charakteristischen Schwingungsmoden von Cu2O und Co3O4 zugeordnet werden können (Abbildung S3).^[20-22] Die katalytische NO3RR-Aktivität wurde mittels linearer Sweep-Voltammetrie (LSV) in 0.1 mol L⁻¹ NaOH mit 0.1 mol L⁻¹ NO₃⁻¹ bestimmt. Die NO3RR-Aktivität der Cu2O+Co3O4-Elektrode lässt sich zunächst an der deutlich erhöhten Stromdichte in Gegenwart von NO3⁻ im Vergleich zu blankem Kohlenstoffpapier und der geringeren kathodischen Überspannung im Vergleich zur Abwesenheit von NO₃⁻ ablesen (Abbildung S4).

Die Diagramme in Abbildung 1b zeigen, dass die gemischte Cu₂O+Co₃O₄-Elektrode eine wesentlich höhere Stromdichte (normiert auf die geometrische Fläche) aufweist als die nur mit Cu2O oder Co3O4 modifizierten Elektroden, was auf eine erhöhte NO3RR-Aktivität hinweist. Um die katalytische Aktivität genauer zu vergleichen, wurde die Doppelschichtkapazität (C_{dl}) als Maß für die elektrochemisch aktive Oberfläche (ECSA) bestimmt und zur Normalisierung der Stromdichte verwendet (Abbildung S5). Auch nach der Normalisierung durch die C_{dl} (Abbildung S6) wies die gemischte $Cu_2O + Co_3O_4$ modifizierte Elektrode die höchste Aktivität auf. Vergleicht man die erforderlichen Potenziale der Elektroden, um eine Stromdichte von 20 mA cm⁻² zu erreichen (kinetischer Bereich mit vernachlässigbarem Einfluss des Stofftransports), normalisiert auf die geometrische Fläche (Abbildung S7), so stellt man fest, dass der gemischte Cu₂O+Co₃O₄-Katalysator ein Überpotenzial von 40 mV benötigt, was 122 bzw. 209 mV positiver ist als das der Cu₂O- bzw. Co₃O₄-modifizierten Elektroden. Darüber hinaus folgen die durch die C_{dl} normalisierten Überspannungen einem ähnlichen Trend, was darauf hindeutet, dass $Cu_2O + Co_3O_4$ eine günstige Reaktionskinetik gegenüber der NO3RR aufweist.

Die Faradayeffizienzen für die Produkte (NH₃ und NO₂⁻) der drei Elektroden zeigen einen deutlichen Unterschied (Abbildungen S8-S11). Cu₂O allein weist nur 18.8 % FE für NH₃ auf, und Co₃O₄ produziert bei -0.1 V kein NH₃. Im deutlichen Gegensatz zu den Einzelmaterialien zeigt $Cu_2O+Co_3O_4$ eine relativ höhere $FE_{\rm NH_3}$ von 65.1 % (Abbildung 1c), die nicht einfach durch die individuellen Beiträge von Cu₂O und Co₃O₄ erklärt werden kann. Explizit zeigt Cu₂O eine sehr hohe inhärente Selektivität für die Bildung von NO₂⁻ bei -0.1 V. Dies stimmt auch mit den Ergebnissen von NO3RR-Katalysatoren auf Cu-Basis überein, die *NO2viel leichter von der Cu-Oberfläche desorbieren, um stabiles NO₂⁻ zu bilden, und so eine weitere Reduktion zu NH₃ verhindern.^[23] $Cu_2O + Co_3O_4$ zeigt eine höhere Selektivität von 81.2 % für NH₃ gegenüber NO₂⁻ bei -0.1 V im Vergleich zu 29.5 % Selektivität von Cu2O (Abbildung S12), was

Forschungsartikel

Abbildung 1. a) SEM-Bild von $Cu_2O + Co_3O_4$ auf einer Kohlepapierelektrode und entsprechende EDX-Elementzuordnung. b) Lineare Sweep-Voltammogramme (LSV) bei einer Abtastrate von 5 mV s⁻¹ in 0.1 mol L⁻¹ NO₃⁻ und 0.1 mol L⁻¹ NaOH. c) Faraday Effizienz und d) Ausbeute für NH₃ an Cu₂O, Co₃O₄ und Cu₂O + Co₃O₄. Die Fehlerbalken geben die Standardabweichungen von mindestens drei unabhängigen Messungen an. e) Vergleich der Ausbeuterate, FE und Selektivität von Cu₂O, Co₃O₄ und Cu₂O + Co₃O₄ bei –0.3 V (gegen RHE). Die Fehlerbalken geben die Standardabweichungen von mindestens drei unabhängigen Messungen an. f) Chronoamperometrischer Stabilitätstest bei –0.3 V (gegen RHE) und entsprechende NH₃-FEs sowie die Ausbeute von Cu₂O + Co₃O₄.

auf eine unterdrückte NO_2^- Bildung, aber gleichzeitig erhöhte NH_3 -Selektivität an der $Cu_2O + Co_3O_4$ -Oberfläche hindeutet. Diese Ergebnisse entsprechen genau den Merkmalen der Tandemkatalyse, bei der das aus dem Cu_2O als Primärprodukt erzeugte NO_2 auf die nahe gelegene Co_3O_4 -Oberfläche übertragen wird, um anschließend NO_2 in NH_3 umzuwandeln. Bei negativeren angelegten Potentialen weist das $Cu_2O + Co_3O_4$ eine hohe NH_3 -Selektivität auf, die die NO_2 -Selektivität durch Tandemkatalyse unterdrückt und somit eine maximale FE von 85.4 % für NH_3 bei -0.3 V zeigt.

Die NH₃-Ausbeuterate (Y_{NH_3}) aller drei Katalysatoren ist in Abbildung 1d dargestellt. Die drei Elektroden zeigen eine linear ansteigende Y_{NH_3} mit zunehmenden angelegten negativen Potentialen, wobei die Cu₂O+Co₃O₄-Elektrode durch die wesentlich höhere Y_{NH_3} von 3.23, 8.03, 12.76 und 14.72 mgh⁻¹cm⁻² bei -0.1, -0.2, -0.3 bzw. -0.4 V (gegen RHE) auffällt. Die Y_{NH_3} , FE_{NH₃} sowie die Selektivität der drei Katalysatoren bei einem Potenzial von -0.3 V sind in Abbildung 1e dargestellt. Der Vergleich der Y_{NH3} zeigt eine Vulkanform, und die Y_{NH_3} von $Cu_2O + Co_3O_4$ ist ≈ 2.7 -mal so hoch wie die von Co_3O_4 und ≈ 7.5 -mal so hoch wie die von Cu₂O. Die hohe Y_{NH2} zusammen mit der FE und der Selektivität gegenüber NH₃ von $Cu_2O + Co_3O_4$ zeigt seine Leistung, die den meisten kürzlich beschriebenen NO₃RR-Katalysatoren überlegen ist (Tabelle S1). Darüber hinaus wurde die Stabilität von Cu₂O+Co₃O₄ durch Chronoamperometrie bei einem Potenzial von -0.3 V untersucht, und die FE_{NH_3} sowie die Y_{NH_3} wurden durch Sammeln des Elektrolyten nach jeweils 2 Stunden analysiert. In Abbildung 1f zeigt die i-t-Kurve einen relativ stabilen Trend, nachdem sie alle 2 Stunden durch eine neue Elektrolytlösung ersetzt wurde, und das FE_{NH2} sowie das Y_{NH2} schwanken in jedem Zyklus nur geringfügig, was auf eine hohe NO₃RR-Stabilität hinweist.

Um den Ursprung des nachgewiesenen NH₃ zu bestimmen und das ermittelte Y_{NH_3} zu bestätigen, wurde ¹H NMR-Spektroskopie angewandt, um die NH₃-Bildung an Cu₂O + Co₃O₄ genauer zu untersuchen (Abbildung S13).^[24] ¹H NMR-Spektren zeigen zwei typische Peaks von ¹⁵NH₄⁺ nach der Elektrolyse in 0.1 mol L⁻¹ NaOH mit 0.1 mol L⁻¹ ¹⁵NO₃⁻, was bestätigt, dass das gebildete NH₃ aus der Reduktion von NO₃⁻ stammt (Abbildung S13c). Die durch ¹H NMR quantifizierte Menge an ¹⁴NH₄⁺ liegt nahe bei der durch UV–Vis-Spektrophotometrie bestimmten Menge, was die Zuverlässigkeit der Ergebnisse bestätigt (Abbildung S13d).

Ein detailliertes Verständnis der intrinsischen Aktivität und der Strukturentwicklung von $Cu_2O + Co_3O_4$ ist erforderlich, um den Reaktionsmechanismus zu entschlüsseln, der die Grundlage für die beobachtete überragende NO3RR-Leistung darstellt. Die Ableitung der intrinsischen Aktivität eines nanoskaligen Katalysatormaterials aus den Ergebnissen von Makroelektrodenexperimenten ist aufgrund von Beschränkungen des Stofftransfers (planare Diffusion), lokalen pH-Änderungen, die durch protonengekoppelte Elektronentransferreaktionen verursacht werden, und Filmeffekten wie der Leitfähigkeit des Katalysatorpartikelfilms, dem Vorhandensein von Bindemitteln usw. eine Herausforderung (Abbildung 2a).^[18,25] Von einer Makroelektrode nach einem elektrochemischen Experiment abgekratzte Katalysatorpartikel sind nicht unbedingt repräsentativ für die Entwicklung der strukturellen Morphologie. Um Struktur-Aktivitäts-Beziehungen direkt herzustellen und die Tandem-Elektrokatalyse einzelner Cu2O- und Co3O4-Nanowürfel allein, aber auch ihre synergetische Reaktion, aufzuklären, wurde daher die Einzel-Partikel-Elektrochemie mit der "identical location" Transmissions-Elektronenmikroskopie kombiniert.

Wir bauten auf einer zuvor vorgeschlagenen Einzel-Nanopartikel-auf-einer-Nanoelektrode-Technik auf und platzierten zunächst einen einzelnen Cu2O-Nanowürfel auf der Spitze einer Kohlenstoff-Nanoelektrode (CNE), um die Durchführbarkeit des elektrochemischen Ansatzes mit einem einzigen Partikel für die NO3RR zu demonstrieren. CNEs mit einer flachen Scheibenoberfläche wurden durch FIB-Fräsen (Focused Ion Beam) hergestellt (Abbildung S14), wie in einem früheren Bericht beschrieben,^[26] gefolgt von einer Oberflächenfunktionalisierung durch Diamin-Grafting, um die Verbindung zwischen der CNE-Oberfläche und dem einzelnen Partikel zu verbessern. Wie in Abbildung 2a und Abbildung S15 dargestellt, wurde dann ein einzelner, gut definierter Cu2O-Nanowürfel ausgewählt und mit einem robotischen Mikromanipulatorsystem in der SEM-Kammer präzise auf die Spitze einer CNE gesetzt. TEM-Bilder (Abbildung 2b-d) und EDX-Mapping (Abbildung S16) zeigen drei einzelne Cu2O-Nanowürfel auf CNE-Nanosysteme (Cu₂O_CNE), wobei die Nanowürfel fest mit den CNEs verbunden sind.

Die NO₃RR-Aktivität einzelner Cu₂O_CNE-Nanosysteme wurde mittels CV unter denselben Bedingungen wie bei den Makroelektrodenexperimenten untersucht. Bemerkenswert ist, dass alle CVs einzelner Partikel auf CNEs auf 5 Zyklen begrenzt sind, da die Reaktion und die Geschwindig-

© 2022 Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH

keit der Strukturevolution im Vergleich zu der auf Makroelektroden viel schneller abläuft.^[15–17] Die Abbildungen 2e und f zeigen den deutlich erhöhten Strom und die niedrigeren Überspannungen in NO₃⁻ oder NO₂⁻ haltigem Elektrolyt, was darauf hindeutet, dass die elektrokatalytische Aktivität auf NO_x-Reduktion zurückzuführen ist. Darüber hinaus wurde sowohl in NO₃⁻ als auch in NO₂⁻ haltigen Elektrolyten mit zunehmender Anzahl von CV-Zyklen ein Deaktivierungsprozess beobachtet (Abbildung S17),^[27] was auf eine Veränderung der Oberflächenaktivität der Cubasierten NO_xRR-Elektrokatalysatoren hinweist.

Die Cu2O_CNE-Nanosysteme wurden mit "identical location" TEM untersucht, um die strukturelle Entwicklung eines einzelnen Nanowürfels nach einer unterschiedlichen Anzahl von CV-Zyklen im NO3⁻ haltigen Elektrolyten zu visualisieren. Die kubische Struktur blieb nach dem ersten CV erhalten (Abbildungen 2g und h), aber Cu begann nach dem ersten CV aus dem Rand des Würfels auszulaugen, was durch die verringerte Cu-Verteilung im EDX-Mapping bestätigt wird (Abbildungen 2j und k). EDX-Linien-Scans vor und nach dem 1. CV zeigen einen verringerten O-Gehalt, was auf die Reduktion von Cu2O zu metallischem Cu hindeutet (Abbildung S18). Nach dem 5. CV wird die Cu-Auslaugung deutlicher, aber die kubische Grundstruktur bleibt erhalten (Abbildungen 2i und 1). Cu₂O-Nanowürfel zeigen eine ähnliche Strukturentwicklung, wenn sie in einem NO₂⁻ haltigen Elektrolyten oder in Abwesenheit jeglicher NO_x-Spezies untersucht werden (Abbildungen S19 und S20).

Dies ist vermutlich auf die begleitende Wasserstoffentwicklungsreaktion bei negativeren Potentialen zurückzuführen.^[27] Diese Hypothese wird durch die verbesserte Strukturstabilität vor und nach 5 CVs gestützt, wenn der Potenzialscan auf positivere Potenziale von weniger als -0.4 V beschränkt wird (Abbildungen S21 und S22). Um einen direkten visuellen Beweis für die dynamische Umwandlung von Cu₂O+Co₃O₄ während der Tandemkatalyse zu liefern, wurde ein $Cu_2O + Co_3O_4$ -Einzelpartikelsystem mit präziser Nanopositionierung eines einzelnen Cu2O- und eines einzelnen Co₃O₄-Nanowürfels hergestellt. Abbildung 3a zeigt, wie wir eine Einzepartikelanordnung mit einem einzelnen Cu2O- und einem einzelnen Co3O4-Würfel hergestellt wird, die zusammen auf einer CNE platziert werden, um einen definierten Cu₂O + Co₃O₄-Tandemkatalysator zu bilden. Zunächst wurde ein einzelner Cu₂O-Nanowürfel mit dem Mikromanipulatorarm im SEM an einer bestimmten Stelle der CNE platziert. Anschließend nahm der Mikromanipulatorarm den Co3O4-Nanowürfel auf und platzierte ihn neben dem Cu2O-Nanowürfel auf derselben CNE (Abbildungen S23 und S24). Vor dem Platzieren des Co₃O₄-Nanowürfels wurde die Bewegungsgeschwindigkeit des Mikromanipulators auf den Feinmodus eingestellt und der zuvor platzierte Cu2O-Nanowürfel als Referenz für die genaue Platzierung des Co3O4-Nanowürfels an der vorgesehenen Position auf der CNE-Oberfläche verwendet. Beide Würfel wurden vor ihrer Platzierung auf der CNE unter SEM-Kontrolle sorgfältig ausgewählt. Die beiden Partikel-Nanosyteme wurden dann durch TEM, STEM und entsprechende EDX-Elementlinienscans charakterisiert (Abbildung 3b-d). Es wurden drei verschiedene relative Anord-

Abbildung 2. a) Schematische Darstellung der Makroelektroden-Elektrochemie und des Prozesses zur Herstellung einzelner Nanopartikel auf Nanoelektroden. b)–d) TEM-Bilder der drei frischen einzelnen Cu_2O -Nanowürfel auf Nanoelektroden. e) und f) 1. CV und 5. CV von einzelnen Cu_2O -Nanowürfeln in 0.1 mol L⁻¹ NaOH, das entweder 0.1 mol L⁻¹ NO₃⁻ oder 0.1 mol L⁻¹ NO₂⁻ und 0.1 mol L⁻¹ NaOH enthält, mit einer Scanrate von 50 mV s⁻¹. g)–i) STEM-Bilder eines Cu_2O -Nanowürfels vor (g), nach dem 1. CV (h) und nach dem 5. CV (i) in 0.1 mol L⁻¹ NaOH mit 0.1 mol L⁻¹ NaOH mit

Abbildung 3. a) Schematische Darstellung des Herstellungsprozesses von zwei Partikel-Nanoelektroden-Systemen. b)–d) TEM, STEM-Bilder und entsprechende EDX-Linienscans von $Cu_2O + Co_3O_4$ _CNE-1 (b), $Cu_2O + Co_3O_4$ _CNE-2 (c), $Cu_2O + Co_3O_4$ _CNE-3 (d). e) Diagramme, die die Veränderung des Verhältnisses des Reduktionsstroms von Cu_2O -, Co_3O_4 - und $Cu_2O + Co_3O_4$ -Nanoelektrodenanordnungen bei –0.35 V (vs RHE) im Vergleich zum ersten CV zeigen. f)–h) EDX-Mapping von $Cu_2O + Co_3O_4$ _CNE-1 (f), $Cu_2O + Co_3O_4$ _CNE-2 (g), $Cu_2O + Co_3O_4$ _CNE-3 (h) vor (oben) und nach 5 CV (unten).

nungen der beiden Nanowürfel erhalten, nämlich eine modifizierte CNE mit zwei Würfeln nebeneinander (Cu₂O + Co₃O₄_CNE-1), zwei teilweise überlappende Würfel (Cu₂O +Co₃O₄_CNE-2) und zwei räumlich getrennte Würfel (Cu₂O + Co₃O₄_CNE-3).

Die elektrochemische Aktivität der $Cu_2O + Co_3O_4$ -Nanoelektroden-Systeme wurde in Gegenwart von NO_3^- untersucht, und ein einzelnes Co_3O_4 -Partikel allein wurde ebenfalls als Kontrolle verglichen (Abbildung S25). Die $Cu_2O +$ Co_3O_4 _CNE-Nanosysteme wiesen im Vergleich zu einem einzelnen Cu₂O-Nanowürfel deutlich unterschiedliche katalytische Aktivitäten auf. Das Verhältnis der Änderung des Reduktionsstroms bei 0.35 V wurde mit dem 1. CV (Abbildung 3e) verglichen, um den Trend der NO₃RR-Aktivitätsänderung verschiedener Einzelpartikel-Nanosysteme mit zunehmenden CV-Zyklen zu beschreiben.

Im Gegensatz zu den einzelnen Cu₂O- oder Co₃O₄-Würfeln zeigen Cu₂O+Co₃O₄_CNE-1 und Cu₂O+Co₃O₄_ CNE-2 einen deutlich erhöhten NO₃RR-Strom mit der Anzahl der CV-Zyklen, was auf eine kontinuierlich wachsende Aktivität von Cu₂O+Co₃O₄ für die NO₃RR hinweist. Dieses Ergebnis lässt sich gut erklären, wenn man von einer

Tandemkatalyse im Falle von $Cu_2O + Co_3O_4$ ausgeht, bei der die NO_3RR an $Cu_2O + Co_3O_4$ in zwei aufeinanderfolgende Schritte unterteilt werden kann, nämlich die Reduktion von NO_3^- zu NO_2^- an Cu_2O , gefolgt von der Umwandlung von NO_2^- zu NH_3 an dem nahe gelegenen Co_3O_4 -PArtikel.

Das EDX-Mapping (Abbildungen 3f und g) zeigt, dass beide Partikel nach 5 CV-Zyklen immer noch in einer relativ unabhängigen Form auf dem CNE vorhanden waren, was die Möglichkeit einer Legierungsbildung zwischen den beiden Partikeln während der Reaktion ausschließt. Cu2O+ Co₃O₄_CNE-3 (zwei Partikel mit einem Abstand von etwa 100 nm) zeigt in den ersten drei Zyklen einen ähnlichen Aktivierungsprozess (Abbildung 3e), was darauf hindeutet, dass die Tandemkatalyse auch mit zwei getrennten Partikeln funktioniert, und nahelegt, dass das primär produzierte NO2⁻ auf das nahe gelegene Co3O4 übertragen werden kann, um die anschließende Umwandlung von NO2⁻ in NH3 zu vollenden, und gleichzeitig die Möglichkeit von Grenzflächeneffekten zur Verbesserung der NO3RR-Aktivität ausschließt. Anschließend nahm der Reduktionsstrom in den letzten beiden CVs ab, was mit den Veränderungen bei den einzelnen Partikeln allein vergleichbar ist. Dieses Ergebnis und die Feststellung, dass das gesamte Cu nach 5 CV-Zyklen aufgelöst war (Abbildung 3h), unterstützen den vorgeschlagenen Tandem-Katalysemechanismus.

 Cu_2O in $Cu_2O + Co_3O_4$ -Nanoelektrodensystemen zeigt eine drastische Veränderung der Morphologie im Vergleich zu einem einzelnen Cu2O-Partikel auf einer Nanoelektrode (Abbildungen S26 und S27). Unter den gleichen experimentellen Bedingungen brach die kubische Struktur von Cu₂O aufgrund der massiven Auslaugung von Cu nach 5 CV-Zyklen in Cu₂O+Co₃O₄-Nanoelektrodensystemen vollständig zusammen. Dieses Ergebnis lässt sich gut durch unsere frühere Studie über das Tandem-Katalysatorsystem erklären, bei der während der NO₃RR-Tandem-Katalyse (NO₃⁻ zu NO2-) an der Cu-basierten Phase viel oxidatives und korrosives Stickstoffdioxid (NO₂) erzeugt wird,^[12] was die Cu-Auslaugung stark beschleunigt. Auf der anderen Seite behielt Co_3O_4 in $Cu_2O + Co_3O_4$ -Nanoelektrodensystemen nach 5 CV-Zyklen die kubische Struktur bei, ähnlich wie bei einzelnen Co₃O₄-Nanoelektrodensystem (Abbildem dung S28). Dies kann auf die Tatsache zurückgeführt werden, dass Co₃O₄ während der Tandemkatalyse hauptsächlich NO₂⁻ in NH₃ umwandelt und dabei die Bildung von NO₂ verhindert. Die Strukturentwicklung von Cu₂O+Co₃O₄ auf der Kohlenstoffnanoelektrode während der NO3RR entspricht gut den Ergebnissen der Makroelektrodenmessungen. Die kubische Struktur von Cu2O war nach zehn Stunden chronoamperometrischer Elektrolyse vollständig aufgelöst, während die kubische Struktur von Co₃O₄ gut erhalten blieb (Abbildung S29). EDX-Linienscans nach der Elektrokatalyse zeigen, dass das Cu2O in Cu2O+Co3O4-CNE-1 und Cu₂O+Co₃O₄_CNE-2 aufgrund des hohen oxidativen NO2-Gehalts einen hohen O-Gehalt aufwies (Abbildungen S30 und S31), was in starkem Kontrast zu einfachem Cu_2O steht (Abbildung S18). Co_3O_4 in $Cu_2O + Co_3O_4$ -Nanoelektrodensystemen zeigt einen geringeren O-Gehalt, was auf die Umwandlung von Co₃O₄ in niedrigere Oxidationsstufen während der Reaktion hinweist (Abbildungen S32 und S33).

Um weiter zu bestätigen, dass die strukturelle Entwicklung in $Cu_2O + Co_3O_4$ durch Tandemkatalyse verursacht wird, wurde ein einzelnes Cu_2O -Teilchen auf einem einzelnen Co_3O_4 -Teilchen platziert, wobei nur das Co_3O_4 -Teilchen in Kontakt mit der CNE-Oberfläche steht (Abbildung S34), sodass der Elektronentransfer vom CNE zu Cu_2O durch die relativ schlechte Leitfähigkeit von Co_3O_4 begrenzt ist.^[28] Wir erwarten, dass in dieser Konfiguration die Tandemkatalyse weitgehend unterdrückt wird und die Cu_2O -Partikel keine drastische Veränderung der Morphologie erfahren sollten. Die Erhaltung der kubischen Struktur von Cu_2O nach 5 CV-Zyklen ist in Abbildung S35 dargestellt.

In situ Raman-Spektroelektrochemie unter Variation der angelegten Potentiale in Gegenwart von 0.1 mol L⁻¹ NO₃⁻ gibt einen Echtzeit-Einblick in die Phasenentwicklung der Katalysatoren. Alle in situ Raman-Messungen wurden in 0.01 mol L⁻¹ NaOH durchgeführt, um das Wasserimmersionsobjektiv zu schützen. 0.045 mol L⁻¹ Na₂SO₄ wurde hinzugefügt, um die Ionenstärke und die Na⁺-Konzentration identisch mit einer 0.1 mol L⁻¹ NaOH-Lösung zu halten. Das Raman-Spektrum von Cu₂O (Abbildung 4a) während der NO₃RR zeigt zwei Banden bei 982 und 1050 cm⁻¹, die den charakteristischen Schwingungsmoden von SO₄²⁻ und NO₃⁻ zugeschrieben werden.^[22,29] Die Banden bei 716 und 817 cm⁻¹ stammen vom Kohlepapier (Abbildung S36). Die anfänglich scharfen Raman-Banden von Cu₂O bei 218, 415, 523 sowie 628 cm⁻¹ werden mit zunehmenden negativen Potentialen schwächer, was auf die Reduktion von Cu₂O zu metallischem Cu hindeutet, was mit der Phasenumwandlung übereinstimmt, die in der einzelnen Cu₂O-CNE-Anordnung beobachtet wurde (Abbildung S18). Die Entwicklung der charakteristischen Co3O4-Raman-Banden bei verschiedenen angelegten Potentialen ist in Abbildung 4b dargestellt. Die Banden bei 690 und 522 cm⁻¹, die den A_{1g}- und F_{2g}-Schwingungsmoden von Co₃O₄ zugeordnet sind, sind bei Potentialen über -0.1 V schwach, und der F_{2g} -Peak verschwindet bei -0.2 V.^[21] Gleichzeitig tritt ein Raman-Peak von Co(OH)₂ bei 615 cm⁻¹ auf, dessen Intensität mit zunehmenden negativen Potentialen zunimmt,^[30] was auf die Umwandlung der Co₃O₄-Phase in einen niedrigeren Oxidationszustand von Co(OH)₂ während der Reaktion hinweist. Die Raman-Peaks von $Co_3O_4 + Cu_2O$ (Abbildung 4c) zeigen ähnliche Phasenentwicklungsmerkmale wie die von Co₃O₄ und Cu₂O allein. Zwei Raman-Banden von CuO entstanden bei -0.1 V bei 295 und 347 cm⁻¹ aufgrund der Oxidation von Cu⁰ durch das anfänglich gebildete intermediäre Stickstoffdioxid (NO₂), wobei angenommen wird, dass dies die einzige oxydative Spezies ist, die während der NO3RR im Ar-gesättigten Elektrolyten entsteht.^[12,31] Dies erklärt auch den hohen O-Gehalt nach 5 CV-Zyklen in $Cu_2O + Co_3O_4$ -Nanoelektrodensystemen (Abbildungen S31 und S32).

Zusammenfassung

Wir untersuchten physikalisch gemischte $Cu_2O + Co_3O_4$ -Nanowürfel als Tandem-Elektrokatalysator für die Umwand-

Abbildung 4. a)–c) In situ-Raman-Spektroelektrochemie von Cu_2O (a), Co_3O_4 (b), $Cu_2O + Co_3O_4$ (c) bei verschiedenen angelegten Potentialen in Elektrolyten mit 0.1 mol L^{-1} NO₃⁻, 0.045 mol L^{-1} Na₂SO₄ und 0.01 mol L^{-1} NaOH.

lung von NO₃⁻ zu NH₃ auf einer Kohlepapier-Makroelektrode und zeigten eine deutlich verbesserte Leistung von $Co_3O_4 + Cu_2O$ für die Reduktion von NO_3^- zu NH_3 im Vergleich zu Cu₂O oder Co₃O₄ allein. Bei einem angelegten Potential von -0.3 V gegen RHE wurden 85.4 % FE_{NH3} und eine hohe Y_{NH_2} von 12.76 mgh⁻¹ cm⁻² erreicht. Um die synergistische Wirkung beider Arten von Nanowürfel-Katalysatoren besser zu verstehen und die mechanistischen Details der Tandem-Katalyse zwischen Cu₂O und Co₃O₄ zu entschlüsseln, haben wir Cu2O+Co3O4-Nanowürfel auf einer CNE-Spitze mit einer genau kontrollierten Platzierung der beiden Partikel zueinander hergestellt. Die Cu2O+ Co₃O₄-Nanoelektrochemie in Kombination mit "identical location" TEM-Untersuchungen belegte die Tandemkatalyse durch Untersuchung der intrinsischen Aktivitätsänderungen und enthüllte die strukturelle Entwicklung vor und nach der Reaktion. Der Prozess der Phasenevolution, der an der einzelnen $Cu_2O + Co_3O_4$ -Einheit beobachtet wurde, wurde außerdem durch In situ-Raman-Spektroelektrochemie nachgewiesen.

Danksagung

Das Projket wurde finanziell unterstützt vom European Research Council (ERC) im Rahmen des European Union's Horizon 2020 research and innovation program (CasCat [833408]) und von der Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) im Rahmen der Deutschen Exzellenzstrategie – EXC 2033–390677874 – RESOLV. J. Z. bedankt sich für die finanzielle Unterstützung durch ein Chinese Scholarship Council (CSC) Doktorandenstipendium. Diese Arbeit wurde weiterhin unterstützt durch das vom Ministerium für Bildung und Forschung der Bundesrepublik Deutschland (BMBF) geförderten "Center for Solvation Science ZEMOS" und durch das Ministerium für Kultur und Forschung des Landes Nordrhein-Westfalen. Die Autoren danken Martin Trautmann für die Durchführung der ICP-MS Messungen. Open Access Veröffentlichung ermöglicht und organisiert durch Projekt DEAL.

Interessenkonflikt

Die Autoren erklären, dass keine Interessenkonflikte vorliegen.

Erklärung zur Datenverfügbarkeit

Die Daten, die die Ergebnisse dieser Studie unterstützen, sind auf begründete Anfrage beim Autor erhältlich.

Stichwörter: Identical Location Transmissionselektronenmikroskopie • Nanoelektrode • Nitrat-Reduktionsreaktion • Single-Entity-Elektrochemie • Tandem-Katalyse

- a) V. Rosca, M. Duca, M. T. de Groot, M. T. M. Koper, *Chem. Rev.* **2009**, *109*, 2209; b) C. H. Christensen, T. Johannessen, R. Z. Sørensen, J. K. Nørskov, *Catal. Today* **2006**, *111*, 140; c) X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, P. Dumas, Y. Shen, *Nature* **2015**, *528*, 51.
- [2] a) S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu, *Science* 2020, *369*, 780; b) V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, *Joule* 2020, *4*, 142; c) H. Liu, *Chin. J. Catal.* 2014, *35*, 1619.
- [3] a) D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. Ferrero Vallana, A. N. Simonov, *Joule* 2020, *4*, 1186; b) H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S.-Z. Qiao, *Adv. Mater.* 2019, *31*, 1902709; c) L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, *Adv. Mater.* 2018, *30*, 1800191.

- [4] a) G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771; b) B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290.
- [5] X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.
- [6] A. Stirling, I. Pápai, J. Mink, D. R. Salahub, J. Chem. Phys. 1994, 100, 2910.
- [7] a) P. H. van Langevelde, I. Katsounaros, M. T. Koper, *Joule* 2021, 5, 290; b) Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, *Chem. Soc. Rev.* 2021, *50*, 6720.
- [8] a) W. Teng, N. Bai, Y. Liu, Y. Liu, J. Fan, W.-X. Zhang, *Environ. Sci. Technol.* **2018**, *52*, 230; b) Y. Fernández-Nava, E. Marañón, J. Soons, L. Castrillón, *Bioresour. Technol.* **2008**, *99*, 7976.
- [9] G. A. Cerrón-Calle, T. P. Senftle, S. Garcia-Segura, Curr. Opin. Electrochem. 2022, 35, 101062.
- [10] a) Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai, P. Yang, *Nat. Chem.* **2011**, *3*, 372; b) S. Overa, T. G. Feric, A.-H. A. Park, F. Jiao, *Joule* **2021**, *5*, 8; c) P. B. O'Mara, P. Wilde, T. M. Benedetti, C. Andronescu, S. Cheong, J. J. Gooding, R. D. Tilley, W. Schuhmann, *J. Am. Chem. Soc.* **2019**, *141*, 14093; d) J. R. C. Junqueira, P. B. O'Mara, P. Wilde, S. Dieckhöfer, T. M. Benedetti, C. Andronescu, R. D. Tilley, J. J. Gooding, W. Schuhmann, *ChemElectroChem* **2021**, *8*, 4848; e) G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, *Nat. Energy* **2020**, *5*, 605.
- [11] a) H. Niu, Z. Zhang, X. Wang, X. Wan, C. Shao, Y. Guo, *Adv. Funct. Mater.* **2021**, *31*, 2008533; b) M. Duca, J. R. Weeks, J. G. Fedor, J. H. Weiner, K. A. Vincent, *ChemElectroChem* **2015**, *2*, 1086.
- [12] W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, *Nat. Commun.* 2022, 13, 1129.
- [13] a) Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, *Joule* 2018, 2, 2551; b) E. L. Clark, C. Hahn, T. F. Jaramillo, A. T. Bell, *J. Am. Chem. Soc.* 2017, 139, 15848; c) T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, *J. Am. Chem. Soc.* 2018, 140, 5791.
- [14] L. A. Baker, J. Am. Chem. Soc. 2018, 140, 15549.
- [15] J. Zhang, T. Quast, W. He, S. Dieckhöfer, J. R. C. Junqueira, D. Öhl, P. Wilde, D. Jambrec, Y.-T. Chen, W. Schuhmann, *Adv. Mater.* 2022, 34, 2109108.
- [16] T. Quast, S. Varhade, S. Saddeler, Y.-T. Chen, C. Andronescu, S. Schulz, W. Schuhmann, *Angew. Chem. Int. Ed.* **2021**, *60*, 23444; *Angew. Chem.* **2021**, *133*, 23634.

[17] T. Quast, H. B. Aiyappa, S. Saddeler, P. Wilde, Y.-T. Chen, S. Schulz, W. Schuhmann, *Angew. Chem. Int. Ed.* **2021**, *60*, 3576; *Angew. Chem.* **2021**, *133*, 3619.

Angewandte

hemie

- [18] H. B. Aiyappa, P. Wilde, T. Quast, J. Masa, C. Andronescu, Y.-T. Chen, M. Muhler, R. A. Fischer, W. Schuhmann, *Angew. Chem. Int. Ed.* **2019**, *58*, 8927; *Angew. Chem.* **2019**, *131*, 9021.
- [19] M. Arenz, A. Zana, *Nano Energy* **2016**, *29*, 299.
- [20] Y. Deng, A. D. Handoko, Y. Du, S. Xi, B. S. Yeo, ACS Catal.
 2016, 6, 2473.
- [21] V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C 1988, 21, 199.
- [22] Y. Zhao, X. Chang, A. S. Malkani, X. Yang, L. Thompson, F. Jiao, B. Xu, J. Am. Chem. Soc. 2020, 142, 9735.
- [23] F.-Y. Chen, Z.-Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich, H. Wang, *Nat. Nanotechnol.* **2022**, *17*, 759–767.
- [24] R. Y. Hodgetts, A. S. Kiryutin, P. Nichols, H.-L. Du, J. M. Bakker, D. R. MacFarlane, A. N. Simonov, ACS Energy Lett. 2020, 5, 736.
- [25] a) P. Wilde, S. Barwe, C. Andronescu, W. Schuhmann, E. Ventosa, *Nano Res.* 2018, *11*, 6034; b) J. Ryu, A. Wuttig, Y. Surendranath, *Angew. Chem. Int. Ed.* 2018, *57*, 9300; *Angew. Chem.* 2018, *130*, 9444.
- [26] P. Wilde, T. Quast, H. B. Aiyappa, Y.-T. Chen, A. Botz, T. Tarnev, M. Marquitan, S. Feldhege, A. Lindner, C. Andronescu, et al., *ChemElectroChem* 2018, 5, 3083.
- [27] E. Pérez-Gallent, M. C. Figueiredo, I. Katsounaros, M. T. Koper, *Electrochim. Acta* 2017, 227, 77.
- [28] S. A. Makhlouf, Z. H. Bakr, K. I. Aly, M. S. Moustafa, Superlattices Microstruct. 2013, 64, 107.
- [29] a) M. Xu, J. P. Larentzos, M. Roshdy, L. J. Criscenti, H. C. Allen, *Phys. Chem. Chem. Phys.* 2008, 10, 4676; b) N. Bodappa, M. Su, Y. Zhao, J.-B. Le, W.-M. Yang, P. Radjenovic, J.-C. Dong, J. Cheng, Z.-Q. Tian, J.-F. Li, *J. Am. Chem. Soc.* 2019, 141, 12192.
- [30] a) J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C 2010, 114, 111; b) Y.-C. Liu, J. A. Koza, J. A. Switzer, Electrochim. Acta 2014, 140, 359.
- [31] a) A. P. Litvinchuk, A. Möller, L. Debbichi, P. Krüger, M. N. Iliev, M. M. Gospodinov, J. Phys. Condens. Matter 2013, 25, 105402; b) L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, P. Krüger, J. Phys. Chem. C 2012, 116, 10232.

Manuskript erhalten: 8. Oktober 2022

Akzeptierte Fassung online: 5. Dezember 2022 Endgültige Fassung online: **•**.

Forschungsartikel

Nitratreduktion

J. Zhang, W. He, T. Quast, J. R. C. Junqueira, S. Saddeler, S. Schulz, W. Schuhmann* _____ e202214830

Einzelpartikel-Elektrochemie belegt die dynamische Transformation von Cu_2O und Co_3O_4 während der Tandemkatalyse zur Umwandlung von NO_3^- in NH_3

Für eine hocheffiziente Umwandlung von NO₃⁻⁻ in NH₃ ist eine rationale Katalysatordesignstrategie von entscheidender Bedeutung. Der Cu₂O + Co₃O₄--Tandemkatalysator weist eine viel höhere NH₃-Ausbeute auf als die Einzelkomponente allein. Noch wichtiger ist, dass wir die Tandemkatalyse bewiesen haben, indem wir einzelne Cu₂O- und Co₃O₄--Nanopartikel auf Kohlenstoff-Nanoelektroden platziert haben. Mithilfe von Einzelpartikel-Elektrochemie und TEM haben wir die durch die Tandemkatalyse verursachte dynamische strukturelle Morphologieänderung belegt.