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Abstract—There is an emerging need for predictive models
to be trained on-the-fly, since in numerous machine learning
applications data are arriving in an online fashion. A critical
challenge encountered is that of limited availability of ground
truth information (e.g., labels in classification tasks) as new data
are observed one-by-one online, while another significant chal-
lenge is that of class imbalance. This work introduces the novel
Augmented Queues method, which addresses the dual-problem
by combining in a synergistic manner online active learning, data
augmentation, and a multi-queue memory to maintain separate
and balanced queues for each class. We perform an extensive
experimental study using image and time-series augmentations,
in which we examine the roles of the active learning budget,
memory size, imbalance level, and neural network type. We
demonstrate two major advantages of Augmented Queues. First,
it does not reserve additional memory space as the generation
of synthetic data occurs only at training times. Second, learning
models have access to more labelled data without the need to
increase the active learning budget and / or the original memory
size. Learning on-the-fly poses major challenges which, typically,
hinder the deployment of learning models. Augmented Queues
significantly improves the performance in terms of learning
quality and speed. Our code is made publicly available.

Index Terms—incremental learning, active learning, data
streams, class imbalance, neural networks.

I. INTRODUCTION

Nowadays, in numerous applications information is becom-
ing available in an online or streaming fashion. Applications
include monitoring of critical infrastructure systems (e.g.,
leakage detection in water distribution networks [1]), security
(e.g., spam filtering [2]), environmental monitoring [3], and
recommender systems [3]. Deploying online learning algo-
rithms in real-world applications to train predicting models on-
the-fly is impeded by a series of open challenges and problems.

A key challenge is the label availability for a classification
task as data are arriving online. Acquiring the labels can be
expensive or even impossible in some real-time tasks. Class
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imbalance is another challenge, which refers to the problem of
having a skewed data distribution [2]. Imbalance may render
a traditional learning model ineffective as its predictive power
on minority class examples declines significantly.

To cope with learning from limited-labelled data, we focus
on active learning, a paradigm in which the model queries an
oracle (typically, a human expert) for the ground truth informa-
tion of selected examples [4]. Active learning is part of several
successful industrial systems, such as, Google’s method for
labelling malicious advertisements [5], and NVIDIA’s [6] and
Tesla’s [7] methods for their autonomous vehicles.

A recently proposed method called ActiQ uses online active
learning in synergy with a multi-queue memory [8]. It was
shown to address the aforementioned challenges, however, it
typically performs well when the queue lengths are sufficiently
large. Overall, the ActiQ method has the following limitations,
which we try to address in this paper: (i) In online environ-
ments where data are sampled from a long, potentially infinite,
sequence, it is impractical to assume that previous examples
whose label had been requested, will always be available; (ii)
To initialise the multi-queue system, it requires a large amount
of historical labelled data; (iii) Its memory requirements are
high. As a result, serious deployment concerns are raised. This
work makes the following key contributions.

1) We propose the Augmented Queues method which sig-
nificantly extends ActiQ by incorporating on-the-fly aug-
mentation in synergy with active learning. It overcomes
ActiQ’s limitations (listed above), and we show its
applicability using image and time-series augmentations.

2) We perform an extensive study in which we include two
active learning methods, image and time-series datasets,
two types of neural networks (standard, VGG). We also
examine the roles of the active learning budget, memory
size, and imbalance level. Models using Augmented
Queues have access to more labelled data without the
need to increase the budget and / or the original mem-
ory size. Augmented Queues significantly improves the
learning quality and speed. Our code is made available1.

1https://github.com/kmalialis/augmented queues



The paper is organised as follows. Section II provides the
background material. Related work is presented in Section III.
Augmented Queues is described in Section IV. The experi-
mental setup and results are presented in Sections V and VI
respectively. We conclude in Section VII.

II. PRELIMINARIES

Online learning considers a data generating process that
provides at each time t a sequence of examples S =
{(xt, yt)}Tt=1, where the number of steps is denoted by
T ∈ [1,∞) and data are typically sampled from a long,
potentially infinite, sequence [3]. The examples are drawn
from an unknown probability distribution pt(x, y), where
xt ∈ Rd is a d-dimensional vector in the input space X ⊂ Rd,
yt ∈ {1, ...,K} is the class label in the target space Y ⊂ Z+,
and K ≥ 2 is the number of classes.

An online classifier receives a new instance xt at time t
and makes a prediction ŷt based on a concept h : X → Y .
In online supervised learning, the classifier receives the true
label yt, its performance is evaluated using a loss function
and is then trained based on the loss incurred. The process is
repeated at each step. In online applications, however, the label
cannot be typically provided, as it’s either impossible (e.g. in
real-time applications) or expensive and thus impractical.

To address this issue, an alternative paradigm is active
learning [4], which deals with strategies to selectively query
for labels from a human expert according to a pre-defined
“budget” B ∈ [0, 1], for example, B = 0.3 means that 30%
of the arriving instances can be labelled. A budget spending
mechanism must ensure that the labelling spending b ∈ [0, 1]
does not exceed the allocated budget.

In online active learning [9], a classifier is built that receives
a new instance xt at time t. At each time step the classifier
calculates the prediction probability p̂(y|xt). The classifier
outputs the best prediction probability h(xt) = maxy p̂(y|xt)
and the predicted class ŷt = argmaxy p̂(y|xt). A given active
learning strategy α : X → {False, True} decides if the true
label yt is required, which is assumed that the oracle will
provide. The classifier is evaluated using a loss function and
is then trained based on the loss incurred. Typically, training
occurs only when α(xt) = True.

One major challenge encountered in some streaming appli-
cations is the presence of infrequent events, also known as
class imbalance [2], [10]. It occurs when at least one class is
under-represented, thus constituting a minority class. In binary
classification, imbalance is defined as follows:

∃y0, y1 ∈ Y pt(y = y0) ≫ pt(y = y1), (1)

where y1 represents the minority class.

III. RELATED WORK

Online supervised learning methods that address imbalance
are grouped as [2] (i) resampling methods, e.g., Oversampling-
based Online Bagging (OOB) [11], Adaptive REBAlancing
(AREBA) [12], [13], and Hybrid-AREBA (HAREBA) [14];
and (ii) cost-sensitive learning methods, e.g., CSOGD [15].

Despite their effectiveness, they rely on continual supervision.
This work focuses on online active learning, and augmentation.

A. Online active learning

1) Querying strategies: The most widely used active learn-
ing strategy is uncertainty sampling, where the learner queries
the most uncertain instances, which are typically found near
the decision boundary [16]. Most existing strategies assume
that the training set U ⊂ X is already available (offline active
learning) [17]. One way to measure uncertainty [4] is to first
find the instance xq with the least confident best prediction:

xq = argmin
x∈U

h(x) (2)

where h(x) = maxy p̂(y|x) and request its label if it satisfies
the following condition:

h(xq) < θ, (3)

where θ is a threshold which is typically fixed. Work on online
active learning is limited. The arriving xt is queried if:

h(xt) < θ, (4)

where h(xt) = maxy p̂(y|xt) and θ is a fixed threshold. This
is called a fixed uncertainty sampling strategy [9].

This strategy may not perform well if the threshold is
set incorrectly, or if the classifier learns enough so that the
uncertainty remains above the fixed threshold most of the time.
In [9] a variable uncertainty sampling strategy is proposed,
which uses randomisation to ensure that the probability of
labelling any instance remains above zero. This is termed
randomised variable uncertainty sampling (RVUS) strategy
and the threshold is modified as follows:

θ =

{
θ(1− s) if h(xt) < θrdm # request label
θ(1 + s) if h(xt) ≥ θrdm # don’t request

(5)

where s is a step size parameter, θrdm = θ∗η where η follows
a Normal distribution η ∼ N(1, δ) with a standard deviation
of δ.

A recently proposed method called ActiQ [8], has achieved
state-of-the-art results in imbalanced scenarios by combining
the RVUS strategy with a multi-queue data storage. In this
work we propose the Augmented Queues method, which
significantly extends ActiQ to allow data augmentation.

For a comprehensive review the interested reader is directed
towards [4]. Lastly, we adopt the widely-used budget spending
mechanism from [9]. Due to space constraints we direct the
interested reader to [9], and to our released code.

B. Data augmentation

Augmentation is applied to a dataset to expand its size by
artificially creating variations of the data [18]. It enhances
the diversity of the dataset which could improve the learning
performance, and improve generalisation.



1) Image augmentation: Such techniques include:
Geometric techniques [19] alter the pixel positions of

images; some examples include scaling, cropping, flipping,
padding, rotation, and image translation.

Colour-space augmentations [18] alter the colour proper-
ties of images by changing their pixel values, such as, changes
to brightness, contrast, saturation, and hue of the images.

Random erasing [20] helps to prevent overfitting as it
forces the model to learn more descriptive features by cutting-
off random patches from the images. Patches can be masked
with pixel values of 0s, 255s or mean pixel values, nonetheless,
it was shown that random noise masking yields the best results.

2) Time-series augmentation: Such techniques include:
Window Slicing is a time domain transformation method,

for extracting slices from a time series, and assigning the same
class y as the time series used for slice extraction [21].

Time Warping [22] is a time domain transformation
method, which aims to disrupt a pattern in the temporal
domain either by using a randomly located fixed window [21]
or by using a smooth warping path.

IV. AUGMENTED QUEUES

The overview of the Augmented Queues method is shown
in Fig 1. At any time t, the classifier observes an arriving
instance xt, and then provides a prediction ŷt; this is shown in
yellow colour. If the active learning strategy does not request
the ground truth, i.e., the class label, no training is performed
and the algorithm waits for the next arriving example. If the
strategy requests the ground truth, this is provided by an oracle
(typically, a human expert) as shown in green colour. The
example (xt, yt) is then appended to the relevant queue in
Qt. Before training, the data augmentation process is initiated
to create the augmented queues At. The neural network is
then trained using both Qt and At. This is shown in orange
colour. We describe below each individual element, as well as
a discussion on the computational aspects of the method.

A. Individual elements

Multi-queue memory: The method uses multiple first-in-
first-out (FIFO) queues which will be populated by instances
queried by the active learning strategy. At any time t we
maintain a set of K queues, one for each class as follows:

Qt = {qt1, qt2, ..., qtK} = {qtc}Kc=1, (6)

where K ≥ 2 is the number of classes. All queues are of
the same capacity M and a queue corresponding to class c is
defined as follows:

qtc = {xc,1, xc,2, ..., xc,M} = {xc,i}Mi=1, (7)

where xc,i ∈ Rd, and for any two xc,i, xc,j ∈ qtc such that
j > i, xc,j has been observed more recently in time.

As in the original ActiQ work, we assume the initial
availability of M labelled examples per class. Balanced queues
ensure robustness to class imbalance; the assumption is not
needed for problems in which imbalance does not exist, as

the queues will be populated at a similar rate. As this may
be difficult to have in practise, the purpose of this work is to
restrict M to a very small number e.g. up to ten, and then
apply data augmentation. We argue that for the vast majority
of applications this is realistic and practical.

Augmented memory: Let F = {fo}|F |
o=1 be a set of |F |

available transformation functions fo : X → X , such that, an
original example x is augmented to x∗ = fo(x). The number
of transformations |F | is task-dependent, for instance, like
the ones described in Section III-B. Augmentation is initiated
every time before the model is trained, that is, when the
active learning strategy receives a class label. Let’s define the
augmented multi-queue memory as follows:

At = {at1, at2, ..., atK} = {atc}Kc=1, (8)

where K ≥ 2 is the number of classes.
Each augmented queue atc ∈ RM×N has capacity |atc| =

M × N where c is the class and N is the number of
augmentation transformations per example. It is defined as:

atc = {x∗
c,i ∈ RN |∀i ∈ [1,M ]} (9)

where x∗
c,i contains all N augmented examples generated from

the original example xc,i as follows:

x∗
c,i = {x∗

c,i,j = fo(xc,i)}Nj=1 (10)

where each time the transformation function is selected ran-
domly from the set of functions fo ∈R F .

Class prediction: The neural network predicts the class of
each arriving instance xt as shown below. The multi-queue
memory is not used in the prediction process.

ŷt = argmax
y∈{1,...,K}

p̂(y|xt) (11)

Active learning strategy: The proposed Augmented
Queues method, like ActiQ, uses the RVUS [9] active learning
strategy as shown in Eq. (5).

Incremental learning: Recall that the neural network is
trained only when the active learning strategy receives the
class label. Prior the training at time t, the data augmentation
process is initiated to create the augmented queues At from the
original queues Qt. We then merge the two queues as follows:
Q∗t = Qt ∪At. The output of the neural network is provided
to a softmax output unit and its cost function is:

J t =
1

|Q∗t|
∑

xi∈Q∗t

l(yi, P̂xi), (12)

where yi ∈ {1, ...,K} is the ground truth and P̂xi
=

{p̂(1|xi), ..., p̂(K|xi)} are the prediction probabilities for each
class. The loss function used is the cross entropy l(y, P̂x) =
−
∑K

c=1 Iy=c log p̂(c|x), where Icondition is the identity
function that returns 1 if the condition is satisfied. The neural
network h will be updated incrementally based on the cost
incurred, that is, ht = ht−1.train(J t). The pseudocode of the
Augmented Queues method is provided in Algorithm 1.



Fig. 1: The overview of the proposed method, Augmented Queues

Algorithm 1 Augmented Queues

Input:
1: a: active learning strategy
2: B: labelling budget
3: K: number of classes
4: M : memory / queue size
5: D: initial labelled examples ▷ |D| = K ×M

Initialisation:
6: init queues Q0 = FIFOs(capacity = M, init = D)
7: create model h0

8: init budget expenses b0 = 0
Main:

9: for each time step t ∈ [1,∞) do
10: receive instance xt ∈ Rd

11: predict class ŷt using Eq. (11)
12: Qt = Qt−1

13: ht = ht−1

14: if bt−1 < B then ▷ expenses within budget
15: if a(xt, h(xt)) == True then ▷ AL Eq. (5)
16: receive true label yt

17: append example Qt = Qt−1.append(xt, yt)
18: create augmented queues At using Eq. (8)
19: calculate cost J t using Eq. (12)
20: incremental training ht = ht−1.train(J t)

21: update budget expenses bt

Augmented Queues is robust to imbalance due to the sep-
arate and balanced queues per class. Propagating previously
observed examples in the most recent training set is a form of
oversampling. The augmentation is performed in such as way
that At also contains separate and balanced queues per class.

B. Computational aspects

In online or streaming environments where data are arriv-
ing from a long, potentially infinite, sequence of data, it is
unrealistic to expect that all previously observed examples

will always be available during learning. Therefore, a learning
model should use no more than a fixed amount of memory
for any storage [23]. The multi-queue memory Qt has a fixed
size of Qt = K ×M . As discussed, the queue length is kept
to a minimum (e.g., M = 10) while the number of classes
K is task-dependent. The augmented memory At is fixed as
well with size |At| = N × |Qt|, where N is the number
of augmentation transformations per example. Importantly, it
reserves memory only at training times.

Predicting the class of an arriving instance xt only requires
a forward propagation pass of the neural network. Recall that
the multi-queue memory is not used in the prediction process.

Training is only performed at certain times according to the
budget, that is, the model is updated every time a class label
has been received. Following the recommendation by [8] to
avoid overfitting, the model is updated once at each training
time, i.e., the number of epochs is set to 1. This is a parameter
of the optimiser (e.g., gradient descent) that corresponds to a
one-pass over the entire batch (or each mini-batch) of the data.

V. EXPERIMENTAL SETUP

A. Datasets

MNIST [24]: This widely used dataset is a collection of
images of handwritten digits. Each image has a 1-colour
channel (monochrome), and it depicts a digit between “0”
to “9” (10 classes), which is centred in a 28 × 28 pixel-
sized box. MNIST, typically, serves as a benchmark dataset
for image classification, however, it is important to note that
it can stress test online / streaming learning algorithms due to
its high-dimensionality of 784 features. To examine the effect
of imbalance, we create three variations of MNIST and focus
on the challenging case of multi-minority scenarios [25]:

• MNIST-balanced: It refers to balanced scenarios with
5000 arriving examples per class.

• MNIST-imbalanced10: It refers to scenarios with 10%
imbalance. Digit “0” is the majority class from which



5000 examples arrive. The rest are minority classes, with
500 arriving examples per class.

• MNIST-imbalanced1: It refers to scenarios with 1% im-
balance, with 50 arriving examples per minority class.

Two Patterns [26]: A simulated time series dataset in which
each class represents the presence of two patterns in a definite
order, that describes upward and downward steps defined by
time functions presented in [26]. There are 4 classes and 5000
samples as follows: down-down class with 1306 cases, up-
down with 1248 cases, down-up with 1245 cases and up-up
with 1201 cases. The number of features is 128.

uWave Gesture Library Z [27]: A time series dataset for
a set of eight simple gestures generated from accelerometers
using the Wii remote. The data consists of the Z coordinates
of each motion. There are 8 classes with total 3582 samples,
each with 315 features.

Each augmentation method’ values are found in our code.

B. Methods

The active learning methods used are:
RVUS [9]: The seminal work which introduced the ran-

domised variable uncertainty sampling strategy shown in
Eq. (5). It uses a neural network (described below), and it
is a one-pass learner as it does not use any memory. When
used with data augmentation, it is applied to the most recent
example for which the oracle provided its label.

ActiQ [8]: A state-of-the-art method which uses the RVUS
strategy and a multi-queue memory. In its original form, no
data augmentation is used.

Augmented Queues: The proposed method shown in Fig. 1.
We will refer to it as ActiQ with data augmentation, which is
applied to the memory elements as described in Section IV.

The neural networks used with the AL methods are:
Standard Neural Network (NN) [28]: It is a standard fully-

connected feed-forward neural network, trained using back-
propagation. The hyper-parameters of NN for the MNIST,
Two Patterns and uWave Gesture Library Z datasets are in
our publicly available code.

VGG [29]: It is a convolutional network, distinguished by
its simplicity, as it consists of a series of VGG-blocks which
are a sequence of convolutional layers with padding, a non-
linear activation function, and a pooling component. We focus
on VGG-16 which is often used in practical applications due
to its effectiveness and simplicity. It is composed of 5 blocks
with a total of 13 convolutional layers and 3 fully-connected
layers; its total number of parameters exceeds 100 million.
The hyper-parameters of VGG are in our publicly available
code. Note that the VGG will start learning from scratch, i.e.,
no pre-training on the ImageNet dataset will be performed.

C. Performance metrics and Evaluation method

A popular metric which is insensitive to class imbalance
[10] is the geometric mean, defined as [30]:

G-mean = K

√√√√ K∏
c=1

Rc, (13)

(a) Class balance (b) Imbalance 10% (c) Imbalance 1%

Fig. 2: The role of the budget and the model depth on the final
performance (t = 50000, t = 9500, t = 5450) in MNIST

where K is the number of classes, and Rc = Ncc/Nc is the
recall of class c where Ncc is the number of examples correctly
classified, and Nc is the total number of examples for this
class. To compare learning methods in a sequential setting,
we use the widely adopted prequential evaluation with fading
factors method. The fading factor is set to ξ = 0.99. In all
simulation experiments we plot the prequential G-mean in
every time step averaged over 20 repetitions, including the
error bars displaying the standard error around the mean.

VI. EXPERIMENTAL RESULTS

A. Role of the budget and the model depth

These experiments examine the behaviour of NN and VGG
(1-5 blocks) under various budgets. The models have a queue
length of 10. Figure 2a shows the performance on MNIST-
balanced, whereas Figures 2b and 2c depict the performance
on MNIST with 10% and 1% imbalance respectively. For each
dataset, we examine 4 different budgets, 0.5, 0.25, 0.1, and
0.01, and we present the results on the final performance.

In Fig. 2a, the models achieve their peak performance on
budget 0.5. A similar performance is achieved on smaller
budgets, e.g., 0.25, 0.1, and even 0.01. The highest performing
models are the VGGs with 2 and 3 blocks, which achieve
almost identical performance. The VGGs with 1 and 4 blocks
perform similar to the NN, with the exception of budget
0.01 where they achieve a higher score. While RVUS-NN
and ActiQ-NN have similar performances, we notice a per-
formance drop for the former on budget 0.01. Interestingly,
the worst performing models for budgets 0.5, 0.25 and 0.1 is
the VGG (5 blocks), while for budget 0.01 is the RVUS NN.

In Fig. 2b, similarly with the balanced dataset, the models
achieve the best results when the budget is 0.5. The effect of
the budget is slightly more prominent, especially on budget
0.01. The VGGs with 2 and 3 blocks achieve the best perfor-
mance overall, while the latter achieves the best performance
on the lowest budget. Most VGG networks outperform ActiQ-
NN, with the exception of VGG with 5 blocks and RVUS-NN.
Regarding RVUS-NN, the model outperforms the VGG with
5 blocks on budgets 0.5, 0.25 and 0.1, but on budget 0.01 we
notice a significant drop of for RVUS-NN. This establishes
the RVUS-NN as the worst performing model on budget 0.01.

In Fig. 2c, the best performing model is the VGG with 3
blocks for most budgets, followed by VGG with 2 blocks.
However, on budget 0.01, the VGG (3 blocks) performs



(a) ActiQ-NN (10%
imbalance)

(b) ActiQ-VGG
(10% imbalance)

(c) ActiQ-VGG (1%
imbalance)

Fig. 3: The role of the memory size M for ActiQ in MNIST
with budget B = 10%.

worse than its shallower counterparts as well as the NN. As
before, the deepest VGG model performs the worst along with
RVUS-NN. Here, the effect of the VGG model depth is more
prominent as the budget decreases. Important remarks are:

• As the budget decreases, the performance drops, at-
tributed to the fewer labelled examples, therefore, the
queues are populated by a slower rate with new examples.
Training also occurs more infrequently.

• As imbalance becomes higher, the performance drops, at-
tributed to the fact that the minority classes are populated
by a smaller rate with new examples.

• The role of the model type plays a key role. As expected,
the convolutional network VGG outperforms the standard
NN on image classification tasks, however, the model
depth plays an important role. Shallow architectures have
limited capacity, while deeper architectures have a larger
capacity but are typically more difficult to train. For
instance, VGG with 3 blocks appears to provide a good
trade-off, while the original VGG (5 blocks) is even
outperformed by the standard NN.

• The one-pass learner RVUS yields the worst performance
due to the lack of a memory component. Interestingly, in
some cases it outperformed the original VGG (5 blocks).

B. Role of the memory size

We examine now the memory size’s role; we compare
NN, and VGG with 3 blocks which achieved the best overall
performance in Section VI-A. The budget is fixed to 0.1. In
these experiments, we present the learning curves, that display
the performance at different time steps. Fig. 3a shows ActiQ-
NN’s performance in MNIST with 10% imbalance. Figs. 3b
and 3c show ActiQ-VGG’s performance in MNIST with 10%
and 1% imbalance respectively. Important remarks are:

• By increasing the memory size, the performance is signif-
icantly improved. This is attributed to the larger training
set, which could particularly aid larger models.

• In severely imbalanced scenarios the role of the memory
size becomes even more important. As before, this is
attributed to queues corresponding to the minority classes
which are populated by a smaller rate with new examples.

• We stress out, however, that in online / streaming en-
vironments, a large memory size is not desirable. This
constitutes a limitation of the original ActiQ.

(a) ActiQ-NN, B =
10%

(b) ActiQ-VGG,
B = 10%

(c) ActiQ-VGG,
B = 1%

Fig. 4: The role of augmentation in MNIST with 1% imbalance

(a) ActiQ-NN, B =
10%

(b) ActiQ-VGG,
B = 10%

(c) ActiQ-VGG,
B = 1%

Fig. 5: The role of augmentation in Two Patterns

C. Role of data augmentation

We consider the datasets with 1% and 10% budget, and
memory sizes of 10 and 100. The performance results of NN
and the VGG (3 blocks) are presented in Figures 4, 5 and 6.
The augmentation techniques applied are described in Section
III-B and their value ranges are provided in our code.

In Fig. 4a, we compare the performance of the NN when
we apply data augmentations to the MNIST samples. As a
baseline, we use the NN with memory 10 without any aug-
mentations, and we also include the NN with memory 100 with
no augmentations. We notice that the use of data augmentation
techniques yields slightly improved results when compared to
the NN (M=10). We attribute this to the small capacity of the
NN. The analogous plots for VGG (3 blocks) are shown in
Figs. 4b and 4c. It is evident that data augmentations are very
effective when applied to the VGG network. For both MNIST
variations, the performance of the model with augmented
queues of size 10, reaches the performance of the models with
memory size 100, which is a significant improvement.

In Fig. 5a, we examine NN’s performance when we apply
augmentations to the Two Patterns samples. Again, as a
baseline we consider the NN with memory 10 and 100, without
any augmentation. It is evident, that data augmentation helped
memory size 10 to outperform both memory size 10 and 100,
without augmentation. Similarly, for VGG in Figs. 5b and
5c we notice that augmentation increases the VGG’s perfor-
mance compared to memory size 10 without augmentation.
Importantly, in both VGG experiments, augmentation achieves
similar performance as the memory size 100.

Fig. 6 shows the NN and VGG performance results on the
uWave Gesture Library Z. We observe that for budget 10% as
shown in Figs 6a and 6b, augmentation can slightly improve
over memory 10 without augmentation. In Fig 6c with budget



(a) ActiQ-NN, B =
10%

(b) ActiQ-VGG,
B = 10%

(c) ActiQ-VGG,
B = 1%

Fig. 6: The role of augmentation in uWave Gesture Library Z

1%, Augmented Queues performance increased significantly
when compared with memory 10 without augmentations.

Important remarks are as follows:
• Augmentation has a drastic improvement on model per-

formance. This is attributed to the increase of the training
set, which appears to have a similar effect as if the
original memory was increased. For the shallow model
NN, an improvement was observed but to a lesser degree.

• The proposed method uses less space, as augmentation
happens on-the-fly at training times only; augmented data
do not reserve memory when they are not in use.

VII. CONCLUSION AND FUTURE WORK

Learning online poses major challenges which hinder the
deployment of learning models. We introduced Augmented
Queues which addresses the problems of limited labelled
data and class imbalance. Augmented Queues synergistically
combines on-the-fly data augmentation with active learning.
We demonstrate its applicability using image and time-series
augmentations, and we show that it significantly improves the
learning quality and speed. Future work will examine:

Non-stationary environments. While this work has fo-
cused on the critical challenges of limited label availability,
class imbalance, and limited storage, other challenges exist,
such as, concept drift [3], [23].

Augmentation in the latent space. One promising direction
is to perform augmentation in the latent space, e.g., using
Siamese networks [31]. This would be challenging as the latent
space changes over time due to online incremental learning.
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