HPX

A C++ Library for Parallelism and
Concurrency

Hartmut Kaiser (hkaiser@cct.lsu.edu)

WAMTA, February 15, 2023

Todays Application Problems

>

Q

a

SD

=
60s 80s 100s 120 s oy

° a
z N N z s .2
SPG
thread 8 = N
thread 9 =
<~
thread 10 g
g8
thread 11 ;L =
thread 12 2 s
thread 13 i)
thread 14 & %{J
thread 15 :é o
thread 16 > g
thread 17 3 3
thread 18 = IZQ“
thread 19 'f o
thread 20 3 =
thread 21 = ;C
thread 22 LS
thread 23 E <
thread 24 ag| %

thread 25

@ STE||AR GROUP

The C++ Standards Library for Concurrency and Parallelism

>
5
g
)
=~
=
=)
O
g
9
o
e}
(@)
<
(]
(=]
0
o=
—
<
r—
r—
<
~
<
a¥
=~
S
>
2
o]
=
o]
o=
—
+
+
O
<
'
o
=

=
[}
n
!
o]
e
+~
=
j=
Y
~
(o]
~
Qv
on
=
5
o=
=
@}
o
(]
M
N
©
N
<
e
—
=1
"‘E
g

https://github.com/STEIIAR-GROUP/hpx

@ STE||AR GROUP

https://github.com/STEllAR-GROUP/hpx

HPX — A Distributed Asynchronous
Many-task Runtime System

- At 1t’s heart, HPX 1s a very efficient threading implementation

- Several functional layers are implemented on top:

« C++ standards-conforming API exposing everything related to parallelism
and concurrency

- Full set of C++17/C++20/C++23 (parallel) algorithms

* One of the first full openly available implementations

- Extensions:
+ Asynchronous execution of algorithms
+ Parallel range based algorithms
+ Auto vectorization execution polices unseg/par_unseq

+ Explicit vectorization execution policies simd/par_simd

Q
g
)
~
5
o)
Q
g
Q
@)
el
=]
(o]
(=)
(=]
0
=
—
D
—
—
]
~
o]
ol
3
(s
S
&
&)
~
=2
=
—
+
+
©
<
1
=

=
[}
n
o
<
N
+~
=
j=
b
~
<
~
QL
an
=
-
Qo
o=t
=
@}
o
(o]
/M
-
N
S
AN
<
e
=
=1
<
g

@ STE||AR GROUP

02/15/2023

HPX — A Distributed Asynchronous
Many-task Runtime System

- At 1t’s heart, HPX 1s a very efficient threading implementation

- Several functional layers are implemented on top:

- Uniform integration of your Kokkos, CUDA, HIP, and SYCL (oneAPI)
kernels

- Full set of senders/receivers (currently being discussed for standardization)
* Implemented using C++17
 Distributed operation

- Extending the standard interfaces for use on tightly coupled clusters (super-
computers)

* Global address space, load balancing, uniform API for local and remote
operations

Q
g
)
~
5
o)
Q
g
Q
@)
el
=]
(o]
(=)
(=]
0
=
—
D
—
—
]
~
o]
ol
3
(s
S
&
&)
~
=2
=
—
+
+
©
<
1
=

=
[}
n
o
<
N
+~
=
j=
b
~
<
~
QL
an
=
-
Qo
o=t
=
@}
o
(o]
/M
-
N
S
AN
<
e
=
=1
<
g

@ STE||AR GROUP

02/15/2023

HPX — The C++ Standards Library
for Concurrency and Parallelism

- Exposes a coherent and uniform, standards-oriented API
- Ease of programming of parallel, distributed, and
heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of millions
of threads.

- Provides unified syntax and semantics for local and remote
operations.

and Concurrency

- Enables using the Asynchronous C++ Standard Programming
Model

- Emergent auto-parallelization, intrinsic hiding of latencies,

~
[}
n
o=
<
N
+~
=
j=
b
~
<
~
QL
an
—
-
=]
[0
=
@}
45
(o]
/M
:Y‘S
N
S
AN
<
=
=
<
g

HPX - A C++ Library for Parallelism

@ STE||AR GROUP

%)
N
o
QN
~
10
—
=~
N
o

HPX — The API

- As close as possible to C++17/20/23 standard library, where appropriate, for

Instance

- std::thread, std::jthread - hpx:thread (C++11), hpx:jthread (C++20) :

« std:mutex * hpximutex E;
- std::future - hpx:future (including N4538, ‘Concurrency TS’ 3: %
- std::async - hpx:async (including N3632) 2 é
- std::for_each(par, ...), etc. - hpx::for_each (N4507, C++17/20/23) gé
-+ std::experimental::task_block - hpx:experimental:task_block (N4411) :L:*?:Jf
- std::latch, std:‘barrier - hpx:latch, hpx::barrier (C++20) %g
- std:: experimental::for_loop - hpx:experimental::for_loop E;g
- std:‘bind * hpx::bind ni]
- std::function - hpx::function fg
- std:iany - hpx:any (C++20) E%
- std::cout - hpx:icout =2

@ STE||AR GROUP

Jostey] Inwaey ‘(98noy uoleq ‘€z0% VLINVM)
AoUaXINOUO)) pueR WSI[P[[BIR] 10] AIRIqIT ++)) V - XdH

€¢0¢/91/¢0

The Future of Computation

@ STE||AR GROUP

(22
(&)
S
[\
~
0
—
~
N
@

What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal answer() { return 42; }

void deep_thought() =
future<int> promised answer = async(&universal answer); o

// do other things for 7.5 million years g

=l

cout << promised answer.get() << endl; // prints 42 ;§

} 5%
B

LA

=E

@ STE||AR GROUP

GR)
N
©)
N
~
o)
—
~
(o
S

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization :
; : with producer Z g
Future object Locality 2 S 5
el
R TSN) - Execute = Hides notion of dealing with threads : E
consumer ———=17" | Future: 2 5
thread L - = Represents a data-dependency ==
I 1 S
Execute . .I - thread - Q,: 5
another / :. :. . Makes asynchrony manageable L
thread) Result is being = Allows for composition of several Ed
. — ™
Resume returned asynchronous operations ne
consumer O
thread . . <
» (Turns concurrency into parallelism) O
-
=
E:: N~

@ STE||AR GROUP

Jostey] nwpae ‘(98noy uojeq ‘€303 VLINVM)

hw.an@HHSUQOQ pue wsid[eied 103 »,m.ﬂw.::@ ++0)V - XdH

1S11

Parallel

1ve

Recurs

@ STE||AR GROUP

Parallel Quicksort

@ STE||AR GROUP

Parallel Quicksort: Parallel

@ STE||AR GROUP

Parallel Quicksort: Futurized

@ STE||AR GROUP

Parallel Quicksort: co_await

@ STE||AR GROUP

Jostey] nwpae ‘(98noy uojeq ‘€303 VLINVM)

»,V.UQ@FEHOQOQ pue wsid[eied 103 »,m.ﬂw.::wH ++0)V - XdH

Synchronous

Asynchronous
Communication

@ STE||AR GROUP

02/15/2023

Example: Asynchronous Channels

- High level abstraction of communication operations
* Perfect for asynchronous boundary exchange

* Modelled after Go-channels

and Concurrency

- Create on one thread, refer to it from another thread
- Create on one locality, send over the wire, refer to it from another
- Conceptually similar to bidirectional P2P (MPI) communicators

- Asynchronous 1n nature
Channel (pipe)

* channel::get() and channel::set() . ,
return futures j@%ﬁ @@@

@ STE||AR GROUP

~
[}
n
o=
<
N4
+~
=
(=)
S
b
~
é:ﬁ
~
o)
on
—
-
=]
[0
=
@}
45
(o]
/M
:‘C:‘
N
©
AN
<
=
=
<
g

HPX - A C++ Library for Parallelism

02/15/2023

Futurized 2D Stencil: Timestep 1

B Timestep:1

@ Channels

¢
[TTTTTTIT] [TTTTTTT]
Partitions -
C
HHHE SO

>
(]
g
£
.
s}
=)
Q
g
Q
o
o)
g
(av]
(=
=}
0
o=
=
)
—
=
©
~
<
[a
~
8]
?}
o
S
=
o]
o=
—
L
+
@)
<
Q]
T

~
D)
wn
o
Q
=
E
—
v
~
<
a5
-
)
o0
=]
)
[0l
=i
o
S
<
/M
]
(@)
N
<
S
<
S

@ STE||AR GROUP

02/15/2023

Futurized 2D Stencil: Timestep 1+1

> T
I @ - [

B Timestep:1

BH Timestep: i1+l

¢

>
(]
g
<))
=
s}
=
Q
g
Q
o
o)
g
(o]
(=
=}
0
o=
=
<)
—
=
]
~
o]
[a
g
st
>
~
S
~
'Q
o=
—
4+
+
@)
Q]
T

~
()
wn
o
<
N
=
=
=
b
~
o]
ac
=S
o
o0
<l
=
Q
o
g
Q
S
<
/M
N
S
N
<
5
=
gf:
S

@ STE||AR GROUP

02/15/2023

Futurized 2D Stencil

5 ¢
I @

B Timestep:1
BH Timestep: i1+l

¢

>
(]
g
<))
=
s}
=
Q
g
Q
o
o)
g
(o]
(=
=}
0
o=
=
<)
—
=
]
~
o]
[a
g
st
>
~
S
~
'Q
o=
—
4+
+
@)
Q]
T

~
()
wn
o
<
N
=
=
=
b
~
o]
ac
=S
o
o0
<l
=
Q
o
g
Q
S
<
/M
N
S
N
<
5
=
gf:
S

@ STE||AR GROUP

02/15/2023

2D Stencil

- Partitions are distributed across machine

- More partitions per node (locality) than cores
- Oversubscription

- Code equivalent regardless whether neighboring
partition is on the same node

- Overlap of communication and computation
» More parallelism (work) than compute resources (cores)

>
g
)
=
=
=)
Q
g
Q
@)
o)
(@)
(av]
=)
=}
0
o=
—
)
—
=
oy}
~
<
Ay
g
Shert
D
2
S
~
'Q
o=
—
L
+
@)
<
'
=

~
[}
n
o=
<
N
+~
=
j=
b
~
<
~
o)
on
—
-
=]
[0
=
@}
45
(o]
/M
:Y‘S
N
S
AN
<
=
=
<
g

@ STE||AR GROUP

Futurized 2D Stencil: Main Loop

@ STE||AR GROUP

One Timestep: Update Boundaries

@ STE||AR GROUP

One Timestep: Interior

@ STE||AR GROUP

, H@mﬁﬁy muwjae . @MSO; uoje .“WJH“J
0%/S1/30 X H (q q ‘€207

.mUQ&H.H:UQOU pUE WSI[9[[ed8d 10] V,.H@:Hmﬁg ++))

),
=
-
/).
D
=
<+
-
D
>
D
=

.
o
o
o
(-
<
™)
=
(7))
~

Merging White Dwarfs: OctoTiger

, Orbits: 4.13005

Primary Star Donor Star

Density Density
3e+3 Max 2e+l Max
le-3 Refine
\ le=3-Refine
le-5
P (fes6..
le-7

>
(]
g
)
&
=
o)
Q
g
Q
O
el
g
(o]
(=
(=]
0
=
=i
)
—
—
]
~
o]
ol
S
(s
B
~
<
=
o
=
—
+
+
©
>
=

~
[}
w0
or=
<
N4
=
=
S
=
~
£
=
QL
an
g
-
=]
[0t
=
@}
S
(o]
/M
N
S
AN
<
=
=
<
g

@ STE||AR GROUP

JI9STEY INWIIRE ‘(@8N0Y UolIeq ‘€707 _ -
€Z02/S1/20 ey uirey (Y uored "€20% V.LINVM)

%OQ@MHSUQOQ pue wsi@eded 10j %MNMQMQ ++)V - XdH 2

T
Tt

ST

Time:1e-98

DB: X.0.silo
Cycle: 0

Mesh
Var. mesh

Adaptive Mesh Refinement

.
o
o
o
(-
<
™)
=
(7))
~

JosTey] ynuwiIe] ‘(@8noy uoyed ‘€503 V.ILINVM) 8

€¢0¢/91/¢0 AoUdIINOUO)) pue WSI[A[[BIR] 10} ATRIqIT ++)) V - XdH 2

.
o
o
o
(-
<
™)
=
(7))
~

02/15/2023

Adaptive Mesh Refinement

9 Strong-scaling efficiency: 68.1%

29 - -

Weak-scaling efficiency: 78.4%

evel 14 —e— Level 14 ||
—m— Level 15 —m— Level 15
—4a— Level 16 —— Level 16
—+— Level 17 —+— Level 17

21 23 25 27 29 211 213

Number of nodes

Speedup w.r.t sub-grids on one node

Q
g
<))
=
=
=
Q
g
Q
@)
o)
g
(o]
=]
=}
0
o=
=
<)
—
=
]
~
o]
Ay
g
st
>
~
®
]
'Q
o=
—
4+
+
@)
>
=

~
[}
)]
o
<
N4
-
=
(=l
S
b
P~
é:ﬁ
~
QL
an
—
=)
Q
[0
=
@}
-
(o]
/M
:Y‘E
N
©
AN
<
=
=
<
g

@ STE||AR GROUP

The Solution to the Application Problem

Os 20s 40s n6() s 80s 100 s 120s
thread 8
thread 9
thread 10 &
thread 11 5
thread 12 5 .
thread 13 : 29
thread 14 thread 8 QO) k"“_‘i
thread 15 thread 9 E f
thread 16 thread 10 = 2
thread 17 5 thread 11 E E
thread 18 thread 12 G £
thread 19 g : thread 13 s >
thread 20 thread14 @ || 5 -
thread 21 : thread 15 " QS:
thread 22 thread 16 L‘,OT‘ =
thread 23 thread 17 C:j g
thread 24 : thread 18 =]
thread 25 thread 19 E :S'
thread 20 i ,C\)]
thread 21 © <
thread 22 <E
thread 23 > i
thread 24 % %
thread 25

@ STE||AR GROUP

02/15/2023

The Solution to the Application Problems

>
Q
(]
<))
~
=
=
Q
g
Q
O
o
g
(o]
0
o=
=
<)
—
=
(]
~
(2]
A
8
st
=
~
(o]

~
[}
n
=
<
R
=
=)
g
+
~
<
s
—~
Qv
an
=}
o
a1
o
@}
e
<
M
o
N
S
N
<
S
<
=

HPX - A C++ Libr

@ STE||AR GROUP

CENTER FOR COMPUTATION
& TECHNOLOGY

HPX - A C++ Library for Parallelism and Concurrency

(WAMTA 2023, Baton Rouge), Hartmut Kaiser

Qo

02/15/2023

DO

