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The C++ Standards Library for Concurrency and Parallelism

>
5
g
)
=~
=
=)
O
g
9
o
e}
(@)
<
(]
(=]
0
o=
—
<
r—
r—
<
~
<
a¥
=~
S
>
2
o]
=
o]
o=
—
+
+
O
<
'
o
=

=
[}
n
!
o]
e
+~
=
j=
Y
~
(o]
~
Qv
on
=
5
o=
=
@}
o
(]
M
N
©
N
<
e
—
=1
"‘E
g

https://github.com/STEIIAR-GROUP/hpx

@ STE||AR GROUP
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HPX — A Distributed Asynchronous
Many-task Runtime System

- At 1t’s heart, HPX 1s a very efficient threading implementation

- Several functional layers are implemented on top:

« C++ standards-conforming API exposing everything related to parallelism
and concurrency

- Full set of C++17/C++20/C++23 (parallel) algorithms

* One of the first full openly available implementations

- Extensions:
+ Asynchronous execution of algorithms
+ Parallel range based algorithms
+ Auto vectorization execution polices unseg/par_unseq

+ Explicit vectorization execution policies simd/par_simd
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HPX — A Distributed Asynchronous
Many-task Runtime System

- At 1t’s heart, HPX 1s a very efficient threading implementation

- Several functional layers are implemented on top:

- Uniform integration of your Kokkos, CUDA, HIP, and SYCL (oneAPI)
kernels

- Full set of senders/receivers (currently being discussed for standardization)
* Implemented using C++17
 Distributed operation

- Extending the standard interfaces for use on tightly coupled clusters (super-
computers)

* Global address space, load balancing, uniform API for local and remote
operations
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HPX — The C++ Standards Library
for Concurrency and Parallelism

- Exposes a coherent and uniform, standards-oriented API
- Ease of programming of parallel, distributed, and
heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of millions
of threads.

- Provides unified syntax and semantics for local and remote
operations.

and Concurrency

- Enables using the Asynchronous C++ Standard Programming
Model

- Emergent auto-parallelization, intrinsic hiding of latencies,
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HPX - A C++ Library for Parallelism
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HPX — The API

- As close as possible to C++17/20/23 standard library, where appropriate, for

Instance

- std::thread, std::jthread - hpx:thread (C++11), hpx:jthread (C++20) :

« std:mutex * hpximutex E;
- std::future - hpx:future (including N4538, ‘Concurrency TS’ 3: %
- std::async - hpx:async (including N3632) 2 é
- std::for_each(par, ...), etc. - hpx::for_each (N4507, C++17/20/23) gé
-+ std::experimental::task_block - hpx:experimental:task_block (N4411) :L:*?:Jf
- std::latch, std:‘barrier - hpx:latch, hpx::barrier (C++20) %g
- std:: experimental::for_loop - hpx:experimental::for_loop E;g
- std:‘bind * hpx::bind ni]
- std::function - hpx::function fg
- std:iany - hpx:any (C++20) E%
- std::cout - hpx:icout =2
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What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal answer() { return 42; }

void deep_thought() =
future<int> promised answer = async(&universal answer); o

// do other things for 7.5 million years g

=l

cout << promised answer.get() << endl; // prints 42 ;§

} 5%
B
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What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization :
; : with producer Z g
Future object Locality 2 S 5
el
R TSN ) - Execute = Hides notion of dealing with threads : E
consumer ———=17" | Future: 2 5
thread L - = Represents a data-dependency ==
I 1 S
Execute . .I - thread - Q,: 5
another / :. :. . Makes asynchrony manageable L
thread ) Result is being = Allows for composition of several Ed
. — ™
Resume returned asynchronous operations ne
consumer O
thread . . <
» (Turns concurrency into parallelism) O
-
=
E:: N~
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Parallel
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Recurs

@ STE||AR GROUP



Parallel Quicksort

@ STE||AR GROUP



Parallel Quicksort: Parallel
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Parallel Quicksort: Futurized
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Parallel Quicksort: co_await
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Asynchronous
Communication
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Example: Asynchronous Channels

- High level abstraction of communication operations
* Perfect for asynchronous boundary exchange

* Modelled after Go-channels

and Concurrency

- Create on one thread, refer to it from another thread
- Create on one locality, send over the wire, refer to it from another
- Conceptually similar to bidirectional P2P (MPI) communicators

- Asynchronous 1n nature
Channel (pipe)

* channel::get() and channel::set() . ,
return futures j@%ﬁ @@@
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Futurized 2D Stencil: Timestep 1

B Timestep:1

@ Channels
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Futurized 2D Stencil: Timestep 1+1
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Futurized 2D Stencil
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2D Stencil

- Partitions are distributed across machine

- More partitions per node (locality) than cores
- Oversubscription

- Code equivalent regardless whether neighboring
partition is on the same node

- Overlap of communication and computation
» More parallelism (work) than compute resources (cores)
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Futurized 2D Stencil: Main Loop
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One Timestep: Update Boundaries
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One Timestep: Interior
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Merging White Dwarfs: OctoTiger
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Adaptive Mesh Refinement

9 Strong-scaling efficiency: 68.1%

29 - -

Weak-scaling efficiency: 78.4%

evel 14 —e— Level 14 ||
—m— Level 15 —m— Level 15
—4a— Level 16 —— Level 16
—+— Level 17 —+— Level 17

21 23 25 27 29 211 213

Number of nodes

Speedup w.r.t sub-grids on one node
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The Solution to the Application Problem
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thread 8
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The Solution to the Application Problems
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