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Motivations

● Target an under-served user base: Fortran
– Enable scientists and engineers to develop efficient applications for HPC beyond the 

“embarrassingly parallel” problems

● Explore the native parallel features of Fortran
– Don’t force “reformulating” the problem to be able to interoperate with C/C++ or other 

external libraries 



Motivations

Compiled languages used at NERSC

● Fortran remains a common language for 
scientific computation.

● Noteworthy increases in
C++ and multi-language 

● Language use inferred from runtime 
libraries recorded by ALTD.
(previous analysis used survey data)

○ ALTD-based results are mostly in 
line with survey data.

○ No change in language ranking
○ Survey underrepresented Fortran 

use.

● Nearly ¼ of jobs use Python.

Totals exceed 100% because some users rely on multiple languages.

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf


Implementation
● One scheduler image and multiple executer images
● Mailbox, and task assignment coarrays
● Events to signal ready for work and task completed
● Directed acyclic graph (DAG) to define task dependencies





Coarrays Needed
● type(payload_t), allocatable :: mailbox(:)[:]
● type(event_type), allocatable :: ready_for_next_task(:)[:]
● type(event_type) :: task_assigned[*]
● integer :: task_identifier[*]
● integer, allocatable :: task_assignment_history(:)[:]



Startup Procedure
● Define Tasks
● Define DAG
● Construct Application

– DAG and tasks must correspond

● Call image%run(application)
NOTE: All images must have same application to start
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Scheduler Steps
● Find executor that has posted it is ready

– While we do this, we keep track of what tasks have been completed

● Find next task with all dependencies completed
● “Wait” for the ready executor (balances posts/waits)
● Assign the task to the executor
● Post that the executor has been assigned a task
● Repeat
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Executor Steps
● Post ready for a task
● Wait till it has been assigned a task
● Collect payloads from executors that ran dependent tasks

– We access the history kept by the scheduler to determine this

● Execute task and store result in mailbox
● Repeat
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Fortran’s Advantages
● Coarrays and Events a perfect match

– Coarray to communicate task inputs and outputs
– Events to signal task start and completion

● Teams should allow for scalable implementation
– Partition task DAG and have multiple schedulers work on independent regions with separate 

teams of executors

● Polymorphism
– Different kinds of task can exist that capture different kinds of “input” data at startup

● Fortran’s History
– Likely lots of applications that could be adapted easily



Fortran’s Disadvantages
● Can’t “transfer” polymorphic objects

– A strategic change to the standard could enable this

● No introspection
– Automatic task detection, fusion or splitting not possible

● Fortran’s History
– Many existing applications have shared global state
– Presents data races in task based execution
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Example Applications



Compiling FEATS
feats = dag_t(&
  [ vertex_t([integer::], name_string(assert_m)) &
  , vertex_t([integer::], name_string(dag_m)) &
  , vertex_t( &
    [dag_m, task_item_m], name_string(application_m)) &
  , vertex_t( &
    [assert_m, application_m], &
    name_string(application_s)) &
  , vertex_t( &
    [integer::], name_string(feats_result_map_m)) &
  , vertex_t( &
    [payload_m, task_m], name_string(final_task_m)) &
  , vertex_t([final_task_m], name_string(final_task_s)) &
  , vertex_t( &
    [application_m, feats_result_map_m, payload_m], &
    name_string(image_m)) &
  , vertex_t( &
    [dag_m, final_task_m, image_m, &
    mailbox_m, task_item_m], &
    name_string(image_s)) &
  , vertex_t([payload_m], name_string(mailbox_m)) &
  , vertex_t([integer::], name_string(payload_m)) &
  , vertex_t([payload_m], name_string(payload_s)) &
  , vertex_t( &
    [payload_m, task_m], name_string(task_item_m)) &
  , vertex_t([task_item_m], name_string(task_item_s)) &
  , vertex_t([payload_m], name_string(task_m)) &
  , vertex_t([task_m], name_string(task_s)) &
  ])
tasks = [(task_item_t(compile_task_t(name_string(i))), &
  i = 1, size(names))]
application = application_t(feats, tasks)



Quadratic Solver

if (this_image() == 1) then
  print *, "Enter values for a, b and c in `a*x**2 + b*x + c`:"
  read (*, *) a, b, c
end if
call co_broadcast(a, 1)
call co_broadcast(b, 1)
call co_broadcast(c, 1)
solver = dag_t( &
  [ vertex_t([integer::], ”a”) &
  , vertex_t([integer::], ”b”) &
  , vertex_t([integer::], ”c”) &
  , vertex_t([2], ”#∗∗2”) &
  , vertex_t([1,3], ”4∗#∗#”) &
  , vertex_t([4,5], ”sqrt(# − #)) &
  , vertex_t([2,6], ”−# +− #”) &
  , vertex_t([1], ”2∗#”) &
  , vertex_t([8,7], ”# / #”) &
  , vertex_t([9], ”print roots”) &
  ])
tasks = &
  [ task_item_t(a_t(a)) &
  , task_item_t(b_t(b)) &
  , task_item_t(c_t(c)) &
  , task_item_t(b_squared_t()) &
  , task_item_t(four_a_c_t()) &
  , task_item_t(square_root_t()) &
  , task_item_t(minus_b_pm_square_root_t()) &
  , task_item_t(two_a_t()) &
  , task_item_t(division_t()) &
  , task_item_t(printer_t()) &
  ]
application = application_t(solver, tasks)



Conclusions
● It works
● There are limitations
● Future Work

– Propose changes to Fortran standard to improve utility/flexibility
– Explore performance characteristics

● What is ideal ratio of task-size to number of tasks
– Explore use of teams to enable multiple schedulers
– Find “beta” testers, i.e. target applications



Questions?

https://github.com/sourceryinstitute/feats
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