
Framework for Extensible, Asynchronous Task
Scheduling (FEATS) in Fortran

Brad Richardson, Damian Rouson, Harris Snyder and Robert
Singleterry

Agenda
● Motivations
● Implementation Details
● Example/Demo Applications
● Conclusions

Motivations

● Target an under-served user base: Fortran
– Enable scientists and engineers to develop efficient applications for HPC beyond the

“embarrassingly parallel” problems

● Explore the native parallel features of Fortran
– Don’t force “reformulating” the problem to be able to interoperate with C/C++ or other

external libraries

Motivations

Compiled languages used at NERSC

● Fortran remains a common language for
scientific computation.

● Noteworthy increases in
C++ and multi-language

● Language use inferred from runtime
libraries recorded by ALTD.
(previous analysis used survey data)

○ ALTD-based results are mostly in
line with survey data.

○ No change in language ranking
○ Survey underrepresented Fortran

use.

● Nearly ¼ of jobs use Python.

Totals exceed 100% because some users rely on multiple languages.

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

Implementation
● One scheduler image and multiple executer images
● Mailbox, and task assignment coarrays
● Events to signal ready for work and task completed
● Directed acyclic graph (DAG) to define task dependencies

Coarrays Needed
● type(payload_t), allocatable :: mailbox(:)[:]
● type(event_type), allocatable :: ready_for_next_task(:)[:]
● type(event_type) :: task_assigned[*]
● integer :: task_identifier[*]
● integer, allocatable :: task_assignment_history(:)[:]

Startup Procedure
● Define Tasks
● Define DAG
● Construct Application

– DAG and tasks must correspond

● Call image%run(application)
NOTE: All images must have same application to start

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

Scheduler Steps
● Find executor that has posted it is ready

– While we do this, we keep track of what tasks have been completed

● Find next task with all dependencies completed
● “Wait” for the ready executor (balances posts/waits)
● Assign the task to the executor
● Post that the executor has been assigned a task
● Repeat

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Find Executor
DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Find Next Task
DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Wait for ready image

event wait(...)

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Assign task

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Post task assigned

event post(...)

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

Executor Steps
● Post ready for a task
● Wait till it has been assigned a task
● Collect payloads from executors that ran dependent tasks

– We access the history kept by the scheduler to determine this

● Execute task and store result in mailbox
● Repeat

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Post ready for task

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Wait for task assignment

event wait(...)

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Collect inputs

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Execute task and store result

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

Fortran’s Advantages
● Coarrays and Events a perfect match

– Coarray to communicate task inputs and outputs
– Events to signal task start and completion

● Teams should allow for scalable implementation
– Partition task DAG and have multiple schedulers work on independent regions with separate

teams of executors

● Polymorphism
– Different kinds of task can exist that capture different kinds of “input” data at startup

● Fortran’s History
– Likely lots of applications that could be adapted easily

Fortran’s Disadvantages
● Can’t “transfer” polymorphic objects

– A strategic change to the standard could enable this

● No introspection
– Automatic task detection, fusion or splitting not possible

● Fortran’s History
– Many existing applications have shared global state
– Presents data races in task based execution

n_tasksmailbox

n_imagesready_for_task

n_taskstask_assign_hist

task_id

task_assigned

scheduler

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

n_tasks

n_images

n_tasks

executor

Unused

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

DAG/
Tasks

Example Applications

Compiling FEATS
feats = dag_t(&
 [vertex_t([integer::], name_string(assert_m)) &
 , vertex_t([integer::], name_string(dag_m)) &
 , vertex_t(&
 [dag_m, task_item_m], name_string(application_m)) &
 , vertex_t(&
 [assert_m, application_m], &
 name_string(application_s)) &
 , vertex_t(&
 [integer::], name_string(feats_result_map_m)) &
 , vertex_t(&
 [payload_m, task_m], name_string(final_task_m)) &
 , vertex_t([final_task_m], name_string(final_task_s)) &
 , vertex_t(&
 [application_m, feats_result_map_m, payload_m], &
 name_string(image_m)) &
 , vertex_t(&
 [dag_m, final_task_m, image_m, &
 mailbox_m, task_item_m], &
 name_string(image_s)) &
 , vertex_t([payload_m], name_string(mailbox_m)) &
 , vertex_t([integer::], name_string(payload_m)) &
 , vertex_t([payload_m], name_string(payload_s)) &
 , vertex_t(&
 [payload_m, task_m], name_string(task_item_m)) &
 , vertex_t([task_item_m], name_string(task_item_s)) &
 , vertex_t([payload_m], name_string(task_m)) &
 , vertex_t([task_m], name_string(task_s)) &
])
tasks = [(task_item_t(compile_task_t(name_string(i))), &
 i = 1, size(names))]
application = application_t(feats, tasks)

Quadratic Solver

if (this_image() == 1) then
 print *, "Enter values for a, b and c in `a*x**2 + b*x + c`:"
 read (*, *) a, b, c
end if
call co_broadcast(a, 1)
call co_broadcast(b, 1)
call co_broadcast(c, 1)
solver = dag_t(&
 [vertex_t([integer::], ”a”) &
 , vertex_t([integer::], ”b”) &
 , vertex_t([integer::], ”c”) &
 , vertex_t([2], ”#∗∗2”) &
 , vertex_t([1,3], ”4∗#∗#”) &
 , vertex_t([4,5], ”sqrt(# − #)) &
 , vertex_t([2,6], ”−# +− #”) &
 , vertex_t([1], ”2∗#”) &
 , vertex_t([8,7], ”# / #”) &
 , vertex_t([9], ”print roots”) &
])
tasks = &
 [task_item_t(a_t(a)) &
 , task_item_t(b_t(b)) &
 , task_item_t(c_t(c)) &
 , task_item_t(b_squared_t()) &
 , task_item_t(four_a_c_t()) &
 , task_item_t(square_root_t()) &
 , task_item_t(minus_b_pm_square_root_t()) &
 , task_item_t(two_a_t()) &
 , task_item_t(division_t()) &
 , task_item_t(printer_t()) &
]
application = application_t(solver, tasks)

Conclusions
● It works
● There are limitations
● Future Work

– Propose changes to Fortran standard to improve utility/flexibility
– Explore performance characteristics

● What is ideal ratio of task-size to number of tasks
– Explore use of teams to enable multiple schedulers
– Find “beta” testers, i.e. target applications

Questions?

https://github.com/sourceryinstitute/feats

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

