<& cscs ETHzurich
\' ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

s s i s T T 7 ~ =g "ol iy — I - — 1 - AL I S —
B = S S— — | —_ = | by | - - =] ; = ! =

=+ ":'i-—j' e U ¥ = ' : ~— : === - ; — ==t = TR R i iilﬂ, Gl |
e : T N T 0a] |1 :ﬁ' |

HPX and Kokkos: unifying asynchrony and portability on
the path towards standardization

WAMTAZ23
Mikael Simberg (Swiss National Supercomputing Centre), Gregor Dail3 (University of Stuttgart)
February 17th, 2023

<& _ CsCs ETHziirich
\' ‘ Centro Svizzero di Calcolo Scientifico

A\ Swiss National Supercomputing Centre

std: :execution

std: :execution: whatis it?

® Generic framework for asynchrony
— Integrates and replaces previous proposals (most notably P0443)

m Considered for inclusion in C++26

® Handles to execution contexts: schedulers (previously executors)
® Handles to asynchronous values: senders (previously futures)

O

Algorithms for adapting, combining, and consuming senders
— Allow building the DAG of work

Interoperates with coroutines
B “sender/receiver” iIs the same as std: :execution

\:0:0 CSCS WAMTA23 | 3 ETHzirich

std: :execution: example

sender = std::move(sender) |
ex::transfer(ex::with_stacksize(ex::thread_pool_scheduler{}, stacksize)) |
ex::then(std: :move(f_setup)) |
ex::bulk(n, std::move(f)) |
ex::then(std::move(f_finalize)) |
ex::ensure_started();

Note: transfer to hopefully be replaced by a scoped on algorithm in the future

\:0:0 CSCS WAMTA23 | 4 ETHzirich

std: :execution: why?

® Customization and zero-overhead
— std::future type-erased, leaves little room for customization
— std::execution decomposes work description and submission into low-level
basis operations: allows eliding heap allocations in many situations

m std:.execution is low level for those that need it, surface syntax is simple for
users
m Interoperability between different libraries
® More information
— Working with Asynchrony Generically: A Tour of C++ Executors (Eric Niebler)
* https://youtube.com/watch?v=xLboNIf7BTg

* https://youtube.com/watch?v=6a0zzUBUNW4
— https://wg21.link/p2300

\:0:0 CSCS nsert_Footer | 5 ETHzirich

https://youtube.com/watch?v=xLboNIf7BTg
https://youtube.com/watch?v=6a0zzUBUNW4
https://wg21.link/p2300

<& _ CsCs ETHziirich
\' ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

HPX and Kokkos

HPX and Kokkos

HPX

Lightweight CPU tasking runtime

Interoperability with asynchronous APIs of
CUDA, HIP, SYCL (in progress), MPI

Implements previous and current C++
proposals

Full implementation of C++ parallel
algorithms (including ranges)
Involved in C++ standardization

HPX

O STE||AR GROUP

\‘0‘0 CSCS WAMTA23

S 4

7

Kokkos

Performance portability layer

Portable execution and memory
management on all major
runtimes/programming models

Full implementation of C++ parallel
algorithms

Involved in C++ standardization

~~7
-

ETH:zlrich

HPX and Kokkos: previous work

m HPX backend in Kokkos
— Built on HPX futures, executors

m HPX-Kokkos interoperability layer
— Futures from some Kokkos backends (HPX, CUDA, HIP, SYCL in progress)

m Used in Octo-Tiger

e
Fifia LYY
I! 5 ;

Octo-Tiger

G. Daif3, S. Y. Singanaboina, P. Diehl, H. Kaiser and D. Pfluger, "From Merging Frameworks to Merging Stars: Experiences using HPX,
Kokkos and SIMD Types," 2022 IEEE/ACM 7th International Workshop on Extreme Scale Programming Models and Middleware
(ESPM2), Dallas, TX, USA, 2022, pp. 10-19, doi: 10.1109/ESPM256814.2022.00007.

G. Dail3 et al., "Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX," 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 2021, pp. 377-386, doi:
10.1109/IPDPSW52791.2021.00066.

\:0:0 CSCS WAMTA23 | 8 ETHzirich

HPX and Kokkos: this work

m Validate usability and performance of std::execution

m std::executionin HPX
— Implements the majority of std::execution using C++17
— Eventually replace by reference implementation (
https://github.com/NVIDIA/stdexec) or standard library experimental
Implementations

m HPX's std: :execution implementation for Kokkos backend
— Almost no visible API changes; added way to get a sender from instance

sender = std::move(sender) |
ex::transfer(ex::with_stacksize(ex::thread_pool_scheduler{}, stacksize)) |
ex::then(std::move(f_setup)) |
ex::bulk(n, std::move(f)) |
ex::then(std::move(f_finalize)) |
ex::ensure_started();

\:0:0 CSCS WAMTA23 | 9 ETHzirich

https://github.com/NVIDIA/stdexec

std: :execution experience in HPX and Kokkos

The good

m bulk, then, transfer are sufficient algorithms to

implement Kokkos backend

m Performance same or better compared to previous
implementation

m Customization and tag_invoke, powerful

m Straightforward generalization from futures to senders
and executors to schedulers, makes transition easier

The ugly
m tag_invoke

30
\\0'0 CSCS

WAMTA23

10

The bad

Compilation times and bloat (but
std: :execution is not unigue)

No type-erased sender (but this is planned
as an extension)

Unknown

Memory management not part of
std: :execution: will there be something
or will we all use unified memory by then?

ETH:zlrich

<& _ CsCs ETHziirich
\' ‘ Centro Svizzero di Calcolo Scientifico

A\ Swiss National Supercomputing Centre

Benchmarks

Benchmarks

m Kokkos Gram-Schmidt performance test
— Not full application, but gives a good indication about relative performance
— Fork-join with for loops and reductions

m Octo-Tiger gravity-only scenario (three levels)
— Simulation of binary star mergers
— Octree, many independent kernels created while traversing tree
— Monopole and multipole kernels can run with a single task or many tasks
— See later presentation!

® Preliminary results, not much effort has been put into optimizations

\:0:0 CSCS WAMTA23 | 12 ETHzirich

Benchmarks: Kokkos Gram-Schmidt

Average time per iteration [seconds]

% cscs

S 4

Gram-Schmidt
Input size: 524288
Piz Daint (2xIntel Xeon E5-2695 Broadwell

100.0

Threads
Backend

B HPX executors i HPX std::execution ® OpenMP

WAMTA23 | 13

Average time per iteration [seconds]

Gram-Schmidt
Input size: 524288
Alps (2xAMD EPYC 7742 Rome)

100.0
1002 //////
7

10-1.0

2° 2" 2¢ 28 2

Threads
Backend
B HPX executors @ HPX std::execution m OpenMP
ETH:zurich

Benchmarks: Kokkos Gram-Schmidt

Gram-Schmidt Gram-Schmidt
Input size: 1024 Input size: 1024
Piz Daint (2xIntel Xeon E5-2695 Broadwell) Alps (2xAMD EPYC 7742 Rome)

10°

10°

Average time per iteration [seconds]
S
Average time per iteration [seconds]

1073 1073
2° 2" p. 29 74 22 2° P 27 24 2° 2P
Threads Threads
Backend Backend
M HPX executors i HPX std::execution m OpenMP B HPX executors i HPX std::execution m OpenMP
\‘0‘0 CSCS WAMTA23 | 14 ETHzirich

S 4

Average time per iteration [seconds]

Benchmarks: Octo-Tiger gravity-only

Octo-Tiger
All configurations

Piz Daint (2xIntel Xeon E5-2695 Broadwell)

100.0
10-0.5
10-1.0
1015 Mono: 1, Multi: 64
2° 2! 22 23 24 2°
Threads
Backend

m HPX executors m HPX std::execution m Serial

9
<@® CSCs

26

Average time per iteration [seconds]

100.0

10-0.5

10-1.0

10-1.5

10-2.0

Octo-Tiger
All configurations
Alps (2xAMD EPYC 7742 Rome)

==

Mono: 1, Multi: 64

29 2?2 24 2°

Threads
Backend

m HPX executors m HPX std::execution m Serial

WAMTA23 | 15

28

Average time per iteration [seconds]

101.0

100.5

100.0

10-0.5

10-1.0

Octo-Tiger
All configurations
Ookami (Fujitsu A64FX)

Mono: 1, Multi: 64

29 2% 22 23 24 2° 28

Threads
Backend

m HPX executors m HPX std::execution m Serial

ETH:zlrich

Benchmarks

m Performance generally the same or better with std::execution backend

® Not solely thanks to std::execution, but it does help

— Example of std::execution improvement: bulk operations don’t need one
future per task, can combine them into one bigger allocation in the operation
state

— Example of std::execution improvement: lazy construction of DAG means that
many internal locks required by futures are no longer required

— Example of non-std::.execution improvement: spawning only one task per
worker thread and running a “mini-scheduler” on them for a parallel region
(though this can also be slower in some situations)

\:0:0 CSCS WAMTA23 | 16 ETHzirich

<& _ CsCs ETHziirich
\' ‘ Centro Svizzero di Calcolo Scientifico

A\ Swiss National Supercomputing Centre

Conclusion

Outlook and future work

m Can e.g. Kokkos support any std::execution scheduler? How much
customization is required to make it work? How much customization is required
to make it fast?

m Can all the C++ parallel algorithms be written on top of std::execution? All signs
point to yes, but we haven’t done that yet. Same concerns as above.

B std:.execution gives interoperability between most runtimes, but contention
between CPU thread pools is still a problem.

® What should asynchronous parallel algorithms look like?

®m \What should communication/remote execution look like? MPI? Lower-level
libraries like libfabric?

\:0:0 CSCS WAMTA23 | 18 ETHzirich

Conclusion

m Standardization is an important step to collect knowledge that has accumulated
In separate libraries and communities
— Combining HPX, Kokkos, std:.execution is one step of validating
std::execution (in our view, a successful step)

m std:.execution gives a more generic framework with the same or better
performance as HPX’s futures and executors

® Great time to start trying out std::execution

The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute
for Advanced Computational Science at Stony Brook University for access to the innovative high-
performance Ookami computing system, which was made possible by a $5M National Science Foundation
grant (#1927880).

\:0:0 CSCS WAMTA23 | 19 ETHzirich

Benchmark details

m Kokkos commits
- HPX std: :execution: 5ea96bca
- HPX executors/OpenMP/Serial: 879d6079
m HPX: dO09db415
— Networking off
- Jemalloc
m HPX-Kokkos: 3383f78a
m Octo-Tiger: 3d3511f4
— With default SIMD support
m Compilers:
— Piz Daint: Cray CCE 12
- Alps: GCC 11
— Ookami: GCC 12

\:0:0 CSCS WAMTA23 | 20 ETHzirich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

