
HPX and Kokkos: unifying asynchrony and portability on
the path towards standardization
WAMTA23
Mikael Simberg (Swiss National Supercomputing Centre), Gregor Daiß (University of Stuttgart)
February 17th, 2023



std::execution



std::execution: what is it?

▪ Generic framework for asynchrony
– Integrates and replaces previous proposals (most notably P0443)

▪ Considered for inclusion in C++26
▪ Handles to execution contexts: schedulers (previously executors)
▪ Handles to asynchronous values: senders (previously futures)
▪ Algorithms for adapting, combining, and consuming senders

– Allow building the DAG of work
▪ Interoperates with coroutines
▪ “sender/receiver” is the same as std::execution

WAMTA23 3



std::execution: example

Note: transfer to hopefully be replaced by a scoped on algorithm in the future

WAMTA23 4



std::execution: why?

▪ Customization and zero-overhead
– std::future type-erased, leaves little room for customization
– std::execution decomposes work description and submission into low-level 

basis operations: allows eliding heap allocations in many situations
▪ std::execution is low level for those that need it, surface syntax is simple for 

users
▪ Interoperability between different libraries
▪ More information

– Working with Asynchrony Generically: A Tour of C++ Executors (Eric Niebler)
● https://youtube.com/watch?v=xLboNIf7BTg
● https://youtube.com/watch?v=6a0zzUBUNW4

– https://wg21.link/p2300

Insert_Footer 5

https://youtube.com/watch?v=xLboNIf7BTg
https://youtube.com/watch?v=6a0zzUBUNW4
https://wg21.link/p2300


HPX and Kokkos



HPX
▪ Lightweight CPU tasking runtime
▪ Interoperability with asynchronous APIs of 

CUDA, HIP, SYCL (in progress), MPI
▪ Implements previous and current C++ 

proposals
▪ Full implementation of C++ parallel 

algorithms (including ranges)
▪ Involved in C++ standardization

Kokkos
▪ Performance portability layer
▪ Portable execution and memory 

management on all major 
runtimes/programming models

▪ Full implementation of C++ parallel 
algorithms

▪ Involved in C++ standardization

7

HPX and Kokkos

WAMTA23



HPX and Kokkos: previous work

▪ HPX backend in Kokkos
– Built on HPX futures, executors

▪ HPX-Kokkos interoperability layer
– Futures from some Kokkos backends (HPX, CUDA, HIP, SYCL in progress)

▪ Used in Octo-Tiger

G. Daiß, S. Y. Singanaboina, P. Diehl, H. Kaiser and D. Pflüger, "From Merging Frameworks to Merging Stars: Experiences using HPX, 
Kokkos and SIMD Types," 2022 IEEE/ACM 7th International Workshop on Extreme Scale Programming Models and Middleware 
(ESPM2), Dallas, TX, USA, 2022, pp. 10-19, doi: 10.1109/ESPM256814.2022.00007.
G. Daiß et al., "Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX," 2021 IEEE International Parallel and 
Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 2021, pp. 377-386, doi: 
10.1109/IPDPSW52791.2021.00066.

WAMTA23 8



HPX and Kokkos: this work

▪ Validate usability and performance of std::execution
▪ std::execution in HPX

– Implements the majority of std::execution using C++17
– Eventually replace by reference implementation (

https://github.com/NVIDIA/stdexec) or standard library experimental 
implementations

▪ HPX’s std::execution implementation for Kokkos backend
– Almost no visible API changes; added way to get a sender from instance

WAMTA23 9

https://github.com/NVIDIA/stdexec


The good 🎉
▪ bulk, then, transfer are sufficient algorithms to 

implement Kokkos backend
▪ Performance same or better compared to previous 

implementation
▪ Customization and tag_invoke, powerful
▪ Straightforward generalization from futures to senders 

and executors to schedulers, makes transition easier

The bad 👎
▪ Compilation times and bloat (but 

std::execution is not unique)
▪ No type-erased sender (but this is planned 

as an extension)

10

std::execution experience in HPX and Kokkos

WAMTA23

The ugly 😱
▪ tag_invoke

Unknown 🌌
▪ Memory management not part of 

std::execution: will there be something 
or will we all use unified memory by then?



Benchmarks



Benchmarks

▪ Kokkos Gram-Schmidt performance test
– Not full application, but gives a good indication about relative performance
– Fork-join with for loops and reductions

▪ Octo-Tiger gravity-only scenario (three levels)
– Simulation of binary star mergers
– Octree, many independent kernels created while traversing tree
– Monopole and multipole kernels can run with a single task or many tasks
– See later presentation!

▪ Preliminary results, not much effort has been put into optimizations

WAMTA23 12



WAMTA23 13

Benchmarks: Kokkos Gram-Schmidt



WAMTA23 14

Benchmarks: Kokkos Gram-Schmidt



WAMTA23 15

Benchmarks: Octo-Tiger gravity-only



Benchmarks

▪ Performance generally the same or better with std::execution backend
▪ Not solely thanks to std::execution, but it does help

– Example of std::execution improvement: bulk operations don’t need one 
future per task, can combine them into one bigger allocation in the operation 
state

– Example of std::execution improvement: lazy construction of DAG means that 
many internal locks required by futures are no longer required

– Example of non-std::execution improvement: spawning only one task per 
worker thread and running a “mini-scheduler” on them for a parallel region 
(though this can also be slower in some situations)

WAMTA23 16



Conclusion



Outlook and future work

▪ Can e.g. Kokkos support any std::execution scheduler? How much 
customization is required to make it work? How much customization is required 
to make it fast?

▪ Can all the C++ parallel algorithms be written on top of std::execution? All signs 
point to yes, but we haven’t done that yet. Same concerns as above.

▪ std::execution gives interoperability between most runtimes, but contention 
between CPU thread pools is still a problem.

▪ What should asynchronous parallel algorithms look like?

▪ What should communication/remote execution look like? MPI? Lower-level 
libraries like libfabric?

WAMTA23 18



Conclusion

▪ Standardization is an important step to collect knowledge that has accumulated 
in separate libraries and communities
– Combining HPX, Kokkos, std::execution is one step of validating 

std::execution (in our view, a successful step)
▪ std::execution gives a more generic framework with the same or better 

performance as HPX’s futures and executors
▪ Great time to start trying out std::execution

The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute 
for Advanced Computational Science at Stony Brook University for access to the innovative high-
performance Ookami computing system, which was made possible by a $5M National Science Foundation 
grant (#1927880).

WAMTA23 19



Benchmark details

▪ Kokkos commits
– HPX std::execution: 5ea96bca
– HPX executors/OpenMP/Serial: 879d6079

▪ HPX: d09db415
– Networking off
– Jemalloc

▪ HPX-Kokkos: 3383f78a
▪ Octo-Tiger: 3d3511f4

– With default SIMD support
▪ Compilers:

– Piz Daint: Cray CCE 12
– Alps: GCC 11
– Ookami: GCC 12

WAMTA23 20


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

