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std: :execution: whatis it?

® Generic framework for asynchrony
— Integrates and replaces previous proposals (most notably P0443)

m Considered for inclusion in C++26

® Handles to execution contexts: schedulers (previously executors)
® Handles to asynchronous values: senders (previously futures)

O

Algorithms for adapting, combining, and consuming senders
— Allow building the DAG of work

Interoperates with coroutines
B “sender/receiver” iIs the same as std: :execution
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std: :execution: example

sender = std::move(sender) |
ex::transfer(ex::with_stacksize(ex::thread_pool_scheduler{}, stacksize)) |
ex::then(std: :move(f_setup)) |
ex::bulk(n, std::move(f)) |
ex::then(std::move(f_finalize)) |
ex::ensure_started();

Note: transfer to hopefully be replaced by a scoped on algorithm in the future
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std: :execution: why?

® Customization and zero-overhead
— std::future type-erased, leaves little room for customization
— std::execution decomposes work description and submission into low-level
basis operations: allows eliding heap allocations in many situations

m std:.execution is low level for those that need it, surface syntax is simple for
users
m Interoperability between different libraries
® More information
— Working with Asynchrony Generically: A Tour of C++ Executors (Eric Niebler)
* https://youtube.com/watch?v=xLboNIf7BTg

* https://youtube.com/watch?v=6a0zzUBUNW4
— https://wg21.link/p2300
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HPX and Kokkos

HPX

Lightweight CPU tasking runtime

Interoperability with asynchronous APIs of
CUDA, HIP, SYCL (in progress), MPI

Implements previous and current C++
proposals

Full implementation of C++ parallel
algorithms (including ranges)
Involved in C++ standardization

HPX

O STE||AR GROUP
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Kokkos

Performance portability layer

Portable execution and memory
management on all major
runtimes/programming models

Full implementation of C++ parallel
algorithms

Involved in C++ standardization
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HPX and Kokkos: previous work

m HPX backend in Kokkos
— Built on HPX futures, executors

m HPX-Kokkos interoperability layer
— Futures from some Kokkos backends (HPX, CUDA, HIP, SYCL in progress)

m Used in Octo-Tiger

e
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Octo-Tiger

G. Daif3, S. Y. Singanaboina, P. Diehl, H. Kaiser and D. Pfluger, "From Merging Frameworks to Merging Stars: Experiences using HPX,
Kokkos and SIMD Types," 2022 IEEE/ACM 7th International Workshop on Extreme Scale Programming Models and Middleware
(ESPM2), Dallas, TX, USA, 2022, pp. 10-19, doi: 10.1109/ESPM256814.2022.00007.

G. Dail3 et al., "Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX," 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 2021, pp. 377-386, doi:
10.1109/IPDPSW52791.2021.00066.
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HPX and Kokkos: this work

m Validate usability and performance of std::execution

m std::executionin HPX
— Implements the majority of std::execution using C++17
— Eventually replace by reference implementation (
https://github.com/NVIDIA/stdexec) or standard library experimental
Implementations

m HPX's std: :execution implementation for Kokkos backend
— Almost no visible API changes; added way to get a sender from instance

sender = std::move(sender) |
ex::transfer(ex::with_stacksize(ex::thread_pool_scheduler{}, stacksize)) |
ex::then(std::move(f_setup)) |
ex::bulk(n, std::move(f)) |
ex::then(std::move(f_finalize)) |
ex::ensure_started();
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std: :execution experience in HPX and Kokkos

The good

m bulk, then, transfer are sufficient algorithms to

implement Kokkos backend

m Performance same or better compared to previous
implementation

m Customization and tag_invoke, powerful

m Straightforward generalization from futures to senders
and executors to schedulers, makes transition easier

The ugly
m tag_invoke

30
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The bad

Compilation times and bloat (but
std: :execution is not unigue)

No type-erased sender (but this is planned
as an extension)

Unknown

Memory management not part of
std: :execution: will there be something
or will we all use unified memory by then?
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Benchmarks

m Kokkos Gram-Schmidt performance test
— Not full application, but gives a good indication about relative performance
— Fork-join with for loops and reductions

m Octo-Tiger gravity-only scenario (three levels)
— Simulation of binary star mergers
— Octree, many independent kernels created while traversing tree
— Monopole and multipole kernels can run with a single task or many tasks
— See later presentation!

® Preliminary results, not much effort has been put into optimizations
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Benchmarks: Kokkos Gram-Schmidt
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Benchmarks: Kokkos Gram-Schmidt
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Average time per iteration [seconds]

Benchmarks: Octo-Tiger gravity-only
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Benchmarks

m Performance generally the same or better with std::execution backend

® Not solely thanks to std::execution, but it does help

— Example of std::execution improvement: bulk operations don’t need one
future per task, can combine them into one bigger allocation in the operation
state

— Example of std::execution improvement: lazy construction of DAG means that
many internal locks required by futures are no longer required

— Example of non-std::.execution improvement: spawning only one task per
worker thread and running a “mini-scheduler” on them for a parallel region
(though this can also be slower in some situations)

\:0:0 CSCS WAMTA23 | 16 ETHzirich



<& _ CsCs ETHziirich
\' ‘ Centro Svizzero di Calcolo Scientifico

A\ Swiss National Supercomputing Centre

Conclusion




Outlook and future work

m Can e.g. Kokkos support any std::execution scheduler? How much
customization is required to make it work? How much customization is required
to make it fast?

m Can all the C++ parallel algorithms be written on top of std::execution? All signs
point to yes, but we haven’t done that yet. Same concerns as above.

B std:.execution gives interoperability between most runtimes, but contention
between CPU thread pools is still a problem.

® What should asynchronous parallel algorithms look like?

®m \What should communication/remote execution look like? MPI? Lower-level
libraries like libfabric?
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Conclusion

m Standardization is an important step to collect knowledge that has accumulated
In separate libraries and communities
— Combining HPX, Kokkos, std:.execution is one step of validating
std::execution (in our view, a successful step)

m std:.execution gives a more generic framework with the same or better
performance as HPX’s futures and executors

® Great time to start trying out std::execution

The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute
for Advanced Computational Science at Stony Brook University for access to the innovative high-
performance Ookami computing system, which was made possible by a $5M National Science Foundation
grant (#1927880).
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Benchmark details

m Kokkos commits
- HPX std: :execution: 5ea96bca
- HPX executors/OpenMP/Serial: 879d6079
m HPX: dO09db415
— Networking off
- Jemalloc
m HPX-Kokkos: 3383f78a
m Octo-Tiger: 3d3511f4
— With default SIMD support
m Compilers:
— Piz Daint: Cray CCE 12
- Alps: GCC 11
— Ookami: GCC 12
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