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Abstract

Ontologies store semantic knowledge in a machine-readable way and
represent domain knowledge in controlled vocabulary. In this work, a
workflow is set up to derive classes from a text dataset using natural
language processing (NLP) methods. Furthermore, ontologies and the-
sauri are browsed for those classes and corresponding existing textual
definitions are extracted. A base ontology is selected to be extended
with knowledge from catalysis science, while word similarity is used to
introduce new classes to the ontology based on the class candidates.
Relations are introduced to automatically reference them to already
existing classes in the selected ontology. The workflow is conducted for
a text dataset related to catalysis research on methanation of CO2

and seven semantic artifacts assisting ontology extension by domain
experts. Undefined concepts and unstructured relations can be more eas-
ily introduced automatically into existing ontologies. Domain experts
can then revise the resulting extended ontology by choosing the best
fitting definition of a class and specifying suggested relations between
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concepts of catalyst research. A structured extension of ontologies sup-
ported by NLP methods is made possible to facilitate a Findable,
Accessible, Interoperable, Reusable (FAIR) data management workflow.

Keywords: Ontology, Natural Language Processing, Automated Ontology
Annotation, Information Extraction, CO2 Methanation, Catalytic Conversion

1 Introduction

In current research data management, interconnection of the data produced
and its interpretation are essential for comprehensible deductions of new
knowledge. Research data needs to be FAIR (Findable, Accessible, Interoper-
able, and Reusable) by humans and machines in order to make proper use of
data recorded in experiments, e.g. in electronic lab notebooks [1, 2]. While a
researcher can easily grasp and interpret semantics expressed in texts using
their implicit knowledge [3], a machine cannot perform this without having
a representation of such knowledge embedded. Here, ontologies are used to
describe implicit knowledge in an explicit way as they represent explicit spec-
ifications of conceptualizations [4]. Ontologies are informatic constructs used
to represent relations among classes, such as catalyst or reactor.

As classification is an important concept of ontologies, the hierarchic sort-
ing of the classes in turn represents the backbone of the ontologies. While
the connection of classes within ontologies are important for their definition,
short definition sentences (definition strings) are used as class annotation. This
helps humans using the ontology to define and understand the classes of the
ontology properly. Another source of definition strings for respective classes is
represented by thesauri. While they do not necessarily have semantic relations
between their concepts like ontologies, they often contain more concepts and
respective definition strings than ontologies.

For a domain expert who wants to represent the domain knowledge in
an ontology, the hurdle to include ontology classes in the correct form into
an ontology might be quite challenging and time consuming. Being experts
in certain scientific fields, domain experts might also omit some knowledge
because it is considered as trivial. Extending an ontology for own needs often
is tedious work [5, 6], thus approaches are desired to simplify extension of
ontologies and reduce consumed time for domain experts in order to raise
acceptance of ontologies.

Since already existing ontologies do not necessarily contain all classes essen-
tial to describe the respective knowledge domain, an automated extension of
ontologies is desirable. In addition, plenty of information is presented in sci-
entific research in textual form, e.g. research papers by many domain experts.
Those research papers contain a high number of domain specific vocabulary.
Using techniques from Natural Language Processing (NLP), in turn can help
to automate the setup of ontologies based on unstructured (natural) text
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as contained in research papers [7]. Exemplarily, by using Part of Speech
(POS) tagging, nouns can be sorted out automatically from a given text and
afterwards be brought to their nominative singular form by lemmatizing.

While methods exist to extract ontologies from documents fully automat-
ically, they usually provide ontologies that are not really useful for further
reuse [8]. The ConTrOn (continuously trained ontology) project shows how
user feedback can be integrated by a human-in-the-loop system [9, 10]. Here,
a domain specific ontology is augmented automatically and extended on basis
of textual data and external sources of knowledge such as Wikidata and Word-
Net [11]. While the approach represents a solution to integrate information
from data sheets to ontologies, the extraction of knowledge and relations
between ontology classes from text is missing. In addition, a comparison of
classes and their definitions with WikiData is done, while a comparison of
classes and their definitions with other ontologies also would make sense. This
is due to the fact that other ontologies also might contain knowledge not
represented in WikiData, as ontologies focus more on expert knowledge.

The scope of this work is to use NLP techniques to extract vocabulary
relevant to a domain of knowledge represented in a set of scientific papers.
This vocabulary then is annotated by definitions derived from existing seman-
tic artifacts (such as ontologies and thesauri) to help domain experts in later
steps with sorting out the classes best fitting to the domain of knowledge.
In addition, NLP is used to assist domain experts by including suggested
classes automatically into an existing ontology and suggesting semantic rela-
tions between the classes based on text vectorization models of the texts. As
classes should be only defined once to avoid ambiguities, already existing def-
initions of the added classes are included in the resulting extended ontology
to later aid domain experts with selection of the most fitting definition to the
automatically added classes. Thus, words necessary to describe a knowledge
domain are included in a holistic, automated way into an ontology by including
knowledge from a variety of scientific papers on a certain topic of interest.

2 Methodological Background

This section describes the text dataset and the semantic artifacts used later
to apply the workflow. Furthermore, the vectorization with Word2Vec is
explained as its cosine similarity and min count parameter serve as key
classificators of later results.

2.1 Text Dataset

The dataset deals with scientific publications focusing on catalytic methana-
tion reactions. Here, a total of 25 research papers and three review papers are
collected on research topics of methanation of CO2. Besides continuous text,
the dataset also contains other data, such as figures, diagrams, tables, and
chemical formulas. In addition, the header and footer of pages often contains
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text with no further domain specific information. The publications used as
text dataset in this work are presented in appendix Table A1.

2.2 Semantic Artifacts

For extension and annotation of ontologies, five ontologies and two thesauri
are selected based on the set of ontologies deemed as important to the catal-
ysis research domain by the NFDI4Cat project [1, 12, 13]. The Allotrope
Foundation Ontology (AFO) [14], Chemical Entities of Biological Interest
(CHEBI) [15], and Chemical Methods Ontology (CHMO) [16] are closely
related to the chemical domain and contain concepts related to chemical exper-
iments in laboratories. In contrast, the BioAssay Ontology (BAO) [17] focuses
on biological screening assays and their results. While the scope of the BAO
might not be intuitively fitting to the chosen text dataset, certain concepts
are contained in the BAO such as chemical roles of substances (e.g. catalyst),
which also play a role in the text dataset. Similar to that, the scope of the
Systems Biology Ontology (SBO) [18] is system biology and computational
modelling. Similar to the BAO, it is chosen as it also contains relations regard-
ing substances and also general laboratory contexts, which also are contained
in the text dataset.

In addition to these ontologies, two thesauri are used: the IUPAC Com-
pendium of Chemical Terminology (IUPAC-Goldbook) [19] and the National
Cancer Institute Thesaurus (NCIT) [20]. They cover vast amounts of chem-
ical species and domain specific words of the chemical domain of knowledge
while also providing definition strings for the respective words. In order to
be processed properly, all ontologies and the NCIT were used in the OWL
file format and converted to OWL, when only available in TTL-format using
Protégé [21]. IUPAC-Goldbook was used in json-file format as provided by
the homepage [19]. The semantic artifacts discussed and used in this work are
listed in Table 1 along with the number of classes or concepts they contain.

Table 1 Semantic artifacts used in this work.

Ontology Classes
AFO 2894
BAO 7514
CHEBI 176873
CHMO 3084
SBO 694

Thesaurus Concepts
IUPAC-Goldbook 7038
NCIT 166212
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2.3 Vectorization with Word2Vec

The preprocessed data is further used to get semantic similarity of the token
extracted. For this, the algorithm Word2Vec implemented in the python mod-
ule gensim is used [22]. It vectorizes words to learn relations between token
and thus represents a statistical method. Using the preprocessed text as input,
Word2Vec creates a vocabulary, vectorizing each word to a vector of user
defined length. While a longer vector corresponds to a higher dimension of the
vector space used for the vectorization, it also results in longer computational
time resulting in a trade-off between computational time and expressivity of
the vectors [23]. The similarity of two concepts can be calculated with the help
of the cosine similarity by calculating the cosine of the angle φ between two
vectors a⃗ and b⃗ using the equation

cos(φ) =
a⃗ · b⃗

∥a⃗∥ · ∥⃗b∥
(1)

resulting in a value close to one for token close to each other and close to minus
one for token far away from each other. Because this is a statistical method,
the frequency of occurrence of the token within the text corpus is important
to consider. This is reflected in the Word2Vec parameter min count setting
the number of occurrences in the text corpus, a token must have at least to
be considered by the model. The higher this number is set, the smaller the
overall considered number of words gets; thus, the model focuses only on the
most occurring words. A lower min count is more prone to include token based
on e.g., typing errors or are those of less relevance to the overall domain of
knowledge represented in the text corpus.

3 Method

To obtain information from scientific papers, the text corpus first needs to
be extracted and preprocessed to be viable in further steps. Part of Speech
tagging (POS-tagging) is used to extract only nouns as candidates for new
ontological classes. Searching for these extracted concepts (token) in already
existing semantic artifacts (ontologies or thesauri) yields token annotated with
definition strings and linkage to the respective semantic artifact, the definition
was taken from. To extend an already existing ontology with concepts based
on the found token, a Word2Vec model is trained that vectorizes the text
data. This in turn allows to output tokens with small cosine similarity to
the already contained classes of an ontology and introducing those as new
classes in the ontology. In addition, relations to denote semantic relation of
these classes are posed, to connect the already contained ontology class to
the automatically created classes based on Word2Vec. This overall workflow
is depicted in Figure 1 with the start of the workflow denoted in red and the
output of the workflow in green. The following sections explain this general
workflow in more detail.
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Fig. 1 Overall workflow conducted in this work to extract token from text, supply them
with definitions based on ontologies and extend ontologies with new classes. The red box
denotes the start of the workflow, while the output boxes are colored green.

3.1 Text Extraction

Data from the text dataset contains, besides textual information, also informa-
tion that is either non-textual or meaningless. Non-textual information, such
as figures, can be neglected to reduce the file size. Text fragments without fur-
ther domain specific information also can be deleted to get a more condensed
text dataset.

Thus, all figures, tables, and diagrams that do not contain complete sen-
tences are removed first. Annotations and tables containing text in bullet point
form are considered individually. Furthermore, lists such as references, table
of figures, table of nomenclature, etc. are removed, as these usually represent
a list of individual words and symbols that do not reflect any context or rela-
tions. However, definition directories containing technical terms explained by
short sentences are not removed, since they can contain relevant information.
Subsequently, textual content that occurs repeatedly is removed, such as a
DOI contained in the footer of each page or the journal name in the header
of each page. These have no informative value and would negatively influence
the creation of the model. Captions are also removed, since their informa-
tion content is marginal and repeat often without enhancement of the textual
dataset (such as “Introduction” or “Conclusion”). Those cleaned files of the
dataset are read in as strings using python code as a singular string such that
each dataset contains a single string. The module SpaCy [24] is used to apply
POS-tagging. This transforms the read-in string into a nested list, where each
sentence is represented as list entry in a separate list. Using interpunction
and space characters as separators, token are extracted and lemmatized using
the vocabulary en core web sm. This categorizes each word contained in each
sentence regarding its lexical category (e.g. noun, verb, number, ...).
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3.2 Annotation of Extracted Token

As ontology classes are mostly nouns, only token with categories ‘noun’ and
‘proper noun’ are retained from the dataset and used in further procedures.
Thus, a search of those token in ontologies is performed to determine the
amount of token contained in each ontology as a class. The result helps to
decide, which ontology can be taken as basis in further extension steps. Further
help is provided by extraction of definitions of classes contained as string values
in the ontologies, enabling for an easy determination of the best definition by
domain experts in later steps.

To choose a fitting ontology to the dataset and enrich it by the con-
cepts gathered by pre-processing, existing definitions of token contained in
the ontologies should be known. Thus, python code is produced, which loads
ontologies based on a local database using owlready2 [25]. Then, all class labels
as well as their definition strings are read in from the ontologies and stored as
key-value pairs in dictionaries. Nested dictionaries are used to store all classes
and their definitions of a single ontology in a dictionary with the ontology
name as key and the dictionary containing class names and their definitions
as value. Token found by text extraction, as discussed in Section 3.1, are read
in, and the dictionary is browsed for those token in class names. Finally, the
number of found token per ontology can be accessed. In addition, the token
are stored in a table along with the respective definitions, each assigned to
its source ontology for later review of domain experts. The workflow of the
code constructed for the annotation of extracted token is depicted in Figure 2.
The red elements denote the needed input of the workflow, i.e. the ontology
database and the token obtained by text extraction, while the output boxes
are colored green.

Load ontologies

using

owlready2

Ontology

database

{AFO:

[{Label_class_1:

[definition_1],

Label_class_2:

[definition_2],

…}],

NCIT:

[{Label_class_A:

[definition_A],

Label_class_B:

[definition_B],

…}],

…}

Token
Storing all

defini�ons as

nested dict

Search concept

names in

nested dict

Token already

contained in

ontology as classes

Token annotated

with defini�on

strings

Fig. 2 Workflow of the code constructed for the annotation of extracted token. The red
elements denote the input of the workflow, while the output boxes are colored green.
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3.3 Extension of an Ontology by New Classes Based on

Text Dataset

The Word2Vec model is trained on the textual data obtained by the methods
discussed in Section 3.1. Following [23] , a vector size of 300 was set. While
the Word2Vec model could be used for hierarchic clustering, the resulting
clusters would not yield hierarchies in an ontological, semantic way. This is
due to the nature of relations between token extracted by vectorization of
concepts. As the text-clusters contain semantic similarities of words important
for domains of knowledge, no classification and hierarchical information is
obtained from the Word2Vec model. Thus, hierarchical clustering with, e.g.
dendrograms, would not necessarily yield classifications (ontology classes and
respective subclasses) of concepts. However, Word2Vec is able to give token
with high cosine similarity to an initial input concept.

To use this functionality of similar token, the output of the workflow pre-
sented in Section 3.2 is used. The workflow not only annotates token of a text
dataset with definitions contained in ontologies, but also can be used to output
which token already are contained in each investigated ontology.

Picking the ontology with most common classes, these already contained
classes are used as input for the Word2Vec model trained on the text dataset.
The model then is used to retrieve the closest n token regarding cosine simi-
larity of the input word. This is accompanied by a threshold value, restricting
the amount of output token also with regards to the minimal cosine similarity
allowed. This would allow for e.g., setting a necessary minimal cosine similarity
of 0.999, which would in turn only yield token very close to the input, while a
minimal similarity of 0.8 would also include broader token, farther away in the
vector space. As those token are most similar to the already contained ontol-
ogy class, the ontology class and the token retrieved in this way by Word2Vec
are assumed to have some kind of a semantic relationship.

If a token output by Word2Vec in this way is not already contained in
the ontology, a new class has to be created, reflecting the token. To have
an overarching class of newly included classes, not yet defined properly by
semantic means, a class called w2vConcept is created as a subclass of owl:Thing
class. Token output by the Word2Vec model and not yet contained in the
ontology are then created as class. In addition, they are set to be subclasses
of the also automatically created class w2vConcept, which in turn is set as
subclass of the ontology root class owl:Thing. This is done to help in the later
revision of the automatically created classes as they are more easy to find using
an ontology editor, e.g. Protégé, when listed as subclass of the same class.
Furthermore, this ensures that the integration of new classes does not disturb
the semantic integrity of the ontology. The unique classes are also connected
via an automatically created relationship to the classes deemed as similar by
the Word2Vec model. This object property is called conceptually related to and
is intended to ease the later definition of the exact relation between the two
classes. To annotate the classes with missing definition strings, the workflow
presented in Section 3.2 is used to search for definition strings of the newly
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created classes in other semantic artifacts. The code cannot decide by itself
which definition might be more fitting when multiple definition strings are
found. Thus, each definition string obtained is listed in a separate rdfs:comment

of the class along with a note on the source of the definition.
After storing the resulting extended ontology, domain experts thus can go

through newly added classes and easily accept or neglect the classes and modify
the conceptually related to relation to a relation more fitting. This workflow of
code to extend an ontology automatically is depicted in Figure 3. The ontology
used as input is denoted red, while the extended ontology, which poses the
output of the workflow is colored green.

Token already

contained in

ontology as classes

Word2Vec

model

Closest n token

Token already

contained in

ontology as class?

Add rela�on

‘conceptually

related to’

yes

Add token as class,

SubClassOf

‘w2vConcept’

no

Extended

Ontology

Annotate classes

with missing

defini�ons

Ontology

Fig. 3 Workflow of code to extend an ontology by new classes based on text dataset. The
ontology used as input is denoted red, while the extended ontology, which poses the output
of the workflow is colored green.

4 Results and Discussion

The textual data of 28 scientific texts are preprocessed and extracted according
to Section 3.1. This yields a dataset of overall 858,014 symbols which result
in 4,170 noun token identified for further use in the workflows proposed in
Section 3. Applying different min count parameters in the range min count =
[1...25] yields different amounts of token as shown in Figure 4. While higher
min count parameters yield lower amounts of token, the token contained are
deemed the more important ones, as they occur more often in the dataset.

The resulting sets of token are then used as concept names to search for
fitting classes in the seven semantic artifacts proposed in Section 2.2. This
yields the number of token already contained in the respective ontology as
classes as well as textual definitions of the classes in an automated way. In
addition to this, the count of classes already contained can be used to suggest
the ontology most fitting with regards to the respective text dataset.

Table 2 lists the resulting numbers of found classes in semantic artifacts
of the performed annotation for six different min count in the range [1...100].
Each token only needs to be annotated with a textual definition at least once,
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Fig. 4 Number of token obtained from the text dataset of 28 scientific papers for different
min count parameters.

thus the overall sum of annotated token is calculated for each set of token.
Thus, if a token has annotations from multiple semantic artifacts, it is counted
each respective row, while it only gets counted once in the row of sum of
annotated token. Dividing the sum of annotated token by the overall amount
of token then yields the rate of annotated token. A high rate of annotated
token is desired in order to reduce later workload in revising the ontology, as
coming up with definitions for classes is more difficult than agreeing on an
already existing one. However, a high sum of annotated token also is desired
as integrating more classes into an ontology results in a higher expressivity of
the latter.

Table 2 Amount of token contained as classes in semantic artifacts for token sets derived
by different min count, sum of annotated token, overall amount of token, and rate of
annotated token.

min count

1 5 10 25 50 100
AFO 218 130 97 62 42 27
BAO 100 56 37 25 15 9

CHEBI 107 42 27 23 16 5
CHMO 57 30 21 9 7 3
SBO 37 29 24 21 19 10

IUPAC-Goldbook 365 194 145 94 60 37
NCIT 935 440 300 172 103 54

Sum of annotated token 1178 537 364 211 125 65
Overall amount of token 4170 861 525 276 153 74

Rate of annotated token (in %) 28.25 62.37 69.33 76.45 81.70 87.84

While sets obtained by setting a low min count contain more token than
those with higher min count, the rate of annotated token rises with higher
min count parameters. This also might indicate a higher relevance of the token
contained in the sets with high min count parameters. In addition, the rate
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of annotated token for a min count = 1 is quite low with 28.25 % compared
to the other rates. This might be due to the inclusion of typing mistakes
and non-domain relevant token at lower min count, as one occurence would
suffice for the token to be contained in the text dataset. On the other hand,
lower min count parameters take into account more concepts not yet defined
in the ontologies. These concepts in turn allow for generation of more new
candidates of classes in the respective ontologies. The ontologies themselves
have lower amounts of token contained compared to the thesauri. However,
the AFO is expected to be the ontology best fitting to the dataset as it has
the highest number of annotated token while not having the highest amount
of classes compared to the other ontologies. This indicates an intersection of
topics represented in the text dataset and the AFO.

Plotting the rate of annotated token against the min count parameters, as
in Figure 5, the largest jump in the rate occurs between min count = 1 and
min count = 2.
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Fig. 5 Rate of annotated token for different min count.

Taking into account the number of token found in each ontology, the AFO
contains the most token for each min count. Thus, the AFO is deemed as
most fitting ontology of the five ontologies for the description of the knowledge
domain contained in the text dataset and accordingly chosen as ontology to
be extended by the method elucidated in Section 3.3.

Word2Vec models are trained on token sets based on min count parameters
in the range min count = [1...25]. Then, class labels from the AFO that are
also contained in the token set are used as input to determine the most similar
words. As the similarity of the words is determined by the cosine similarity,
thresholds can be set to confine the amount of output words with regards to
their similarity to the input word. A maximum amount of five output words
per input word is set and the threshold varied in the range of [0.8, ..., 0.999]. As
some words are contained in multiple output sets for different input words, the
amount of unique token generated by Word2Vec is calculated by only counting
each word generated as a class candidate of the ontology once. With the AFO
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as ontology to be extended, Figure 6 shows the amount of unique token found
for different min count parameters and different cosine similarity thresholds.
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Fig. 6 Amount of unique token output by Word2Vec for classes of AFO with different
min count and cosine similarity thresholds varied between [0.8, ..., 0.999].

While the cosine similarity threshold has an impact on the amount of
unique token generated for low min count, the effect seems to be mitigated
for thresholds in the range [0.8, ..., 0.995] and min count > 5. Using different
min count and a cosine similarity threshold of 0.999, the AFO is extended
automatically by new classes suggested by the Word2Vec model. The new
classes are furthermore annotated by respective textual definitions obtained
from the classes and concepts of the other semantic artifacts presented in
Section 2.2. Object properties conceptually related to are asserted, pointing to
the respective ontology classes already contained in the AFO before extension.

Table 3 lists the resulting number of new classes inserted into the AFO
obtained by setting the cosine similarity threshold to 0.999 and applying dif-
ferent min count parameters in the range [1, ..., 25]. In addition, the amount
of annotated new classes is listed along with the number of textual definitions
according to the source of the textual definition related to the corresponding
semantic artifact. Here, a min count of 10 seems to be the most promising
one, as the number of new classes (91) and number of annotated new classes
(68) are highest. Thus, the AFO is extended by 91 classes which are created
automatically based on the text dataset. From these new classes, 68 are anno-
tated based on the other semantic artifacts achieving an annotation rate of
68/91 = 74.73%. Of these 68 annotated new classes, 6 are annotated based on
BAO class-definitions, 7 based on CHEBI, 3 based on CHMO, and 9 based on
SBO classes. Furthermore, 28 classes are annotated based on IUPAC-Goldbook
concepts and 58 based on the NCIT. The sum of these annotations is greater
than 68, indicating multiple annotations for some new classes in the extended
AFO. To provide an example of the resulting extension, Protégé is used for
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Table 3 Number of new classes and annotated new classes in AFO created by the
workflow along with the number of annotations obtained from each respective semantic
artifact. Extension of ontology conducted with cosine similarity threshold set to 0.999 and
different min count.

min count 1 2 5 10 25

BAO 5 6 5 6 4
CHEBI 9 10 7 7 6
CHMO 4 3 3 3 2
SBO 6 9 6 9 7

IUPAC-Goldbook 28 24 26 28 29
NCIT 50 51 50 58 56

Annotated new classes 59 60 62 68 66
New classes 73 73 77 91 87

Fig. 7 Visualization of class hierarchy of new class flow in Protégé. Class flow and rela-
tions conceptually related to to existing classes created automatically by the workflow with
min count = 10 and cosine similarity threshold = 0.999. Solid blue arrows indicate relation
has subclass, dashed orange arrows denote relation conceptually related to.

visualization of the resulting ontology. Figure 7 shows the class hierarchy of
the already contained AFO classes concentration and rate using blue arrows
for the hierarchical relation has subclass.

The new class flow is inserted based on the workflow as subclass of
w2vConcept and gets assigned the relation of conceptually related to (denoted
by dashed orange arrows) connecting it to the classes concentration and rate.

Furthermore, the new class flow gets annotated by the textual definition of
the concept flow found in the NCIT. The resulting annotations of the class flow
are depicted in Figure 8. The first entry contains the label of the class, while
the next two entries point to the word-input that led to the generation of the
class. The bottommost entry contains a textual definition found in the NCIT.
As the new classes are generated automatically, an arbitrary amount of such
rdfs:comment can be assigned to a class, but only one rdfs:label is assigned.
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Thus, an existing ontology can be extended automatically by concepts
based on scientific texts. After extension of the ontology, an evaluation by
domain experts should be conducted, as not every resulting definition and
relation might be correct.

This in turn can be used for an automated, ontology aligned annotation of
research data: When a researcher uploads their research data and correspond-
ing textual documentation to a database, the workflow presented in this work
can then be used to automatically choose the best fitting ontology and extend
it. The extended ontology could then in turn be used to annotate the previ-
ous uploaded research data, linking data entries with relations as posed in the
textual documentation.

Fig. 8 Annotations of new class flow visualized in Protégé for later review by domain
experts.

5 Summary and Outlook

Ontologies are used to describe knowledge in an explicit and machine-readable
way, while still being human-readable. Thus, they are used to model knowl-
edge and semantic relations between data and concepts of scientific knowledge
domains.
In this contribution, a method is set up to automatically make use of natural
language processing (NLP) techniques to extract concepts contained in a text
dataset in order to extend existing ontologies by these concepts relevant to a
domain of knowledge. A search for textual concept definitions from different
sources such as different ontologies and thesauri allows for automated annota-
tion of these concepts found. This also helps in picking the right ontology to be
extended in the second part of the workflow, where the extension of an ontology
is performed by new classes based on the text dataset. Different word vectoriza-
tion models using Word2Vec are trained based on different allowed numbers of
repetitions of the token within the preprocessed text dataset (min count) and
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used to suggest new classes and relations between them. Finally, the classes
are annotated with textual definition based on other ontologies and thesauri,
where possible.

This workflow allows for automated extension of ontologies by classes con-
tained as concepts in a text dataset. A text dataset of 28 papers on the
topic of catalytic methanation of CO2 reactions, five ontologies and two the-
sauri are used as a proof-of-concept. While use of a low min count parameter
results in higher numbers of new classes suggested, it also allows for integra-
tion of concepts not that important to the domain of knowledge, as the lower
rates of annotated token suggest. Using a min count parameter of 10, the
Allotrope Foundation Ontology (AFO) is extended automatically by 91 new
classes obtained by the text dataset. Of these classes, 68 classes are provided
automatically with at least one textual definition based on the other semantic
artifacts (i.e. the other ontologies and thesauri) provided.

This workflow can easily be adapted for other ontologies and text datasets
to extend existing ontologies. However, the database of semantic artifacts
can be set for a larger number of ontologies and thesauri. While this can be
adjusted quickly, the use of other definition databases such as WikiData can
be implemented with some code adjustments. To evaluate the usefulness of the
workflow, an evaluation by domain experts should be conducted, to classify
the number of valuable classes and relations generated automatically by the
workflow.

Extending an ontology by textual input as shown in this work also will
help domain experts in the future to automatically annotate research data
when uploading a set of research data together with a corresponding paper to
a research database.

Supplementary information. The code developed in this work is available
in a GitHub repository here:
https://github.com/TUDoAD/NLP-Based-Ontology-Extender.
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Appendix A References of Text Dataset

Table A1 Listing of the references used as text dataset of 28 Papers on Methanation of
CO2

No. Author Title

1 Jie Liu et.al. Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature
activity toward CO2 methanation
https://doi.org/10.1039/c5 cy02026c

2 Karim Ghaib et.al. Chemical Methanation of CO2: A Review
https://doi.org/10.1002/cite.201600066

3 Kechao Zhao et.al. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts
https://doi.org/10.1007/s11705-016-1563-5

4 Bo Liu, Shengfu Liu Comparative study of fluidized-bed and fixed bed reactor for syngas methantion over
Ni-W/TiO2-SiO2 catalyst
https://doi.org/10.1016/S2095-4956(13)60098-4

5 Carlos V. et.al. Direct CO2 hygrogenation to methane or methanol from post-combustion
exhaust streams – A thermodynamic study
https://doi.org/10.1016/j .jngse.2014.11.010

6 Fabian Grueger et.al. Early power to gas applications: Reducing wind farm forecast errors and providing
secondary control reserve
https://doi.org/10.1016/j .apenergy.2016.06.131

7 T.T.M. Nguyen et.al. High temperature methanation: Catalyst considerations
https://doi.org/10.1016/j .cattod.2013.03.035

8 Bin Lu et.al Highly Dispersed Ni Nanocatalysts Derived from NiMnAl-Hydrotalcites as High-Performing
Catalyst for low temperature Syngas Methanation
https://doi.org/10.3390/catal9030282

9 O. Görke et.al. Highly Selective methanation by the use of microchannel reactor
https://doi.org/10.1016/j .cattod.2005.09.009

10 Jonathan Lefebvre et.al. Improvement of three-phase methanation reactor performance for steady-state and transient operation
https://doi.org/10.1016/j .fuproc.2014.10.040

11 Claudia Krier et.al Improving the Methanation Process
https://doi.org/10.1002/cite.201200221

12 Qiushi Pan et.al. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites
https://doi.org/10.1016/j .catcom.2013.10.034

13 Ben Redondo et.al. Intesified isothermal reactor for methanol synthesis
https://doi.org/10.1016/j .cep.2019.107606

14 Maria C. Bacariza et.al. Magnesium as Promoter of CO2 Methanation on Ni-Based USY Zeolites
https://doi.org/10.1021/acs.energyfuels.7b01553

15 Wie Wang, Jinlong Gong Methantion of Carbon dioxide: an overview
https://doi.org/10.1007/s11705-010-0528-3

16 Kriston P. Brooks et.al. Methanation of carbon dioxide by hydrgen reduction using the Sabatier process in microchannel reactors
https://doi.org/10.1016/j .ces.2006.11.020

17 Antoine Beuls et.al. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst
https://doi.org/10.1016/j .apcatb.2011.02.033

18 Athanasia Petala et.al. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on
catalytic activity and selectivity
https://doi.org/10.1016/j .apcatb.2017.11.048

19 Chuanfei Liang et.al. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen
vacancies on catalytic activity
https://doi.org/10.1016/j .ijhydene.2019.02.014

20 Axel Fache et.al. Optimization of fixed-bed methanation reactors: safe and efficient operation under transient
and steady-state conditions
https://doi.org/10.1016/j .ces.2018.08.044

21 Jia Zhang et.al. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au
bipyramid nanoparticles as sensitivity enhancer
https://doi.org/10.1016/j .colsurfb.2014.01.003

22 Muhammed Younas et.al. Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2
https://doi.org/10.1021/acs.energyfuels.6b01723

23 Jiajian Gao et.al. Recent advances in methanation catalysts fort he production of synthetic natural gas
https://doi.org/10.1039/C4RA16114A

24 Woo Jin Lee et.al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review
https://doi.org/10.1016/j .cattod.2020.02.017

25 Robert A. Dagle et.al. Selective CO methanation catalysts for fuel procesing applications
https://doi.org/10.1016/j .apcata.2007.04.015

26 Waqar Ahmad et.al. Synthesis of lanthanide series promoted Ni/γ-Al2O3 catalysts for
methanation of CO2 at low temperature under atmospheric pressure
https://doi.org/10.1016/j .catcom.2017.06.044

27 Duo Sun, David Simakov Thermal management of a Sabatier reaction for CO2 conversion into CH4: Simulation-based analysis
https://doi.org/10.1016/j .jcou.2017.07.015

28 Martin P. Andersson et.al. Toward computational screening in heterogneous catalysis: Pareto-optimal methanation catalysts
https://doi.org/10.1016/j .jcat.2006.02.016
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