Evaluation and intercomparison of GHRSST formatted products at a global scale

Cristina González-Haro

Image: Second secon

Verónica González-Gambau, Aina García-Espriu, Manuel Arias, Jordi Isern-Fontanet, Antonio Turiel

Chris Merchant, Peter Cornillon

GHRSST sciences talks

16th February 2023, online

Barcelona Expert Center on Remote Sensing

Latest Posts

- Expert Support Laboratory for L0 and L2 of ESA Soil Moisture and Ocean Salinity (SMOS) mission
- We are currently producing and distributing:
 - Sea Surface Salinity (SSS)
 - L3 and L4 SSS products at a global scale (from L0 own production chain)
 - L3 and L4 SSS products in enclosed seas (Mediterranean, Black Sea, Baltic)
 - L3 products in cold waters (Arctic and Antarctic (on-going))
 - Soil Moisture (SM)
 - L3 products at a global scale (from ESA L2)
 - L4 SM products in the Mediterranean region

Motivation

- SST plays a key role in the generation of SMOS SSS products:
 - L2/L3: as an ancillary data for the inversion of radiative models
 - L4: as a template to increase temporal and spatial resolution using multifractal fusion techniques.
- Currently, we are using SST provided by ECMWF for the SSS retrieval (L2/L3), and OSTIA SST as template for the L4 product.

High sensitivity of SSS to SST at the low SSS & low SST regions (critical for Baltic and polar regions)

Objective

- Assessment on the best SST product, based on the following indicators:
 - Comparison with in situ data: ARGO (fiducial reference measurements)
 - Spectral analysis to assess the effective spatial resolution (feature fidelity)
 - Singularity analysis to assess the dynamical properties
 - Correlated Triple Collocation to estimate the uncertainties of the error for each product [González-Gambau et al. 2020].

Datasets

Dataset	Spatial resolution	Source data	Sensor	
AMSR2-REMSS v8.2	0.25°x 0.25°	MW	AMSR2	
CMC v3.0	0,1°x 0,1°	MW+IR+insitu	VIIRS,AVHRR_GAC, AMSR2	
OSTIA v2.0	0.05° x 0.05°	MW+IR	AVHRR, VIIRS, AMSR2, GOES_IMAGER, SEVIRI, SSMIS, SSM/I	
CCI v2.1	0.05° x 0.05°	IR	ATSR, AATSR, AVHRR_GAC	
MUR v4.1	0,01°x 0,01°	MW+IR+insitu	AMSR-E, AVHRR, MODIS, SSM/I, VIIRS, in-situ	
Period	daily maps for 2016 5			5 / ??

Comparison with *in situ* data

Collocation criteria:

in situ centered (for every profile we select the closest SST pixel Δ*T*_s [K] observation)

3 m < depth < 4 m

Comparison with *in situ* data

7 / ??

Dataset	Global				
	mode	mean	median	std	N
AMSRE	0.05	0.03	0.02	0.46	47645
СМС	-0.03	-0.04	-0.05	0.35	50928
OSTIA	-0.12	-0.09	-0.08	0.43	50927
CCI	-0.05	-0.07	-0.05	0.44	50927
MUR	-0.11	-0.05	-0.06	0.44	50771

Spectral analysis

- Reynolds and Chelton (2010) showed that the grid spacing of an SST analysis is not an indicator of its feature resolution (F2T2 GHRSST Meeting 2018)

• Just few L4 SST intercomparison works have explored spectral analysis [Reynolds et al. 2013 and Yang et al. 2021]

Spectral analysis

- CCI & MUR have the higher effective spatial resolution
- In most regions, CMC and OSTIA do not increase the effective spatial resolution of microwave observations. In SOW region MW AMSR2 drops off at larger λ.

- We propose a new metric, the singularity spectrum, to assess the structural and dynamical quality of SST products based on multifractal theory of turbulence. [Turiel et al. 2007, Isern-Fontanet et al. 2007,]
- Scale surrogate gradients, in the limit $\ell/\ell_0 \rightarrow 0$ behave as

$$\overline{|\nabla T|}_{\ell}(\vec{x}) \equiv \int_{\mathbb{R}^d} \ell^{-d} G(\ell^{-1}\vec{x}) |\nabla T| (\vec{x} + \vec{x}') d\vec{x}' \sim \left(\frac{\ell}{\ell_0}\right)^{h(\vec{x})}$$

• $h(\vec{x})$ is the singularity exponent. If $h(\vec{x}) \in (n, n+1)$ with n being a positive integer, $\overline{|\nabla T|}_{\ell}(\vec{x})$ is derivable n times but not n+1

• The statistical/geometric properties of the singularity exponents are given by the singularity spectrum

$$D(h') \equiv d_F(\{\vec{x} | h(\vec{x} = h')\})$$

where $d_{F}(A)$ is the fractal dimension of a set A

- It can be computed from the probability density function of the singularity exponents [Pont et al. 2013]
- D(h) is a convex function and it is scale invariant.
- It is a representation of the turbulent cascade
- It is the step between the canonical (statistical, structure functions) to the microcanonical formalism (geometrical, singularity exponents)

• Singularity spectrum are computed daily and at the native spatial resolution

Higher spatial resolution does not mean better dynamical representation

• There is a range of intermediate gradients that are being excessively smoothen. The turbulent cascade is poorly represented.

We compute the ratio of days in 2016 that present a singularity exponent within the band (0.3<h<0.6)

• We compute the ratio of days in 2016 that present a singularity exponent within the band (0.3<h<0.6) in order to found out the regions where the SST gradients are being smoothen

• To assess if the smoothing of intermediate gradients is caused by the L4 fusion/interpolation scheme, we interpolated OSTIA SST to a 0.25° grid, and repeat the same analysis.

We compute the ratio of days in 2016 that have 0.3<h<0.6

Validation tool of consistency of the dynamical content of SST

- The triple collocation (TC) technique has been widely used to assess the quality of many geophysical variables acquired with different instruments and at different scales.
- We focus in the error characterization of remote sensing maps where having three collocated, completely independent datasets is unlikely.
- We have developed a **new formulation, the CTC (Correlated Triple Collocation)** for the case of **three datasets** that **resolve similar spatial scales**, with **two** of them being **error-correlated datasets** [González-Gambau et al. 2020].
- The derived error maps from CTC analysis allow us to characterize the quality of the different datasets at each location all over the globe.

Correlated triple colocation

Barcelona Expert Center

- Rationale and methodology
 - 1. We have three series of spatially and temporally collocated measurements x_i of the same variable θ :

$$x_i = a_i\theta + b_i + \delta_i \quad i = 1, 2, 3$$

- 2. We want to estimate the standard deviation of error δ_i , that is, σ_{δ_i}
- 3. Assumptions:
 - a. Errors 1 and 2 are correlated with covariance ϕ_{12} but uncorrelated with error 3.
 - b. The three datasets resolve the same spatial scales, so there is no representative errors
 - c. Measurements are assumed to have intercalibration factor equal to 1
- 4. CTC is less sensitive to statistical fluctuations, allowing a reliable estimation of errors with scarce sampling sizes.

Correlated Triple Colocation: selecting triplets

Dataset	Sensor		
AMSR2-REMSS v8.2	AMSR2		
CMC v3.0	VIIRS,AVHRR_GAC, AMSR2		
OSTIA v2.0	AVHRR, VIIRS, AMSR2, GOES_IMAGER, SEVIRI, SSMIS, <u>SSM/I</u>		
CCI v2.1	ATSR, AATSR, AVHRR_GAC		
MUR v4.1	AMSR-E, AVHRR, MODIS, SSM/I, VIIRS, in-situ		
Period	daily maps for 2016		

- SSM/I sensor is only present in MUR and OSTIA. We'll consider these two datasets as the one uncorrelated and perform the CTC for the triplets:
 - CCI_CMC_MUR
 - CCI_AMSR2_MUR
 - AMSR2_CMC_MUR
 - CCI_CMC_OSTIA
 - CCI_AMSR2_OSTIA
 - AMSR2_CMC_OSTIA
- The errors of the shared sensors will be consider as part of the SST variability. We obtain 3 different estimations (one per triplet) of the standard deviation of SSM/I error for each dataset (OSTIA and MUR).
- All datasets have been reinterpolated to the coarser grid (0.25°)

Correlated Triple Colocation MUR

BFC

CTC MUR: SSM/I

27 / ??

CTC OSTIA: SSM/I

Estimation of SSM/I error uncertainty

- The standard deviation of the SSM/I error is about 0.3-0.4 K, in accordance with in situ assessment
- CTC is a powerful tool for estimating the standard deviation of the errors, and providing its spatial distribution (land sea contamination, RFI, atmospheric corrections....)

- Choosing the best L4 SST analysis is not easy. GHRSST provides the users with some guidelines [Beggs 2020, GHRSST Office 2023]
- The comparison wrt in situ data does not give the "global picture".
- We proposed a new metric in order to assess SST products from a dynamical and structural perspective (the singularity spectrum) [González-Haro et al., in prep.]
- Correlated Triple Colocation is a powerful tool for estimating the standard deviation of the errors, and providing the spatial distribution of the errors (land sea contamination, RFI, atmospheric corrections....)

- Our final election: we'll use the MUR L4 SST product at its effective spatial resolution (0.1°)
 - we are currently retrieving the SSS using MUR SST at 0.1 for the regional product in the Southern Ocean
 - assessment of the impact of new SST on the retrieval (stay tuned for next GHRSST meeting)

Further work

- Further efforts should be addressed to:
 - characterize the effective spatial resolution for smaller regions (10°x10°) at a global scale (short/mid term)
 - use CTC at L2 to characterize the standard deviation of the errors of the different sensors (depending on available resources)
 - understand which methodological choice of producers have higher impact on not preserving the expected singularity spectrum, i.e not respecting the turbulence cascade (Feature Fidelity Task Team F2T2??)
 - improve interpolation/fusion schemes to respect the turbulence cascade

References

- [Beggs 2020] Temperature. Ch 14 in Earth observation: data, processing and applications. Volume 3B: Applications—surface waters. Cooperative Research Centre for Spatial Information (CRCSI).
- [GHRSST Office 2023] Office, G.P., Beggs, H., Karagali, I., Castro, S., 2023.Sea surface temperature: An introduction to users on the set of GHRSST formatted products. https://doi.org/10.5281/zenodo.7589540, 10.5281/zenodo.7589540
- [González-Gambau et al. 2020] Triple Collocation Analysis for Two Error-Correlated Datasets: Application to L-Band Brightness Temperatures over Land. Remote Sens. 2020, 12, 3381. DOI: 10.3390/rs12203381
- [Isern-Fontanet et al. 2007] Isern-Fontanet, J., A., T., García-Ladona, Font, J., 2007. Microcanonical multifractal formalism: Application to the estimation of ocean surface velocities. J. Geophys. Res. 112, C05024.
- [Pont et al. 2013] Pont, O., Turiel, A., Yahia, H., 2013. Singularity analysis of digital signals through the evaluation of their unpredictable point manifold. International Journal of Computer Mathematics 90, 1693–1707
- [Reynolds and Chelton 2010] R.W. Reynolds and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 3545–3562
- [Reynolds et al. 2013] Reynolds, R.W., Chelton, D.B., Roberts-Jones, J., Martin, M.J., Menemenlis, D., Merchant, C.J., 2013. Objective determination of feature resolution in two sea surface temperature analyses. Journal of Climate 26, 2514–2533.
- [Turiel et al. 2007] Turiel, A., Yahia, H., Pérez-Vicente, C.J., 2007. Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I.singularity analysis. Journal of Physics A: Mathematical and Theoretical 41,015501
- [Yang et al. 2021] Yang, C., Leonelli, F.E., Marullo, S., Artale, V., Beggs, H., Nardelli, B.B., Chin, T.M., De Toma, V., Good, S., Huang, B., et al., 2021. Sea surface temperature intercomparison in the framework of the copernicus climate change service (c3s). Journal of Climate 34, 5257–5283. 18

Evaluation and intercomparison of GHRSST formatted products at a global scale

Cristina González-Haro

Image: Second secon

Verónica González-Gambau, Aina García-Espriu, Manuel Arias, Jordi Isern-Fontanet, Antonio Turiel

Chris Merchant, Peter Cornillon

GHRSST sciences talks

16th February 2023, online

Extra Slides

SST definitions

Spectral analysis

Spectral Analysis

Spectral Analysis

CTC: Rationale and methodology

45 /

??

- We have looked for a linear transformation of x_1, x_2 into variables x_1^{+}, x_2^{+} with errors $\delta x_1^{+}, \delta x_2^{-}$, which are uncorrelated.
- We define the auxiliary scaling parameters u,v as:

$$u = \frac{s_2 - s_{12}}{s_1 + s_2 - 2s_{12}}$$
; $v = \frac{s_1 - s_{12}}{s_1 + s_2 - 2s_{12}}$

s : Variance of the measurements x

- s_: Covariance between the measurements i, j
- The order-2 moments of the uncorrelated-error variables are defined:
- Finally, the error variances and error covariance of the original x_1, x_2 are given by: $\int \sigma_1^2 = v^2 s_1' + s_2' - s_{22}'$

$$\begin{cases} \sigma_{\delta_1}^2 &= v^2 s_1' + s_2' - s_{23}' \\ \sigma_{\delta_2}^2 &= u^2 s_1' + s_2' - s_{23}' \\ \sigma_{\delta_3}^2 &= s_3 - s_{23}' \\ \phi_{12} &= -uvs_1' + s_2' - s_{23}' \end{cases}$$

V. González-Gambau et al., 2020: Triple Collocation Analysis for Two Error-Correlated Datasets: Application to L-Band Brightness Temperatures over Land. Remote Sens. 2020, 12, 3381. DOI: 10.3390/rs12203381