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Abstract—Robots and users of hand prosthesis could easily
manipulate objects if endowed with the sense of touch. Towards
this goal, information about touched objects and surfaces has to
be inferred from raw data coming from the sensors. An important
cue for objects discrimination is the orientation of edges, that is
used both in artificial vision and touch as pre-processing stage.
We present a spiking neural network, inspired on the encoding
of edges in human first order tactile afferents. The network uses
three layers of Leaky Integrate and Fire neurons to distinguish
different edge orientations of a bar pressed on the artificial
skin of the iCub robot. The architecture is successfully able
to discriminate eight different orientations (from 0o to 180o),
by implementing a structured model of overlapping receptive
fields. We demonstrate that the network can learn the appropriate
connectivity through unsupervised spike based learning, and that
the number and spatial distribution of sensitive areas within the
receptive fields are important in edge orientation discrimination.

Index Terms—Touch, Skin, Receptive Fields, SDSP, Neuromor-
phic

I. INTRODUCTION

The sense of touch is an important gateway to interact with
the environment [1]. Robots and hand prosthesis endowed
with the sense of touch can better and more easily manipulate
objects, and physically collaborate with other agents. Different
types of biologically inspired sensors have been developed
based on various transduction techniques (e.g. capacitive,
piezoresistive, optical, magnetic, binary and piezoelectric).
Most of them sample the transducer at a fixed time, generating
a huge amount of data, even when the device is not in
contact with a stimulus, and introducing a latency that can
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be critical in dangerous situations, when a fast reaction time
is needed as escape reflex from dangerous contacts. On the
other hand, biological sensors react to changes in the sensory
signal, rather than sampling the sensory signal at fixed time
intervals. This characteristic is known as event or data driven
sensing. As it conveys data only at change, it reduces redun-
dancy (no samples for constant signal), while it increases the
sampling rate for fast changes. While neuromorphic circuits
are being developed to encode the continuous analog signal
from physical transducers into spikes [2], [3], sigma-delta
conversion [4] or spiking neuron models can be used to convert
the signals generated by front-end clocked artificial tactile
sensors to neuromorphic spikes [1]. At the same time, in both
biological and artificial sensory systems, feature extraction is
an important stage to extract information from the sensory
signals. Edge orientation selective neurons have been observed
in the first order tactile afferents of human fingertips [5] [6]
[7], and it is often used in artificial vision and touch as pre-
processing stage. In [5], recordings of human fingertips re-
sponses show that information about edge orientation emerges
in neurons responsible for detecting the coincident activation
of afferents with overlapping and interleaved receptive fields.
In [8] to discriminate between different edge orientation at
any location on simulated mechanoreceptor skin patch, they
proposed 3 layers spiking neural model starting with first-order
neurons to encode input stimulus into spike trains and ending
with cortical neurons to decode edge orientation. In robots,
several solutions have been employed for fine orientation
detection (up to 5o) on artificial skin, ranging from an AI-
based vector regression method with offline learning [9] to a
more neuromorphic approach with spike-based classification
and differential delay lines, inspired on the cuneate nucleus
neurons [10]. Those solutions, due to the need for offline
learning and the presence of structures not easily transferable
in silicon, lack the possibility to be embedded on robots or
prosthetic devices. In such cases, where space and energy are
constraints, a hardware implementation with online learning
and low power devices is usually preferred, as it enables the
system to perform end-to-end computation from the sensors to
the processing and classification, consuming low power. We
therefore targeted the development of an edge orientation ar-
chitecture based on event-driven acquisition and unsupervised
spike-driven learning that can be implemented on low-power
neuromorphic hardware. We present a neuromorphic model for
edge orientation selectivity inspired by the finding of [5], based



on computational primitives that are implementable on low-
power subthreshold neuromorphic hardware, going towards
the design of artificial skin with pre-processing embedded
capabilities. We used, as front-end sensors, the capacitive skin
of the iCub robot [11]. The acquired pressure values are
encoded into spike trains by means of Leaky Integrate and Fire
(LIF) neurons. An additional layer of neurons, representing
afferent fibers, collects the stimuli coming from the encoding
neurons using overlapping and interleaved receptive fields. The
last layer detects coincident activity of subsets of neurons
in the previous layer, to decode the stimulus orientation.
We characterized the network to reproduce the orientation
selectivity observed by [5] (Sec. III-A). We then endowed the
network with a local unsupervised learning rule between the
afferent and decoding layers (Sec. III-B). As learning rule,
we implemented a biologically plausible model that exploits
the temporal correlation of input spikes and neuron’s activity.
Finally, we explored different topologies of the interleaved
receptive fields, defining how the single sensitive areas (taxels)
are distributed in the receptive fields (Sec. IV). The model is
able to discriminate between eight different orientations (0o to
180o with 22.5o increments), and it can learn an appropriate
connectivity pattern for the classification. Finally, the receptive
fields created by randomly selecting sensitive points perform
better than structured receptive fields with uniform distribution
in discriminating small angles (down to 5o).

II. NETWORK ARCHITECTURE

In [5] the neural architecture that gives rise to edge orienta-
tion selectivity is based on a network composed of two layers.
The first layer consists of neurons with overlapping receptive
fields, where each neuron possesses a distinct distribution of
highly sensitive zones on the skin. At a given moment, a given
edge activates simultaneously a subset of neurons. The second
layer is able to spot the temporal coincident activation between
these neurons and decode the input stimulus orientation.

We developed a spiking neural network based on such a
model, consisting of a patch of artificial skin from the iCub
robot [11] and three layers of LIF neurons [12], as shown
in Fig. 1, where resting membrane potential vrest is -70mV,
membrane capacitance Cm is 0.25 nF, membrane threshold Vth
is -50mV, and refractory period is 2ms. The skin patch (11 cm
x 7.5 cm) comprises 160 capacitive tactile sensing elements
(taxels) distributed along 16 triangles (10 taxels each). The
variation in capacitance is detected by the taxels through the
interaction between a copper plate and a human fingertip
or other conductive materials [13]. Layer one represents the
encoding layer and consists of 24 LIF neurons. The patch
of skin and layer one neurons model the output of biological
mechanoreceptors. Every neuron in layer one is connected to a
single taxel in the skin patch. The output pressure of the taxels
is used as input to LIF neurons in layer one for encoding
analog data into spikes (Figure 1-A). Layer two consists of
5 neurons that represent the overlapping receptive fields that
receive input spikes from the input mechanoreceptors layer
(Figure 1-B). The third (and last) layer consists of 8 LIF

Fig. 1. Spiking neural network for edge orientation: (A) Skin patch from the
iCub robot and layer one, which encodes the analog signal into spikes. (B)
First order tactile neurons (layer two) gathering the 160 inputs from layer one,
organised in receptive fields. (C) Layer three discriminates edge orientation
and includes a global inhibitory neuron that implements the WTA network.

neurons (one neuron per orientation) that decode different
orientations using the temporal coincidence activation of layer
two. We designed a structure of overlapping receptive fields
such that, for every orientation, three neurons would be
activated simultaneously. The connectivity between layer two
and layer three was hard-wired to ensure the activation of
a specific neuron from last layer for the each orientation.
For better selectivity, layer three employs a Winner-Take-All
(WTA) structure, composed by a global inhibitory neuron
that receives excitation from all neurons (black synapses in
Figure 1-C) and in turn inhibits the activity of all of them,
so that only the neuron receiving the highest input can be
active (green synapses in Figure 1-C). The data was collected
by pressing a bar (13cm x 9mm) on the skin in different
orientations. During the contact, the analog pressure measured
by each capacitor sensor (taxel) was recorded using a setup
comprising a ZynQ7000 board connected to the skin patch and
the Yet Another Robot Platform (YARP) middle-ware [14].
The recorded pressure signal was injected as input current
into the LIF neurons in layer one (Figure 1-A), simulated with
Brian2 [15].

III. LEARNING ORIENTATIONS WITH DESIGNED
RECEPTIVE FIELDS

A. Fixed Connectivity

To test the ability of our model architecture in discrim-
inating different edge orientations that are applied on the
skin, we fixed the connectivity between layer two and layer
three in the network architecture, (Figure 1-C). Based on the
receptive field structure described in the previous section,
we chose three active sensors for every orientation where
these sensors are connected one to one connection with three
neurons in layer one and then connected the three neurons
manually to three different receptive fields in layer two. For
each orientation, only three neurons in layer two were activated
at the same time. The combination of the activated neurons
in layer two at each orientation was connected to a single
neuron in layer three. The coincident spiking activity of the
three neurons of layer two increases the membrane potential of
the neuron in layer three, causing it to spike. As a result, each
neuron in the third layer is selective to a given orientation,
increasing its firing rate for orientations close to its preferred
orientation and showing maximum firing rate in response
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Fig. 2. Firing rates of neurons in layer three for different stimulus orientations
(fixed connectivity); with (red) and without (green) WTA.

to the one for which it is tuned. For each of the different
orientations, there is only one neuron from layer three that
has a maximum firing rate. Some neurons fire several spikes
also for orientations that do not have their exact combination
of receptive fields, but a similar one. To increase orientation
selectivity, we implemented WTA competition, using a global
inhibitory neuron [16]. Fig. 2 shows the comparison of the
mean firing rate of each neuron in layer three with and without
the WTA (orange and green lines respectively). The network
was able to detect eight different peaks through applying
eight distinct input stimuli each having a different orientation.
This confirms that the model can discriminate between several
distinct edge orientations applied on artificial skin.

B. Unsupervised Learning of Edge Orientation

We aimed to examine whether the system can build the right
connectivity through local unsupervised learning and to find
the optimal structure for orientation selectivity. To achieve that
aim, we endowed the network with a local unsupervised synap-
tic learning rule Spike Driven Synaptic Plasticity (SDSP) [17]
between layer two and layer three with all to all connection as
shown in Figure 1-C. Our goal was to make the network learn
the different orientations using temporal coincidence. SDSP
can be achieved using a combination of depolarization and
an effective neuronal model of the postsynaptic layer (layer
three), where the current supplied from layer two is defined
as

Iex(t) =

n∑
i=1

(
w2ji

∑
k

S1i (t− tk)

)
(1)

S1i represents the spatio-temporal input spikes of the ith
neuron. tk is the time in which the neurons in layer two fire
a spike. The change of SDSP synaptic dynamic w2 between
the jth neuron in layer two and the ith neuron in layer three
depends on the depolarization of the postsynaptic membrane
potential and the slow postsynaptic calcium variable, C(t)
defined as

dC

dt
=

C

τC
+ JC

∑
i

δ(t− ti) (2)

In this equation, the sum represents the postsynaptic spike,
arriving at times ti. Jc is the spike’s current contribution and
τC is the calcium time constant.
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Fig. 3. Variation of the synaptic weight for each presynaptic spike as a
function of time. Each box represents the synaptic weights between jth
neurons in layer two and ith neuron in layer three.

Fig. 4. SDSP learning rule; (top) Output spikes of layer two: each orientation
corresponds to the activation of three neurons; (middle) Output spikes of
neurons in layer three: only one neuron is firing for each orientation; (bottom)
Mean firing rate and standard deviation (shadow) of each neuron for each
orientation.

During the learning phase, the output layer is fed with
multiple stimulus presentations in series, randomly repeating
the eight different orientations, 35 times each. Each stimulus
presentation is encoded in the spiking activity of three neurons
of the second layer. When a third layer neuron spikes then
the synaptic weights connecting this neuron and the three
active neurons from layer two are increased. The remaining
two connections are instead depressed. The synaptic weights
between the two layers were initialized using uniform random
distribution. During learning, synaptic weights progressively
change, converging to a stable connectivity pattern, as shown
in Figure 3. After learning, the network is able to discriminate
8 different orientations applied to the skin, from 0o to 180o

in 22.5o increments. To validate our system, we extracted the
learned weights and tested the network by applying different
datasets, each with the 8 different orientations. Figure 4 shows
the raster plots of layer two for the 8 different orientations,
along with the raster plot of layer three after decoding the
orientation. For every pattern, only one neuron in layer three is
firing at maximum firing rate and only for a specific orientation
(bottom box in Figure 4).

IV. RECEPTIVE FIELD STRUCTURE

In section III we analyzed the response of the model to
a manually designed set of receptive fields inspired by the
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Fig. 5. Receptive fields’ topologies: A) Fraction of recognised orientations for
each receptive fields’ structure, as a function of connected sensing elements
(mean and std shaded). B) Minimum detectable angle as a function of bar
length (mean and std shaded). C) One example for each of the three topologies.

finding of [5]. Here we verify the hypothesis that receptive
fields with random (and interleaved) sensitive points can offer
higher orientation acuity than receptive fields where sensitive
points are positioned uniformly [6]. Following this approach,
we investigated different receptive fields topologies with three
different connectivity patterns shown in Fig. 5C:

• Uniform: the skin is divided in different and homoge-
neous receptive fields grouping the sensitive elements into
regions.

• Random: the sensitive elements on the whole skin are
randomly associated to different receptive fields.

• Random with subfields: the receptive field is composed
of small clusters of adjacent sensing elements, randomly
placed on the skin (different from the random structure
where each taxel is independent of its neighbors).

The activity of the receptive fields’ layer encodes the orienta-
tion of the bar through a spatial code defined at each temporal
window (the time during which a stimulus is presented). In
said time, the neurons that have a spike activity higher than
an arbitrary threshold (defined as half the spike rate of the
most active neuron) are considered as ‘1‘ while the other ones
as ‘0‘. To assess the quality of the neural code generated
by said layer we used mutual information. For each trial we
counted the times a given spatial code appeared in relation to
a bar’s orientation. This results in a joint probability table of
size R × S, where R represents the spatial code responses
and S the stimulus orientation. Using mutual information
(MI) [18], we computed how much information about the
input orientation the system can encode. We firstly recreated
the experiment where a bar is pressed on the skin at eight
different orientations, but changing the configuration of the
receptive fields according to the three proposed topologies.

This was repeated multiple times, while decreasing the number
of taxels impinging to each receptive field. Fig. 5A shows
the fraction of recognised orientations (calculated as 2MI/8)
computed for every different topology and for the number
of taxels per receptive field. The taxels’ number variation
is meant to estimate the robustness of each topology to
edge orientation encoding when the receptive fields density
decreases. We then simulated a bar applied on the skin with
different lengths and orientations. The way the taxels were
distributed followed again the three different topologies. We
measured the minimum angle detectable by the network divid-
ing the maximum angle excursion and the number of detected
orientations (Angle(◦) = Maximum excursion

Number of orientations = 180◦

2MI ).
We then simulated an increased number of bar’s orientations

in order to calculate the minimum angle that the different
topologies could discriminate, and changed the length of the
bar to estimate robustness to the decreasing level of informa-
tion about the stimulus, due to the shortening of the bar. We
applied 36 different angles (180◦ with 5◦ steps) with the length
of the bar changing from 1cm to 11cm with a 1cm step. Each
configuration was repeated for 150 trials. The results, visible
in Figure 5B, highlight that, given a fixed length, the receptive
fields with fully random distribution seem to perform better in
orientation acuity. As expected, the orientation discrimination,
gracefully degrades with decreasing stimulus length.

V. CONCLUSION

We developed a biologically inspired spiking network com-
posed of three layers of LIF neurons to discriminate different
edge orientations of a bar pressed on artificial skin. The
network is capable of discriminating between eight different
orientations by adopting a model of overlapping and inter-
leaved receptive fields that exploits temporal coincidence of
the activation of neurons with different receptive fields. Thanks
to the encoding, based on temporal coincidence, the network
also has the ability to build up the required connectivity,
when endowed with spike-based unsupervised learning. Fi-
nally, through following biological examples [6] in which
sensitive areas of the receptive fields are randomly distributed
on the skin, we proposed an approach for estimating the
optimal distribution of taxels in receptive fields for increasing
the orientation acuity. This method can be used as a tool to
minimise the connectivity and number of required taxels in
future generations of artificial skin, while maintaining spatial
sensitivity. This preliminary work calls for further studies on
biologically inspired orientation selectivity and feature extrac-
tion for artificial skin. The development shall exploit temporal
coincidence, also exploring the role of different types of
receptors and spiking encoding. Specifically, we will keep on
resorting to computational primitives that have a correspondent
hardware implementation using neuromorphic sub-threshold
CMOS technology, and we will integrate neuromorphic event-
driven readout of the analog values measured by the physical
pressure transducers, with the aim of designing compact and
efficient sensing devices that can locally pre-process the tactile
signal.
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