

Deliverable D3.2

PIACERE Abstractions, DOML and DOML-E – v2

Editor(s): Bin Xiang, Elisabetta Di Nitto, Galia Novakova Nedeltcheva

Responsible Partner: Politecnico di Milano/ PoliMi

Status-Version: Final - v1.0

Date: 30.11.2022

Distribution level (CO, PU): Public

DRAFT

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 34

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: PIACERE Abstractions, DOML and DOML-E – v2

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Politecnico di Milano/PoliMi

Contributor(s): Go4it, HPE, Prodevelop, Tecnalia

Reviewer(s): Eliseo Villanueva Morte (Prodevelop)

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5, WP6, WP7

Abstract: This deliverable is the output of tasks 3.1, 3.2 and 3.3. It
presents the latest consolidated version of the DOML the
metamodel and the corresponding semantic, as well as
machine-readable descriptions of the aspects that are
relevant to the main phases of the IaC lifecycle
seamlessly integrated with the design and development
of the IaC lifecycle. This metamodel will be then
presented as an end-user language enabling the
modelling of the different elements needed for the
infrastructure provisioning, configuration management
and deployment, the deployable infrastructural
components, constraints and so on. The various
iterations will seek and take into consideration the
feedback from PIACERE’s end users and, possibly,
other users outside the project to ensure that the
language is sufficiently powerful and simple to use.

Keyword List: Model-driven engineering, metamodels, modelling
abstractions, Infrastructure as Code

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 34

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 29.09.2022 First draft version PoliMi

v0.2 20.10.2022
Comments and suggestions received
by consortium partners

ALL partners

v0.3 02.11.2022 Second draft version ready for review Bin Xiang (PoliMi)

v.0.4 22.11.2022 Reviewed version
Eliseo Villanueva Morte
(Prodevelop)

v0.5 23.11.2022 Final draft after the review PoliMi

v1.0 25.11.2022 Ready for submission TECNALIA

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 34

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this Deliverable ... 8

1.2 Document Structure .. 8

2 Overview of the DOML Release Plan... 9

3 Status of DOML Requirements Fulfilment .. 12

4 Newly defined scenarios ... 16

5 DOML 2.1 Metamodel ... 19

5.1 Main Changes .. 19

5.2 Commons Layer ... 19

5.3 Application Layer ... 21

5.4 Infrastructure Layer ... 21

5.5 Concrete Layer .. 21

5.6 Optimization Layer .. 21

6 DOML Extension Mechanism (DOML-E).. 25

6.1 Creation of New Concepts .. 25

6.2 Definition of New Properties... 26

7 DOML 2.1 Example .. 27

7.1 WordPress Website ... 27

7.2 FaaS Thumbnail Generator.. 28

8 Comparison between DOML and Essential Deployment Metamodel (EDMM) 30

9 Plan for Future Development .. 32

10 Conclusions ... 33

References ... 34

 List of tables

TABLE 1. DEFINITION OF AN ISSUE/ SUGGESTION IN DOML .. 11
TABLE 2. REQUIREMENTS ON THE GENERAL CHARACTERISTICS OF DOML [2]... 12
TABLE 3. REQUIREMENTS ON THE SPECIFIC ELEMENTS TO BE MODELLED IN DOML 13
TABLE 4. COMPARISON BETWEEN EDMM+TRANSFORMATOR AND DOML+ICG 30

List of figures

FIGURE 1. DOML COMMITTEE COMPOSITION .. 9
FIGURE 2. LIFECYCLE OF ISSUES .. 10
FIGURE 3. COMMONS LAYER DIAGRAM ... 20
FIGURE 4. APPLICATION LAYER DIAGRAM ... 21

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 34

www.piacere-project.eu

FIGURE 5. INFRASTRUCTURE LAYER DIAGRAM ... 22
FIGURE 6. CONCRETE INFRASTRUCTURE LAYER DIAGRAM ... 23
FIGURE 7. OPTIMIZATION LAYER DIAGRAM .. 24

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 34

www.piacere-project.eu

Terms and abbreviations

CMS Content Management System

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

EC European Commission

EDMM Essential Deployment Metamodel

FaaS Function as a Service

GA Grant Agreement of the project

IaC Infrastructure as Code

ICG IaC Code Generation

ICMP Internet Control Message Protocol

IEP IaC execution platform

IOP IaC Optimization

KPI Key Performance Indicator

MC Model Checker

NFR Non-Functional Requirement

SW Software

TBCG Template Based Code Generation

VM Virtual Machine

AWS Amazon Web Services

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 34

www.piacere-project.eu

Executive Summary

This deliverable provides updates to deliverable D3.1 [1], including the progress of the DOML
development to fulfil the requirements during the evolution of the project.

DOML is a domain-specific language designed for modelling the cloud applications and the
infrastructural resources, hiding the specificities and technicalities of the current IaC solutions
and increases the productivity of these teams (DOML is PIACERE KR1). DOML models are created
using the PIACERE IDE (PIACERE KR2), which provides the users the guidance and also integrates
all other design-time PIACERE tools. Then, the DOML models are translated through the
Infrastructural Code Generator (ICG, PIACERE KR3), into the target IaC languages for complex
applications.

In this deliverable, we first introduce the DOML release plan that has been defined in order to
have clear control of the development and release. Specifically, a committee has been set up to
define the schedule of each release and make decisions about the features to be added in each
release. The committee receives requests for update from its members or from other DOML
users.

Furthermore, we present the status of requirement fulfilment, the main changes concerning the
DOML metamodel and the DOML extensions, and the corresponding changes of DOML
examples. The changes are made when introducing new functionalities and fixing the problems
raised during the development. The deliverable is also accompanied by a new version of Annex
[2] that provides a detailed definition of all concepts of the DOML and that is released as a
separate document to facilitate its usage and evolution independently of this deliverable D3.2.

In the line of our continuous analysis of the state of the art, we compare also the DOML with the
related approach EDMM [3], and highlight the novelties of one with respect to the other.

Finally, based on the status of requirement fulfilment and possible functional improvements, we
summarize the future plan for development of DOML and draw the conclusions of this
deliverable.

 DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 34

www.piacere-project.eu

1 Introduction

This deliverable describes the current status of DOML at M24. It provides updates to the
previous deliverable D3.1 [1], describing the main developments of DOML throughout the
second year of the project.

In the second year, the main activities are focused on the revision of DOML metamodel to clarify
some of the confusing concepts, and functionality improvement of DOML for enhancing the
capability of expressing various software and infrastructure elements. These new updates are
based on the DOML requirements defined at the beginning and the new ones raised during the
testing on examples and case studies and the integration with other PIACERE tools, e.g., IaC Code
Generation (ICG), Model Checker (MC), etc.

Meanwhile, to facilitate the development DOML, we also introduce the DOML release plan,
which presents the ways for the users' community to provide feedbacks and issues when using
the modelling language and presents the procedure of dealing with all these suggestions and
issues, and release of new version of DOML by the DOML committee during the evolution of the
project. Currently, the history of DOML version includes the prototype v0.1, the advanced v2.0
and the improved v2.1.

Finally, DOML is compared with a similar approach named EDMM from different aspects,
including the target activity, metamodel, extensibility, code generation, etc. to highlight the
novelty and advantage of DOML.

1.1 About this Deliverable

The main goals of this deliverable are to: 1) introduce the DOML release plan for better
management of DOML development; 2) present the main changes introduced in DOML 2.1 [4]
based on the DOML requirements; 3) compare the differences between DOML and the Essential
Deployment Metamodel (EDMM) [3] approach.

1.2 Document Structure

The document is organized as follows:

• Section 2 illustrates the DOML release plan.

• Section 3 describes the fulfilment status of DOML requirements in terms of general
characteristics and specific elements.

• Section 4 presents the scenarios that have been defined for DOML in the second project
year.

• Section 5 presents DOML 2.1 metamodel, focusing on the main changes.

• Section 6 points to the DOML extension mechanism.

• Section 7 describes two examples modelled with DOML 2.1.

• Section 8 compares the differences between DOML and the Essential Deployment
Metamodel (EDMM) approach.

• Section 9 summarizes the plan for future development.

• Section 10 concludes deliverable D3.2.

The deliverable is accompanied by Annex 1 [2] which includes the detailed specification of the
DOML concepts.

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 34

www.piacere-project.eu

2 Overview of the DOML Release Plan

This section describes the means for the DOML users' community to provide suggestions and
report issues in the current status of the proposed modelling language. Moreover, it presents
the procedure by which all these suggestions and issues will be handled both during the PIACERE
project and after the research has been completed. An important element of the release plan is
the DOML committee that is in charge of collecting and analysing the incoming suggestions and
issues, of prioritizing them and of planning the work needed to address them.

The DOML Committee will be the main body in charge of updating and releasing new versions
of the DOML language during the PIACERE project and after the project has finished. The
committee is composed of a chairperson and a set of two or more experts, ideally from different
organizations. The goal of the committee is to receive, sort and resolve all incoming issues and
suggestions for changes to the current DOML version, and provide a proper solution to them,
either by responding to the suggestion/issue or by including a modification to the DOML version
to be released at the next release date.

Figure 1. DOML Committee composition

Periodicity of committee meetings

The meetings of the DOML committee are biweekly during the PIACERE project, and monthly
after PIACERE ends. The goal of these periodic meetings is to ensure that the greatest number
of issues are solved before the next version of DOML is released.

Roles of the members of the committee

There are two different roles in the DOML committee:

Chair Person. The Chair Person is responsible of scheduling the committee meetings and
ensuring that all the issues and suggestions received are sent to the group of experts for review.
They are also in charge of planning the issues that will be discussed during every meeting. Finally,
the Chair Person will act as the owner of the issues backlog, prioritizing pending tasks, and
assigning them to the experts.

Expert. A DOML expert is responsible of reading and evaluating all the issues selected for review
in the upcoming DOML committee meetings. They are also responsible of providing solutions to
the issues/suggestions assigned to them, as well as integrate any suggestions from their
colleague experts to the draft solution.

Lifecycle of Issues/Suggestions

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 34

www.piacere-project.eu

The activity diagram in Figure 2 describes the envisaged lifecycle for all incoming issues and
suggestions.

Firstly, received issues and suggestions are discussed which can be either approved or added to
the backlog, or rejected. In case of rejection, the authors of the rejected issue or suggestion
should receive a response from the committee, describing the rationale behind the rejection.

Figure 2. Lifecycle of issues

Once the issues are in the backlog, the Chair Person should prioritize them (assisted by the
experts) and then assign the ones with the highest priority to the experts.

An issue that has been assigned to an expert must then wait for a draft solution to be issued.
The draft solution must be then shared with the rest of the expert’s panel and the solution is
then set to be reviewed. The expert in charge of the issue will be responsible of integrating the
contributions by the other members of the committee and provide the final version for approval
to the Committee.

After the final approval, the change is set to be included in the next version of the DOML. In case
the Committee does not approve the solution, then the Chair Person will select a different
expert, and a new solution will be discussed as explained before.

Description of an Issue

In order for the committee to correctly understand and address issues and suggestions
submitted for review, the following template is proposed (see Table 1). The template will be
made available to the DOML community to facilitate the submission of inputs for the DOML.

DOML Release Schedule

Each version of DOML will include all the issues and suggestions whose solutions have been
approved by the DOML Committee. The schedule of new releases is agreed by the DOML

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 34

www.piacere-project.eu

Committee with the other PIACERE project members. The main criterion is that a new release is
issued every time a critical set of issues has been addressed.

Releases in months M24 and M36 shall be considered major, while the rest of the releases during
PIACERE shall be considered as minor.

The steps to be performed in order to release a new version of the DOML are the following:

• The content of the DOML main repository is cleaned up and aligned. In particular, the
DOML specification is modified to reflect the changes in the DOML metamodel and in
the syntax.

• The new DOML specification document is published on the DOML website
(https://www.piacere-doml.deib.polimi.it/).

• The test examples are updated to reflect the changes in the DOML metamodel and
syntax.

The whole content of the DOML repository is tagged with the new version number.

Table 1. Definition of an issue/ suggestion in DOML

Field Description

ID Automatically assigned number. Used to univocally identify and
issue/suggestion.

Kind Issue or Suggestion. Issues should address problems in the
current specification, while suggestions should address
recommendations for improving the current version of DOML.

Title A descriptive title for the issue/suggestion.

Description A thorough description of the issue or suggestion, including,
where necessary, examples.

Proposed solution
(optional)

A proposed solution to the issue/suggestion. The committee
shall use this solution as starting point; however, there is no
obligation for the committee to accept it.

Criticality (optional) Blocking/High/Medium/Low. The level of criticality from the
point of view of the DOML user. The committee may change
the level of criticality of the issue/suggestion after approval,
thus, this is just a hint for the committee.

DRAFT

http://www.medina-project.eu/
https://www.piacere-doml.deib.polimi.it/).

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 34

www.piacere-project.eu

3 Status of DOML Requirements Fulfilment

The requirements for the DOML are presented as part of Deliverable D2.1 [4], and summarized
in Deliverable D3.1 [1]. In this section we provide an updated summary of the DOML-specific
requirements status at M24 grouped in two tables, one listing the requirements on the general
characteristics of the DOML (Table 2) and another concerning the elements of applications and
infrastructures the DOML should represent (Table 3). For each requirement, an explanation of
how the requirement is addressed or planned to be addressed is provided. Requirements have
been also reordered to have the most general ones at the beginning of the Tables 2-3 followed
by more specific ones. For the sake of traceability, the requirement identifiers defined within
the analysis carried out as part of Deliverable 2.2 [5] have been kept.

In the follow tables, the rows highlighted in green indicate the corresponding DOML
requirements that have been fulfilled so far. The remaining rows correspond to requirements
that are partially addressed.

Table 2. Requirements on the general characteristics of DOML [2].

Req ID Description How DOML is addressing this requirement at M24

REQ63 DOML must be
unambiguous.

DOML is formally defined in terms of its translation into the
corresponding IaC code fragments. As such, it is not ambiguous
by definition.
It has been addressed in year one. For the new DOML elements
that have been introduced within year two a translation into
IaC has been defined as well.

REQ62 DOML must
support different
views.

DOML allows models to be defined on a per-layer basis. Layers
represent different viewpoints on the system:

1) in the application layer, the definition of the
application components and the dependencies
between them.

2) in the abstract infrastructure layer, an abstract
definition of the needed infrastructure, represented in
terms of categories of elements and their mapping
with the application-level components they are in
charge of executing.

3) in the concrete infrastructure layer, a definition of the
proper configuration information for the concrete
infrastructure elements to be used and their
association to the corresponding abstract elements.

4) In the optimization layer, a definition of multi-
objective optimization problem of infrastructure
resource provisioning.

It has been addressed in year one.

REQ70 The DOML
should allow
users to state
correctness
properties in a
suitable sub-
language

This requirement is addressed in the DOML in two different
ways:

1) The main correctness relationships among elements in
the specification are offered directly as part of the
language and can be used. This has been done in year
one.

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 34

www.piacere-project.eu

(possibly Formal
Logic).

2) The language offers the possibility to express generic
constraints on the elements that are used in a certain
DOML model. This has been done in year two.

REQ76 DOML should
allow the user to
model
information
needed for each
of the four
considered
DevOps activities
(Provisioning,
Configuration,
Deployment,
Orchestration)

The requirement has been rephrased in year two to clarify that
the DOML does not describe explicitly the operations
provisioning, orchestration etc., but it provides pieces of
information that are relevant to these phases.
The rephrased requirement has been partially addressed in
year one. The level of support has been improved in year two
and is planned to be further improved in year three.

REQ57 It is desirable to
enable both
forward and
backward
translations from
DOML to IaC and
vice versa

DOML currently supports to the forward translation to
different IaC, e.g., Terraform and Ansible. This has been done
in year one. The translation to other IaCs is still an ongoing
work.

Enabling backward translations could open up the possibility to
incorporate existing IaC definitions into the DOML, thus
increasing reuse and the potential impact of the DOML itself.
For the above reason, we will try to address backward
translations in the last part of the project when the DOML will
be consolidated.

Table 3. Requirements on the specific elements to be modelled in DOML

Req
ID

Description How DOML is addressing this requirement

REQ01 The DOML must be able
to model infrastructural
elements.

This requirement is addressed by the DOML by offering
primitives to represent the most relevant
infrastructural elements: containers, virtual machines,
network elements, security groups, etc. Clearly, the
exhaustive definition of infrastructural elements as
base types in the DOML is not possible. This implies that
the DOML will offer the possibility to define new
elements through the extension mechanisms (DOML-
E).
The requirement is fulfilled in year one, and in year two,
new infrastructural concepts are introduced.

REQ25 DOML should support
the modelling of security
rules (e.g., by type
tcp/udp..., and
ingress/egress port
definition)

This requirement is fulfilled by the new concept of
security group introduced in year two, which contains
both ingress and egress security rules.

REQ26 DOML should support
the modelling of security

This requirement is addressed by a specific construct in
the language.
This has been done in year one.

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 34

www.piacere-project.eu

groups (containers for
security rules)

REQ27 DOML should support
the modelling,
provisioning,
configuration, and usage
of container engine
execution technologies
(e.g., docker-host)

The DOML addresses this requirement by offering
constructs to define a container, a container image, and
a container file.
This has been done in year one.

REQ28 DOML should support
the modelling of
containerized
application deployment
(e.g.,
pull/run/restart/stop
docker containers)

This requirement is partially addressed. As stated for
REQ27, the DOML offers the possibility to model
containers and its constituents in year one, and the
concept is improved for the configuration of container
in year two. As stated for REQ76, the DOML does not
support the explicit modelling of workflows to which
the pull/run/restart/stop activities belong to. It,
however, supports the possibility to link to DOML
elements script files together with their interpreters.
This opens up the possibility to define such operations
on containers as part of these script files.

REQ29 DOML should support
the modelling of VM
provisioning for different
platforms such as
(OpenStack, AWS) for
canary and production
environments

This requirement is fulfilled in year two with the
possibility to support different platform for VM
provisioning.

REQ30 DOML should enable
support for policy
definition constraints for
QoS/NFR requirements

This requirement is partially addressed. DOML supports
the definition on QoS/NFR requirements (see REQ61).
We will assess whether the definition of such
requirements is sufficient to actuate the policies
defined by the PIACERE runtime components or
whether additional and specific policies will have to be
defined as part of the language.

REQ58 DOML should offer the
modelling abstractions
to define the outcomes
of the IoP

This requirement is fulfilled in year two by introducing
the optimization solution concept which is composed of
results of the objectives and the decision variables.

REQ59 The DOML should allow
users to define rules and
constraints for
redeployment,
reconfiguration, and
other mitigation actions

This requirement is partially addressed. The DOML
addresses it by supporting the definition of the
requirements and constraints that should be
considered while performing mitigation actions. These
concern, for instance:

• the structural characteristics of the infrastructural
elements to be used (if the user states that a VM
with 16 GB of RAM should be used for executing a
certain application component, any change of VM
should ensure that this requirement is still fulfilled)
or

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 34

www.piacere-project.eu

• the definition of non-functional requirements
predicating on response time, availability, or other
characteristics of application components. This has
been done in year one and improved in year two.

Redeployment rules are to be addressed.

REQ60 DOML should support
the modelling of security
metrics both at the level
of infrastructure and
application

For the moment, this aspect is not explicitly addressed
in the DOML. The sub-language used for defining
generic non-functional requirements could be suitable
to address the modelling of security metrics as well.

Experiments will be conducted, and the language will be
extended if needed.

REQ61 DOML must support the
modelling of NFRs and of
SLOs

NFRs and SLOs have been supported in year one, and in
year two, functional and non-functional requirements
have been separated and supported, where functional
requirements fulfilment is checked by the verification
tool, and the non-functional requirements are mainly
used to describe the constraints for the IOP
(infrastructure optimization).

REQ36 DOML to enable writing
infrastructure tests.

This requirement is not addressed in the DOML.

Infrastructure testing typically focus on injecting faults
in specific points of the infrastructure and then
observing the reaction of the system. Chaos
engineering is the discipline that focuses on this aspect.
A study on the tools adopted in chaos engineering is
ongoing and will provide inputs to address this
requirement.

 DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 34

www.piacere-project.eu

4 Newly defined scenarios

This section presents the new scenarios of DOML usage that have been specifically analysed and
addressed in the second project year. The structure of these scenarios is aligned with the
guidelines associated to agile development using Gherkin syntax. They concern, in particular,
the following aspects:

• Associate a software component to a container.

• Define the container as part of the infrastructure.

• Associating a software component to specific IaC code.

• Creating an autoscaling group.

• Defining functional and non-functional requirements.

• Extending the DOML with new resources/providers.

Feature: Creation of a new DOML for a specific software application

 As a PIACERE user I want to create a new DOML model to automate the

 provisioning of the corresponding resources and the deployment of the

 whole software stack and its configuration

Scenario: Create a new empty DOML model

Given An installed PIACERE IDE

When user starts a new PIACERE DevOps project

Then a new DOML file is created

Scenario: Insert a new DOML element in a DOML model

Given An empty DOML model

When user starts typing the keyword software_component or infrastructure or

...

And continues with an identifier for the element to be added

And adds needed details (properties or attributes defined for the specific

element type)

Then the new element is created

Scenario: Associate a software component to a container

Given the software_component portainer

When user digits something like:

repo r1 {

 engine 'docker'

 uri "hub.docker.com/r/portainer/portainer"

 user_pass u1 {

 user "***"

 pass "***"

 }

}

Then the software_component portainer is associated to the image defined by

the uri

Scenario: Define the container as part of the infrastructure

Given a DOML model

When user digits something like:

software_component c1 {

 source_uri "..."

}

...

container co1 {

 repo r1 {

 engine 'docker'

 uri "https://hub.docker.com/_/httpd"

 user_pass u1 {

 user "***"

 pass "***"

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 34

www.piacere-project.eu

 }

 }

 destination_dir "/usr/local/apache2/htdocs/"

}

vm vm1 {

 os "CentOS-7-2111"

 cpu_count 2

 mem_mb 8192.0

 iface i1 {

 belongs_to net1

 }

}

deployment config {

 c1 -> co1

 co1 -> vm1

}

Then software_component c1 is meant to be deployed within the container co1,

which is created from the specified image and is mapped into vm vm1

Scenario: Associating a software component to specific IaC code

Given a DOML model

When a user digits something like the following

software_component nio3_git {

 repo r1 {

 engine 'git'

 uri "git.code.tecnalia.com/piacere/private/wp7-use-cases/uc1.si-mpa/-

/tree/main/deploy-nio"

 entry "ansible/provision.yml"

 backend "ansible"

 user_pass u1 {

 user "***"

 pass "***"

 }

 }

 properties {

 nexus_docker_registry_user = "***";

 nexus_docker_registry_password = "***";

 }

}

Then software_component nio3_git relevant code is found in the specified URI.

And The code is meant to be executed starting from the specified entry, with

the specified backend (Ansible in the example)

Scenario: Creating an autoscaling group

Given a DOML model

When a user digits:

autoscale_group ag {

 vm vm_template {

 cpu_count 2

 mem_mb 1024.0

 iface i1 {

 belongs_to net1

 }

 credentials ssh_pass

 }

 min 1 max 2

}

Then autoscaling group is created,

And it contains an template for creating a VM instance with the specific

requirements on CPU, memory, etc.

And the scale is specified by the minimum and maximum number of VMs

Scenario: Defining functional and non-functional requirements

Given a DOML model

DRAFT

http://www.medina-project.eu/

D3.2 – PIACERE Abstractions, DOML and DOML-E – v2 Version 1.0 – Final. Date: 25.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 34

www.piacere-project.eu

When a user digits:

functional_requirements {

 req_ext ```

 > "example requirement to test"

 # Expr to parse

 not (

 vm is class infrastructure.VirtualMachine

 and

 vm is not class infrastructure.Storage

 or

 vm is not class infrastructure.Storage

 implies

 vm is class infrastructure.Storage

)

 iff

 not exists iface, apple (

 forall orange (

 vm has association infrastructure.ComputingNode->ifaces iface

 or

 vm has association infrastructure.ComputingNode->ifaces iface

)

 and

 vm has attribute infrastructure.ComputingNode->os Os1

)

 "Virtual Machine {vm} has no iface"

  ```; 

} 

Then functional requirements are created (which can be some external 

requirements in external DSL like the example) 

And they are dedicated to the verification tools 

When a user digits: 

nonfunctional_requirements { 

  req1 "Cost <= 70.0" max 70.0 => "cost"; 

  req2 "Availability >= 66.5%" min 66.5 => "availability"; 

} 

Then the nonfunctional requirements are created (which can be some numerical 

constraints like the example) 

And they are dedicated to the Optimization tools 

 

 

 

Scenario: Extending the DOML with new resources 

Given the existing DOML metamodel 

When a user creates a new class extending a specific DOML metaclass for a new 

resource 

And adding the needed attributes and references to other elements in the class 

And creating the desired concrete syntax in the grammar definition 

Then a new DOML supporting a specific new resource is created 

 

  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2                 Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                            Contract No. GA 101000162                                   Page 19 of 34 

www.piacere-project.eu     

5 DOML 2.1 Metamodel 

The DOML metamodel is constructed by several “layers”, which incrementally enrich the 
description of the cloud-based applications that will be managed inside PIACERE. Each layer 
provides a unique point of view of the applications; yet all the layers are built up for a 
comprehensive application description. 

5.1 Main Changes 

Compared to the first version of DOML metamodel in D3.1 [1], DOML 2.1 metamodel mainly 
contains the following changes: 

• Commons Layer: 
o DOML version is added for the identification of DOML that will be used in 

different tools, e.g., ICG, MC, etc. 
o Different types of properties are supported for the convenience of modelling. 
o Requirements are split into functional and non-functional ones.  

• Infrastructure Layer: 
o Security group is implemented, supporting definition of ingress and egress 

security rules for the network. 
o Autoscaling group is implemented, supporting definition of VM template and 

load balancer. 
o VPC is removed, the more general concept Subnet is implemented.  
o CIDR field is added in abstract network to define IP ranges. 
o Container configuration is added to define the port mapping, environment 

variables, etc. 
o Credentials for VMs are introduced, including SSH key pair and user password. 
o Docker swarm is introduced to support/define the cluster of Docker container 

services. 
o Label and size fields are added in storage. 
o CPU, memory, size, etc. fields are updated (with explicit units). 

• Concrete Layer: 
o Data structure is changed, i.e., the runtime provider now has containment 

references of the other concrete elements. 
o IP address is moved from the abstract network to the concrete one. 
o VM and container images are added. 

• Optimization Layer: 
o Non-functional requirements are added to define the constraints of the 

optimization problem. 
o Optimization solutions are added to store the results by the IOP component. 

For the sake of completeness, Sections from 5.2 on describe the whole metamodel structured 
in multiple layers. 

5.2 Commons Layer 

The Commons Layer contains the main abstract application agnostic concepts that are shared 
among different layers (see Figure 3). The DOML extension mechanisms (DOML-E) are also 
addressed in this layer by setting up the basic elements that will allow creating new concepts 
and properties in the top layers.

DRAFT

http://www.medina-project.eu/


   
D3.2 – PIACERE Abstractions, DOML and DOML-E – v2           Version 1.0 – Final. Date: 25.11.2022 

 

© PIACERE Consortium   Contract No. GA 101000162               Page 20 of 34 

www.piacere-project.eu                                                                                                                                                                                                                                    

 

 

Figure 3. Commons Layer diagram
DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2  Version 1.0 – Final. Date: 25.11.2022 

 

© PIACERE Consortium   Contract No. GA 101000162 Page 21 of 34 

www.piacere-project.eu                                                                                                               

5.3 Application Layer 

The Application Layer (see Figure 4) contains the information to describe the components and 
building blocks that compose the applications, as well as the functional requirements of each of 
them in terms of software interfaces and APIs. Finally, this layer describes how the application 
is deployed into the different infrastructure components. 

 

Figure 4. Application Layer diagram 

5.4 Infrastructure Layer 

The Infrastructure Layer (see Figure 5 for an overview. The readability of this figure could not 
be improved for lack of space. A detailed description of all its elements is available in the Annex 
[2] defines the abstract infrastructure elements that will be used to deploy the application 
components. Concepts in this layer will include information that is relevant to meet the 
requirements of the applications. However, most of the concepts in this layer will require a 
concretization, or in other words, a more concrete instance they will be mapped on. For 
example, a virtual machine (VM) in this layer must be mapped to a concrete virtual machine 
instance, be it a VM from AWS or a specific VM deployed by the user.   

5.5 Concrete Layer 

The Concrete Layer (see Figure 6) provides the tools to concretize the infrastructure elements 
in the Infrastructure Layer and map them onto specific infrastructure instances either provided 
by cloud runtime providers, such as AWS or Google Cloud, or provided by the users. 

5.6 Optimization Layer 

The Optimization Layer (see Figure 7) defines all the information required for the optimizers to 
locate the best configurations for the cloud applications described in the DOML, as well as means 
to capture the optimization solutions. 
 

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2           Version 1.0 – Final. Date: 25.11.2022 

 

© PIACERE Consortium   Contract No. GA 101000162               Page 22 of 34 

www.piacere-project.eu                                                                                                                                                                                                                                             

 

 

Figure 5. Infrastructure layer diagram 

 
DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2                                              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                            Contract No. GA 101000162                                                  Page 23 of 34 

www.piacere-project.eu                    

 

Figure 6. Concrete Infrastructure Layer diagram 

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2                                              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                            Contract No. GA 101000162                                                  Page 24 of 34 

www.piacere-project.eu                    

 

Figure 7. Optimization Layer diagram  

 

 
 DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2  Version 1.0 – Final. Date: 25.11.2022 

 

© PIACERE Consortium   Contract No. GA 101000162 Page 25 of 34 

www.piacere-project.eu                                                                                                                

6 DOML Extension Mechanism (DOML-E) 

In order to meet the continuously evolving cloud markets, DOML includes extension 
mechanisms that allow the users to create new concepts to existing ones. These extensions 
mechanisms are referred to as DOML-E. The DOML is currently extended in the following two 
different ways: 

• Creation of new concepts. The new concepts will require the definition of a 
metaclassName. Extension elements exist in all the DOML layers, e.g., the Application 
Layer includes the class ExtApplicationComponent that incorporates into the 
Application Layer a new type of ApplicationComponent. Further details on the definition 
of these extension classes are provided in the Annex. 

• Definition of new properties. The set of properties and attributes associated to one 
particular DOML concept can be extended to further increase its expressiveness. 

In the following, we illustrate the detailed steps for extending DOML in the above two ways 
through examples. For extending metamodel, we have defined a new scenario in year two for 
this deliverable (see Section 4).  

6.1 Creation of New Concepts 

Suppose a new service concept and a new docker service concept would want to be introduced 
in the infrastructure layer. 

To this end, we will first modify the metamodel by creating a metaclass named Service which 
extends the abstract class DOMLElement and includes the necessary attributes and references. 
For the sake of simplicity and clarity, we create the following example Service: 
 

class Service extends DOMLElement { 

attr Integer port; 

attr String [*] constraints; 

} 

 

In the above example, a Service is an DOMLElement which has a port attribute and several 
possible constraints expressed with String (for simplicity). 

Now considering that the container service is simultaneously a computing node and a service, 
multiple inheritance is used to model this concept: 

 

class Container extends ComputingNode, commons.Service { 

ref ContainerImage #generatedContainers generatedFrom; 

ref ComputingNode [*] hosts; 

} 

 

In above example, we extend the existing container by another superclass. Note that the 
references inside the class are associated to its ComputingNode characteristic. 

Now we are ready to create the corresponding concrete syntax for them. For the service, we 
could use a grammar fragment, which could be used for any other service-related concept, 
shown as follows: 

fragment Service returns commons::Service:  

(  

  ('port' port=INT)? &  

  ('constraints' '[' constraints+=STRING (',' constraints+=STRING)* ']' )?&  

  ('properties' '{'  

   annotations+=Property*  

  '}')?  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 26 of 34 

www.piacere-project.eu    

 )  

; 

 

Since we can reuse the Container concept, we update it by adding the characteristics as a 
service: 

Container returns infra::Container: 

 'container' (('service' DOMLElement '{' Service) | DOMLElement '{') 

  'hosts' hosts+=[infra::ComputingNode] (','hosts+=[infra::ComputingNode])* 

 '}' 

; 

 

Having introduced the above modifications in the metamodel and in the syntax, the new 
container service construct can be used. The fragment below is a very simple example of DOML 
script defined by the above model for a container service: 

container service dns_server { 

 hosts vm_infra 

 port 53 

 constraints [ ‘C1’, ‘C2’ ] 

 //image: "nexus-registry.xlab.si:5001/consul:1.0.0" 

} 

6.2 Definition of New Properties 

In current DOML, most concepts contain properties that can be expressed by key-value pairs. 
This is implemented by adding the property attribute in the superclass DOMLElement, since 
almost all DOML concepts extends it. The detailed implementation is as follows: 

abstract class DOMLElement { 

 ... 

 val Property [*] annotations; 

} 

abstract class Property { 

 attr String key; 

 ref DOMLElement reference; 

 op Object getValue(); 

} 

class IProperty extends Property { 

 attr Integer value; 

}  

 

The above fragment of DOML metamodel show an example of integer property definition. Other 
properties like string, float, etc. are defined in the similar way. 

A doml script example is as follows: 

faas concrete_f { 

 properties { 

  lambda_role_name = "DemoLambdaRole"; 

  lambda_runtime = "python3.8"; 

  lambda_handler = "image_resize.lambda_handler"; 

  lambda_timeout = 5; 

  lambda_memory = 128; 

 } 

 maps f 

} 

 

In the above example, different types of properties are defined for a concrete FaaS component 
of an application. 

  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 27 of 34 

www.piacere-project.eu    

7 DOML 2.1 Example 

In this section, we reflect the main changes and functionalities of DOML 2.1 for the examples 
available in D3.1 [1], i.e., the WordPress website and the Function-as-a-Service (FaaS)  
Thumbnail Generator. 

7.1 WordPress Website 

WordPress is a popular open-source Content Management System (CMS) that can be used to 
easily develop blogs and other kinds of websites. WordPress is written in the PHP programming 
language, so it needs to be run on a server with the appropriate runtime environment properly 
configured. It also needs a SQL database as a backend for storing website data. 

The structure of the WordPress application is that: a WordPress is running in a container which 
is hosted in a VM provisioned by a provider, e.g., AWS. VM is defined in an autoscaling group 
where the size is defined as two. WordPress is connecting to a database through network. In the 
following, for the sake of clarity, we only demonstrate the new code fragments that implement 
this application with DOML v2.1, where the rest is the same as the one described in the previous 
version shown in D3.1  [1]. Specifically, the updates include the definition of the container with 
detailed the configuration, the security group composed of different ingress and egress rules, 
the network and subnet, the credentials and the autoscaling group. In DOML v2.1, some of these 
concepts are revised and the others are newly introduced. 

For modelling the docker container: 

container container1 { 
host wp_vm1 { 

container_port 80 
vm_port 80 
iface i1 
properties { 

WP_DB_HOST = “dbms_vm”; 
WP_DB_USER = “username”; 
WP_DB_PASSWORD = “password”; 
WP_DB_NAME = “database.name”; 

} 
} 

} 
 

In this fragment, “container1” is to be hosted on the virtual machine “wp_vm1” with the port 
mapping “80:80” binding with network interface “i1”. The properties, i.e., “WP_DB_HOST”, 
“WP_DB_USER”, “WP_DB_PASSWORD” and “WP_DB_NAME” are provided as the environment 
variables for the container. 

For modelling the security group: 

security_group sg { 

egress icmp { 

from_port -1 

to_port -1 

protocol "icmp" 

cidr ["0.0.0.0/0"] 

} 

ingress http { 

from_port 80 

to_port 80 

protocol "tcp" 

cidr ["0.0.0.0/0"] 

} 

ingress https { 

from_port 443 

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 28 of 34 

www.piacere-project.eu    

to_port 443 

protocol "tcp" 

cidr ["0.0.0.0/0"] 

} 

ingress ssh { 

from_port 22 

to_port 22 

protocol "tcp" 

cidr ["0.0.0.0/0"] 

} 

} 

 

The security group defines several egress rules (w.r.t. ICMP) and ingress rules (w.r.t. HTTP, HTTPS 
and SSH) for the network. 

For modelling the network and subnet: 

net net1 { 

cidr "/24" 

protocol "tcp/ip" 

subnet subnet1 { 

cidr "/24" 

protocol "tcp/ip" 

} 

} 

This fragment defines the CIDR and protocol for the abstract network and subnet. 

For modelling the credentials: 

user_pass ssh_pass { 

user "username" 

pass "password" 

} 

key_pair ssh_key { 

keyfile "ssh key" 

} 

The credentials (including both password and ssh key) for the virtual machine can be defined. 

For modelling the autoscaling group: 

autoscale_group ag { 

vm wp_vm { 

cpu_count 2 

mem_mb 1024.0 

iface i1 { 

belongs_to net1 

security sg 

} 

credentials ssh_pass 

} 

// count = 2 

min 2 max 2 

} 

The autoscaling group is defined by providing the template of virtual machine “wp_vm” and the 
minimum and maximum number of VMs supported. 

7.2 FaaS Thumbnail Generator 

The second example implements an online thumbnail generator based on a Function-as-a-
Service (FaaS) infrastructure. The generator works in this way: the user uploads the high-
resolution image they want to generate the thumbnails for, and then the service resizes it to 

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 29 of 34 

www.piacere-project.eu    

three different sizes, which are then made available to the user. The image-resizing functionality 
is implemented as a stateless FaaS service. 

The structure of the FasS Thumbnail generator is that: a web interface is provided for the user 
to upload and download images, and a FaaS software is used to do the image resizing task for 
producing thumbnail; two storage buckets (e.g., based on provider AWS) are used to store 
respectively the input and output images; a notification service (as a software component) 
manages the communication between the web app and the resizing function. 

In the following, for the sake of clarity, we only demonstrate the new code fragments that 
implement this application with DOML v2.1, where the rest is the same as the one described in 
the previous version shown in D3.1  [1]. Specifically, the main changes are related to the 
definition of VM, which states the network and interface, the security group, the credentials, 
and the location information.  

For modelling the VM: 

vm v { 

iface i1 { 

address "10.0.0.1" 

belongs_to net1 

security sg 

} 

credentials ssh_key 

loc { 

region "eu-central-1" 

} 

} 

 

The security group, credentials and location information are added in for the VM. The detailed 
changes on network, subnet, security group, credentials, etc. are similar to the ones for 
WordPress example in Section 7.1.  

 

  DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 30 of 34 

www.piacere-project.eu    

8 Comparison between DOML and Essential Deployment 
Metamodel (EDMM) 

EDMM is a project started by University of Stuttgart [3]. It stands for Essential Deployment 
MetaModel and defines the main concepts that enable a comparison between different 
deployment IaC frameworks. Besides the metamodel, transformators are being built to generate 
code in various IaC languages.  

In Table 4 below we compare the EDMM with our DOML + ICG approach.  

Table 4. Comparison between EDMM+Transformator and DOML+ICG 

Topic EDMM+Transformator DOML+ICG 

Target activity Deployment 
Provisioning, Configuration, 
Deployment, Orchestration 

Metamodel 

Very abstract base metamodel, 
domain-specific types are 
defined in the model (e.g. based 
on the provided type.yaml) and 
are extensible 

Domain-specific metamodel, domain-
specific types are already defined and 
fixed 

Extensibility 

The metamodel is fixed, but 
contains both type and property 
meta-elements to define new 
types in the model. All domain-
specific types are defined as 
extensions in each model (e.g. 
see types.yml) 

DOML-E extension mechanism should 
allow to define new meta-classes to 
extend the meta-model. The metamodel 
has the property meta-element, plus 
specific meta-elements, subclasses of 
ExtensionElement, whose instances will 
extend the meta-model 

Code 
generation 
strategy 

Template Based Code 
Generation (TBCG) 

TBCG 

Code 
Generator 
architecture 

Model Parser + one Plugin for 
each target IaC language 

Model Parser + one Plugin for each 
target IaC language 

Available 
Plugins 

Ansible, Azure Resource 
Manager, Chef, Docker 
Compose, Heat Orchestration 
Template, Kubernetes, 
Terraform, Puppet, Cloudify, 
AWS CloudFormation, Salt, Juju, 
CFEngine 

Ansible, Terraform 

Intermediate 
representation 

The context passed to all plugins 
contains a graph representing 
the input model 

The parser generates a JSON 
intermediate representation which 
contains all the parameters for each 
object to be generated, including the 
target language and the target provider 

DRAFT

http://www.medina-project.eu/
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FUST-EDMM%2Fedmm%2Fblob%2Fmaster%2Fdocs%2Ftypes.yml&data=05%7C01%7Cpiacere-wp3%40listas.tecnalia.com%7C589cdca51fc245818d4008da8517c73a%7Cb235b67cbf484671b1a1da444c1bef66%7C0%7C0%7C637968634424055853%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=sLaiQTNZ8bJIwLvlkDDOAF9dVZf%2BHNU%2BHB9Vht46AzQ%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.iaas.uni-stuttgart.de%2Fimg%2Fedmm_overview.png%3F__scale%3Dw%3A1440%2Ch%3A560%2Cc%3Atransparent&data=05%7C01%7Cpiacere-wp3%40listas.tecnalia.com%7C589cdca51fc245818d4008da8517c73a%7Cb235b67cbf484671b1a1da444c1bef66%7C0%7C0%7C637968634424055853%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=zNEEu%2FVFq4g8GeRj2L7c34u8B6%2BSPF%2BzLpx%2Fdx1N2YU%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FUST-EDMM%2Fedmm%2Fblob%2Fmaster%2Fdocs%2Ftypes.yml&data=05%7C01%7Cpiacere-wp3%40listas.tecnalia.com%7C589cdca51fc245818d4008da8517c73a%7Cb235b67cbf484671b1a1da444c1bef66%7C0%7C0%7C637968634424212094%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=UJM39jOjSVb0Vr5rDS00cydrWv1%2BWolV5Kr4OSlIl9g%3D&reserved=0


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 31 of 34 

www.piacere-project.eu    

Templates 
used 

File names fixed in the code 

Dynamically loaded from the tool's 
template library, based on the input 
model element, the target language, and 
the provider 

Template 
engine 

Custom, written in Java Jinjia2 

 

From the above, we can see that DOML+ICG focuses on more target activities including 
Provisioning, Configuration, Deployment and Orchestration. Both languages are based on the 
domain-specific metamodels and are extensible. Their code generation are based on the same 
strategy, i.e., Template Based Code Generation (TBCG). Although, for the moment, DOML+ICG 
is mainly focused on the translation to Terraform and Ansible, other IaC languages are to be 
supported by the same way using DOML-E mechanism. Other aspects of these two languages 
related to, for instance, the intermediate representation, template engine, etc., are also 
different and compared in detailed in the above table. 

 

  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 32 of 34 

www.piacere-project.eu    

9 Plan for Future Development 

The plan for future development of DOML follows both the needs of the PIACERE case studies 
and the requirements identified at the beginning of the project. Whenever new requirements 
are coming from use cases or partners, DOML is supposed to incorporate the new functionalities 
to support them through either direct modification on DOML or new implementation with 
DOML-E mechanism. 

In terms of general characteristics of DOML, REQ76 and REQ57 are to be addressed: 

• Allow the user to model information needed for each of the four considered DevOps 
activities (Provisioning, Configuration, Deployment, Orchestration). 

• Enable both forward and backward translations from DOML to IaC and vice versa. 

Regarding the specific DOML elements, REQ28, REQ30, REQ59, REQ60 and REQ36 are to be 
addressed: 

• Support the modelling of containerized application deployment (e.g., pull, run, restart, 
stop docker containers). 

• Enable support for policy definition constraints for QoS/NFR requirements. 

• Allow users to define rules and constraints for redeployment, reconfiguration, and other 
mitigation actions. 

• Support the modelling of security metrics both at the level of infrastructure and 
application. 

• Enable writing infrastructure tests. 

Other possible improvements involve the DOML in combination with other PIACERE 
components: 

• Improve the representation of Application and Optimization layer. This improvement 
will be addressed in cooperation with the IOP development. 

• Improve the DOML-extension mechanism. 

• Improve the integration of Infrastructure Element Catalogue. 

• Support IoT applications and infrastructures. 

• Support the generation of more IaC languages. This improvement will be performed in 
cooperation with the development of ICG. 

• Organize the DOML in multiple files. 

• Implement graphical representation of DOML. This improvement will mainly concern 
the IDE. 

 

 

  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 33 of 34 

www.piacere-project.eu    

10 Conclusions 

This deliverable presents the new development results of DOML. The changes introduced into 
DOML 2.1 include the implementation of new functionalities and the solution results of fixing 
the problems of DOML raised during the evolution of the project. Examples of DOML models are 
updated to demonstrate the modelling details under the new version of DOML. The status of 
the requirement fulfilment is analysed, based on which, the future development plan of DOML 
is summarized. Besides, we discuss the differences between the DOML and the similar EDMM 
approach to reflect the novelty of DOML. 

  

DRAFT

http://www.medina-project.eu/


D3.2 – PIACERE Abstractions, DOML and DOML-E – v2              Version 1.0 – Final. Date: 25.11.2022 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 34 of 34 

www.piacere-project.eu    

References 

[1]  E. Di Nitto ed., «Deliverable D3.1 PIACERE Abstractions, DOML and DOML-E - v1,» Piacere 
consortium, Dec. 2021. 

[2]  PIACERE team, "PIACERE DOML Specification v 2.1.," https://www.piacere-
doml.deib.polimi.it/specifications/DOML_Specification_v2.1.pdf, October 2022. 

[3]  M. Wurster, U. Breitenbücher, M. Falkenthal and e. al, "The essential deployment 
metamodel: a systematic review of deployment automation technologies," SICS Softw.-
Inensiv. Cyber-Phys. Syst. 35, p. 63–75, 2020.  

[4]  Morganti, Emanuele, «Deliverable 2.1 PIACERE DevSecOps Framework Requirements 
specification, architecture and integration strategy - v1,» Dec. 2021. 

[5]  Morganti, Emanuele, «Deliverable 2.2 PIACERE DevSecOps Framework Requirements 
specification, architecture and integration strategy - v2,» To be published. 

 

 

 

 

DRAFT

http://www.medina-project.eu/



