

EUROCC - National Competence Centres in the

framework of EuroHPC

EuroHPC-04-2019: HPC Competence Centres

Parallel IO on ARCHER2
Stephen Farr and David Henty

EPCC, The University of Edinburgh

Project 951732 EuroCC Technical Report Page 2 of 9

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant

agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation

programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece,

Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom,

France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia,

Iceland, Montenegro

Co-funded by the Horizon 2020 programme

of the European Union

Project 951732 EuroCC Technical Report Page 3 of 9

Table of Contents
1 Introduction .. 4

2 Methodology .. 5

2.1 Lustre lockahead .. 5

2.2 Lockahead with HDF5 .. 6

2.3 ADIOS2 ... 7

3 Applying findings to a full HPC application .. 8

4 Conclusions .. 8

4.1 General guidance for ARCHER2 users ... 9

5 References .. 9

Project 951732 EuroCC Technical Report Page 4 of 9

1 Introduction

This work builds upon work previously presented by David Henty [1], which we will

summarise here. ARCHER2 [2] is the UK national supercomputer, a 5860-node, 750,080 CPU-

core HPE Cray EX system hosted by EPCC. It has 3 disk-based Lustre file systems, each with

12 Object Storage Targets (OSTs) and their own Meta Data Server (MDS). It also has one solid-

state NVMe Lustre file system which has 20 OSTs and one MDS. All ARCHER2 users have

access to one of the disk-based Lustre file systems; the NVMe file system is currently in a trial

phase and only accessible by certain users.

File input and output can become bottlenecks for parallel programs running on large numbers

of processors. There are three general ways to output data to disk from parallel programs:

1. Serial writing where data from all processes is sent to one controller process which

writes to a single file. Having a single process writing to disk cannot take full advantage

of the parallel nature of the Lustre file system, and on ARCHER2 the IO bandwidth

from a single process is much less than the write speed of even a single OST.

2. File-per-process where each process writes its own local data to a separate file. This

method can achieve high bandwidth in certain conditions as the files will be distributed

across all the OSTs. However, Lustre filesystems are not optimised for large numbers

of small files and the single MDS can become overwhelmed especially if multiple users

are writing multiple files. Additionally, post processing of simulation output can

become more troublesome with file-per-process output, as multiple files need to be

collated and the output format depends on the number of processes used.

3. Collective parallel IO where all processes write to a single shared file in parallel. This

can be done using MPI-IO or libraries such as HDF5 [3], NetCDF [4] and ADIOS2 [5].

These methods aim to overcome the limitations of the serial write, and file-per-process

methods. To take advantage of a parallel filesystem requires the single shared file to be

stored on multiple OSTs. For most IO libraries this requires the user to use Lustre

“striping” (although ADIOS2 can exploit parallelism using a different approach).

In the previous study [1], based on a synthetic benchmark, some specific limits of IO write

bandwidth on ARCHER2 were found:

- There is a per-process limit of just over 1 GiB/second.

- Per OST bandwidths are 11 GiB/s for disk and 55 GiB/s for NVMe.

- A single node can sustain up to 20 GiB/s.

- MPI-IO writing to a fully striped file (12 stripes, one per OST) on disk is limited to

around 10 GiB/s. This is because MPI-IO defaults to a single IO process per stripe (an

“aggregator” process) and each aggregator is limited by the per-process limit of 1 GiB/s.

Using more aggregators did not improve this because it introduces added overheads

from Lustre file-locking.

- Writing to NVMe using file-per-process and collective MPI-IO has similar speeds as

writing to disk, despite the higher per-OST bandwidth.

- Good MPI-IO performance requires good performance from MPI collective operations.

On ARCHER2, the UCX version of MPI gives much better performance than the default

OFI library.

- HDF5 and NetCDF give similar performance to MPI-IO.

Project 951732 EuroCC Technical Report Page 5 of 9

In this work we investigate how to increase the MPI-IO performance on ARCHER2 using the

Cray Lustre lockahead [6] MPI-IO runtime options which were not previously investigated. We

then investigate the performance of ADIOS2 [5], a more modern parallel IO library, and look

at the performance of IO from a real HPC application rather than a synthetic benchmark,

2 Methodology

Unless otherwise stated all performance results were produced using the programming

environment PrgEnv-gnu/8.0.0. As we are interested in the maximum obtainable IO bandwidth,

we repeat measurements 10 times and take the maximum results. We ensure to only run one IO

benchmarking job at once so we are not clashing with our own application. MPI-IO and HDF5

results use fully-striped files, set using the Lustre command lfs setstripe -c -1. This

equates to 12 stipes on the disk filesystem and 20 stripes on NVMe. The stripe size is left at the

default of 1MiB. For ADIOS2 unstriped files are used because, for the native BP5 file format

used here, parallelism is achieved by writing a large number of files so does not rely on Lustre

file striping. Raw data is available in “results” at https://github.com/davidhenty/benchio/.

2.1 Lustre lockahead

When writing to shared files on Lustre the IO performance is limited by Lustre Locking

mechanisms when using more than one aggregator process per stripe. These overheads can be

overcome using the Cray lockahead feature [6]. Lockahead is enabled at runtime using the

MPIIO_HINTS environmental variable

export MPICH_MPIIO_HINTS=*:cray_cb_write_lock_mode=2,*:cray_cb_nodes_multiplier=N

where N is an integer. The “cray_cb_write_lock_mode=2” setting turns on Lustre lockahead.

A value of 0 is default locking and a value of 1 is group locking which was found to have no

performance benefit on ARCHER2 [1]. The “cray_cb_node_multipler=N” sets the number of

aggregators per stripe; “*” applies these settings to all files.

A. Disk B. NVMe

Figure 1 A. Disk strong scaling performance of benchio using MPI-IO. B. NVMe

strong scaling performance of benchio using MPI-IO. The legend gives the number

of aggregators per stripe with lustre lockahead enabled. The black circle data

points are for default Lustre locking (lock=0).

Project 951732 EuroCC Technical Report Page 6 of 9

Using a synthetic IO benchmarking program benchio [7] we investigated the strong scaling

performance of MPI-IO using Lustre lockahead with different numbers of aggregators per stripe

on disk and NVMe. The benchmarks were done using a global array size of 64GiB writing to

a fully striped file (12 stripes for disk, 20 stripes for NVMe) with a stripe size of 1MiB using

the UCX library. The results are plotted in figure 1 for [1, 2, 4, 8, 16, 32] aggregators per stripe,

the performance of lockmode=0 (default locking mode, 1 aggregator per stripe) is also plotted

for comparison. Subfigure A shows the results for disk and subfigure B those for NVMe.

We see that for both disk and NVMe that for up to 8 nodes there is not much difference between

the default lockmode=0 and the different aggregator settings. In fact lockmode=0 gives the best

performance for 4 nodes or less. In this regime the overheads of Lustre lockahead appear greater

than any performance benefit. For disk we see a significant difference at 16 nodes: using 2 or

more aggregators gives increased performance, with 4 aggregators per stripe giving the best

performance of 35 GiB/s which is a more than 3x increase over the default locking. The

performance difference between 8 and 16 nodes is approximately 4x which is greater than the

linear scaling increase of 2x. This could be attributed to the per-node bandwidth discussed

previously: with 8 nodes there are more OSTs than nodes, while with 16 Nodes there are more

nodes than OSTs which helps to overcome the per-node bandwidth bottleneck.

Interestingly for disk we see that setting the aggregators per stripe to the number of nodes/4

gives maximum performance. The peak bandwidth is 80 GiB/s for 64 nodes with 16 aggregators

per stripe which approaches the quoted hardware maximum of 131 = 12 OST * 11 GiB/s. For

NVMe we see less of a difference between the aggregator settings with 8 aggregators per node

giving good performance for all node counts. For 16 or more nodes the maximum bandwidth is

lower than disk. This is unexpected and not readily explainable.

2.2 Lockahead with HDF5

We then checked how the lockahead settings affect HDF5 output. To do this we ran benchio

using the HDF5 output setting for 64 nodes with different aggregators per stripe and lockahead

enabled. The results are plotted in figure 2 with the MPI-IO results for comparison. We see that

HDF5 performance closely follows MPI-IO while mostly being slightly lower. The peak

performance is still reached with 16 aggregators per stripe. This is as expected because HDF5

runs on top of MPI-IO and the additional overheads account for the slight drop in performance.

Figure 2. HDF5 benchio performance compared with MPI-IO for 64 nodes using different

aggregators per stripe with lockahead enabled.

Project 951732 EuroCC Technical Report Page 7 of 9

2.3 ADIOS2

As part of this new study we implemented ADIOS2 (v2.8.3) as a new output option in benchio.

ADIOS2 is a parallel IO library that can write files in a variety of formats including HDF5. In

this work we focus on the BP5 file format, the most recent version of the ADIOS2 binary-pack

native format. A BP5 file is actually a directory; within the directory are the data files which

contain the binary data (1 data file is written per aggregator) and the metadata files. The number

of aggregators is the parameter than can be tuned to optimise ADIOS2 performance. The default

value is 1 aggregator per shared memory node, but it can be controlled at runtime by providing

the desired number in the ADIOS2 config file. An example is shown below for 4 aggregators.

“adios2_config.xml”
<?xml version="1.0"?>
<adios-config>
 <io name="Output">
 <engine type="BP5">
 <parameter key="NumAggregators" value="4"/>
 </engine>
 </io>
</adios-config>

We investigated the strong scaling performance for the same 64GB file size as figure 1. The

number of aggregators per node was varied from 1 to 64. The results are plotted in figure 3.

We see that for 16 or fewer nodes the performance is increased when more aggregators are

used, e.g. the maximum for 16 nodes is at 64 aggregators per node. For large node counts on

disk the maximum performance is given by fewer aggregators with peak performance of 200

GiB/s achieved using 8 aggregators per node with 64 nodes. The performance of ADIOS2 is

more than double MPI-IO. This is because the BP5 output format uses multiple files, therefore

it is affected by file locking and scales similarly to the file-per-process output presented in [1].

Importantly it can achieve good performance using 10x fewer files than file-per-process, thus

putting less strain on the MDS, and by writing into a shared file (actually a directory) aids post

processing and portability. The fact that the IO performance for high node counts exceeds the

peak performance of the disk filesystem indicates that some file caching may be occurring.

A. Disk B. NMVe

Figure 3 A. Disk strong scaling performance for benchio using ADIOS2. B. NVMe

strong scaling performance for benchio using ADIOS2. The legend gives the number

of aggregators per node.

Project 951732 EuroCC Technical Report Page 8 of 9

3 Applying findings to a full HPC application

To verify if the findings from our synthetic benchmark are applicable to general HPC

applications we investigate the IO performance of LAMMPS [8] which is a molecular dynamics

code written in C++ using MPI. The program architecture, MPI communications and file output

formats are different to the benchio code. For a test system we used a 500 million atom Lennard-

Jones atomic fluid, created by scaling up the LJ benchmark system provided by LAMMPS. The

potential is a Lennard-Jones interaction with a 2.5 sigma cutoff; there are no long range

interactions so the parallel scaling is expected to be good. The standard benchmark does not

include any IO, however, for such a large system (20 GB coordinate snapshot file) the IO can

become a bottleneck. We modified the benchmark to run for 100 timesteps and then write a

snapshot of the atomic coordinates to file. We did this using the default LAMMPS dump

command “dump atom” which uses a serial method where all ranks send local data to rank zero

and rank zero writes the output. We also used an MPI-IO method “dump atom/mpiio” and an

ADIOS2 method “dump atom/adios” to output the same data but using collective parallel IO.

For the MPI-IO case we used the optimal settings found in the previous section: lockahead was

turned on and the aggregators per stripe were set to nodes/4. For ADIOS2 case we used BP5

format and used 8 aggregators per node. We ran with 1, 2, 4, 8, 16, 32, 64 and 128 nodes and

measured the performance in timesteps per second (simulation timesteps per second of wall

time), where this timing incudes the time taken to run 100 timesteps and write the atomic

coordinates. The results are plotted in figure 4. We see that with the serial output method the

scaling is very poor, plateauing at 16 nodes For MPI-IO the situation is improved, but even on

32 nodes starts to deviate from ideal linear scaling. For the ADIOS2 output method we see ideal

linear scaling. These results demonstrate the same 2x performance increase of ADIOS2 over

MPI-IO that we observed in the previous section, and that with lockahead enabled MPI-IO is

able to scale with increasing node count.

4 Conclusions

We found that enabling Lustre lockahead and using multiple aggregators per stripe greatly

increases MPI-IO output rates to a shared file on ARCHER2.Without these settings the IO is

capped at a low value of around 10GiB/s; using them we can achieve 80 GiB/s. The difficulty

in achieving high parallel IO rates on ARCHER2 is heavily controlled by the 1GiB/s per-

process limit and the per-node bandwidth: it is difficult to saturate the OST bandwidths without

Figure 4. Strong scaling performance of LAMMPS for 500 million atom system with

different IO options. Serial uses the default “dump atom” settings. MPI-IO uses “dump

atom/mpiio” with lockmode=2, and the aggregators per stripe set to nodes/4. ADIOS uses

“dump atom/adios” with ADIOS2 BP5 file format with 8 aggregators per node.

Project 951732 EuroCC Technical Report Page 9 of 9

using a large number of nodes. ADIOS2 IO offers significant performance gains, with minimal

user tuning needed, because its native BP5 output format writes multiple files thus overcoming

the per-process IO limits. While the collective IO performance on the Lustre disks can reach

the hardware maximum, the performance on the NVMe partition is currently poor, offering no

benefit and in some cases being worse than disk. Further work is needed to investigate how the

NVMe storage can be better utilised.

4.1 General guidance for ARCHER2 users

When using MPI-IO, or MPI-IO-based libraries such as HDF5, for parallel IO it is important to

tune the MPI-IO settings when using more than 8 nodes. Users should switch to the UCX

library, turn on Lustre lockahead and set the number of aggregators per stripe to nodes/4. The

command to do this on ARCHER2 at runtime in a slurm script are:

module swap craype-network-ofi craype-network-ucx

module swap cray-mpich cray-mpich-ucx

export MPICH_MPIIO_HINTS=*:cray_cb_write_lock_mode=2,*:cray_cb_nodes_multiplier=N

where N should be set to an integer equal to the number of nodes divided by 4.

Furthermore, if available, users should consider using ADIOS2 with the BP5 file format and

setting the number of aggregators per node to 8.

5 References

[1] D. Henty, “Performance of Parallel IO on the 5860-node HPE Cray EX System

ARCHER2”, presented at CUG2022, The Cray User Group, Monterey, CA, 2-5 May 2022.

[2] https://www.archer2.ac.uk/

[3] M. Folk et al., “An overview of the HDF5 technology suite and its applications”,
Proceedings of the 2011 EDBT/ICDT Workshop on Array Databases, March 25 2011,

http://dx.doi.org/10.1145/1966895.1966900

[4] R. Rew and G. Davis, “NetCDF: an interface for scientific data access” in IEEE Computer

Graphics and Applications, vol. 10, no. 4, pp. 76-82, July 1990, doi: 10.1109/38.56302.

[5] W. F. Godoy et al.,, “ADIOS 2: The Adaptable Input Output System. A framework for

high-performance data management”, SoftwareX, Volume 12, 2020 100561, ISSN 2352-

7110, https://doi.org/10.1016/j.softx.2020.100561.

[6] M. Moore, P. Farrell and B. Cernohous, “Lustre Lockahead: Early experience and

performance using optimized locking”, Concurrency Computat: Pract Exper. 2018; 30:e4332.

DOI:10.1002/cpe.4332

[7] https://github.com/davidhenty/benchio

[8] A. P. Thompson et al., LAMMPS - a flexible simulation tool for particle-based materials

modeling at the atomic, meso, and continuum scales, Comp Phys Comm, 271 (2022) 10817.

DOI:10.1016/j.cpc.2021.108171

