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Abstract

Lenders, such as banks and credit card companies, use credit scoring models to evaluate the potential risk posed by lending
money to customers, and therefore to mitigate losses due to bad credit. The profitability of the banks thus highly depends on the
models used to decide on the customer’s loans. State-of-the-art credit scoring models are based on machine learning and statistical
methods. One of the major problems of this field is that lenders often deal with imbalanced datasets that usually contain many
paid loans but very few not paid ones (called defaults). Recently, dynamic selection methods combined with ensemble methods
and preprocessing techniques have been evaluated to improve classification models in imbalanced datasets presenting advantages
over the static machine learning methods. In a dynamic selection technique, samples in the neighborhood of each query sample are
used to compute the local competence of each base classifier. Then, the technique selects only competent classifiers to predict the
query sample. In this paper, we evaluate the suitability of dynamic selection techniques for credit scoring problem, and we present
Reduced Minority k-Nearest Neighbors (RMkNN), an approach that enhances state of the art in defining the local region of dy-
namic selection techniques for imbalanced credit scoring datasets. This proposed technique has a superior prediction performance
in imbalanced credit scoring datasets compared to state of the art. Furthermore, RMkNN does not need any preprocessing or sam-
pling method to generate the dynamic selection dataset (called DSEL). Additionally, we observe an equivalence between dynamic
selection and static selection classification. We conduct a comprehensive evaluation of the proposed technique against state-of-the-
art competitors on six real-world public datasets and one private one. Experiments show that RMkNN improves the classification
performance of the evaluated datasets regarding AUC, balanced accuracy, H-measure, G-mean, F-measure, and Recall.
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1. Introduction

Credit offer is a key activity for banks that aim at improving
their profitability and competitiveness. Small improvements in
the default prediction imply significant profits to the financial
institutions Hand & Henley (1997). However, the decision to5

grant a loan to a customer is complex and risky because it re-
quires an accurate default prediction to protect banks from fi-
nancial losses, especially during the financial crises. Thomas
et al. (2017) pointed out several aspects affecting the default
rate over time, such as the cost of the money (interest rate),10

the supply and demand for credit, the state of the economy,
and the cyclical variations of credit over time. Besides these
aspects, data availability, accuracy, and reliability make the de-
fault prediction much harder than other domain-specific clas-
sification problems. Therefore, new methods and techniques,15
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called credit scoring models, are required to cope with these
problems while guaranteeing a low percentage of defaults.

Basel accords regulate credit scoring. Basel Capital Accord
II defines the validation and verification of three estimates: the
probability of default (PD), loss given default (LGD), and expo-20

sure at default (EAD) Thomas et al. (2005). In this paper, as in
Feng et al. (2018), we look for improvements in the estimate of
the probability of default (PD) in existing historical loan data.

Available historical loan data creates an excellent opportu-
nity to take advantage of trending machine learning methods25

for building accurate credit scoring models. However, in the
real world, credit scoring datasets are imbalanced and skewed
data is a challenge for machine learning methods since classi-
fiers tend to predict only the majority class.

In the past few decades, researchers have attempted to op-30

timize the predictive performance in imbalanced data. Accord-
ing to Haixiang et al. (2017), the two most used approaches
are Resampling, a kind of preprocessing technique that changes
the class distribution of the training set, and Ensemble meth-
ods, which could combine several base classifiers, resampling,35

and cost-sensitive approaches. Ensemble methods, also known
as Multiple Classifier Systems (MCS), are justified by several
theoretical Kuncheva (2002); Dietterich (2000) and empirical
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Fernández-Delgado et al. (2014); Opitz & Maclin (1999) stud-
ies which demonstrate the superiority of ensembles over indi-40

vidual classifier models. They are widely used to solve many
real-world problems, including credit scoring Lessmann et al.
(2015); Xiao et al. (2016), and class imbalance Galar et al.
(2012).

An ensemble is typically composed of three phases: (1)45

pool generation, (2) selection of base classifiers, and (3) inte-
gration of predictions Britto Jr et al. (2014). The main target of
the pool generator phase is generating diverse classifiers. The
selection phase is responsible for selecting the most competent
classifiers to perform the prediction, while the integration phase50

is responsible for the fusion of the results of all models in the
ensemble prediction.

The selection phase can be static or dynamic. The static se-
lection consists of selecting the base models once and use the
resulting ensemble to predict all the test samples. In the dy-55

namic selection, the base classifier’s competence in the neigh-
borhood of the query sample is used to select which base mod-
els are used to predict each sample. Recently, dynamic selection
has received attention from the academic community.

It is worth noticing that, as highlighted by Lessmann et al.60

(2015), dynamic selection classification techniques might vio-
late regulatory requirements in credit scoring because they use
different scorecards for different customers. The motivation for
this regulation constraint is to avoid customer discrimination.
We believe that this regulatory requirement can change if some65

work confirms that the use of dynamic classification does not
include any customer discrimination. However, the demonstra-
tion of the lack of correlation between dynamic classification
and customer discrimination is not the aim of this paper. Addi-
tionally, the existence of other papers evaluating dynamic clas-70

sification to credit scoring problem Feng et al. (2018); Ala’raj
& Abbod (2016a,b) encourages us to explore this topic.

Analyzing recent works about credit scoring problem, we
find several papers that evaluate the prediction performance of
classification approaches for credit scoring datasets, such as75

Garcı́a et al. (2019); Feng et al. (2018); He et al. (2018); Sun
et al. (2018); Xia et al. (2018); Abellán & Castellano (2017);
Xia et al. (2017); Ala’raj & Abbod (2016b); Xiao et al. (2016);
Ala’raj & Abbod (2016a); Lessmann et al. (2015). However,
to the best of our knowledge, a combination of preprocessing80

approaches, dynamic selection techniques, and pool generators
ensembles is presented only in Melo Jr et al. (2019b). Nonethe-
less, this previous work only compares the combination of tech-
niques.

Beyond this gap in credit scoring papers, we do not find85

scientific papers evaluating the suitability of dynamic selec-
tion techniques to credit scoring problem. However, Britto Jr
et al. (2014) concluded that dynamic selection is appropriate
for complex datasets. This motivates us to evaluate the com-
plexity of credit scoring datasets in comparison to datasets of90

other domains. If credit data is more complex than the average,
this can suggest that dynamic selection may be appropriate for
this domain.

This work is partially motivated by the outstanding results
achieved recently by the dynamic selection techniques Roy et al.95

(2018); Britto Jr et al. (2014). Roy et al. (2018) proposes the use
of a bagging pool generator combined with oversampling tech-
niques to reduce the effects of the skewed data. Furthermore,
although the literature recommends the use of different data in
the dynamic selection dataset (DSEL) and training data, they100

also use oversampling techniques over the training data to gen-
erate the DSEL. They decided to use this approach to avoid the
lack of minority samples in the training data and the DSEL. The
authors rely on the diversity ability of oversampling techniques
to avoid bias results.105

However, in this paper, instead of using oversampling tech-
niques to guarantee the diversity between the training dataset
and DSEL and to overcome the skewed data, we adopt different
strategies for each issue. Next, we explain the problems of the
previous approach and our strategies.110

The main problem of use oversampling techniques to bal-
ance the DSEL is the inclusion of noise in the dataset. Oversam-
pling techniques have been shown to be useful for building im-
balanced prediction models in the last fifteen years Fernández
et al. (2018). However, the DSEL function needs to determine115

the competence of the base models, and this means that a noise
sample in the DSEL can produce miscalculated competence of
the base classifiers. That is the reason why we decided to eval-
uate new approaches.

To address the diversity between training and DSEL, we120

use bootstrapping: the use of random sampling with replace-
ment. We evaluate this method since it always uses a subset
of available samples to train each base classifier. In this way,
each classifier does not know the entire training data. We be-
lieve that this characteristic is sufficient to guarantee diversity125

when using the same dataset to train the base models and as the
DSEL.

To address the skewed of the data in the DSEL, we develop
a modification in the k-NN algorithm, named Reduced Minority
k-NN (RMkNN), used by the dynamic selection techniques to130

define the local region of a query sample. Dynamic selection
techniques use k-NN to select the samples in the DSEL that
define the competence level of each base classifier. However,
in an imbalanced dataset, the k-NN algorithm selects mainly
samples of the majority class, producing a poor base classifiers135

competency evaluation.
To evaluate the performance of RMkNN, we extend Melo Jr

et al. (2019b) comparison, including other combinations of pool
generators and preprocessing techniques and testing them on
seven datasets. We evaluate several combinations of dynamic140

selection techniques, sampling approaches, and pool generators
to assess the effectiveness of our proposal. More specifically,
we aim to answer the following research questions related to
the credit scoring problem:

• RQ1) Are dynamic selection techniques appropriate for145

imbalanced credit scoring problems?

• RQ2) Does the RMkNN improve the prediction perfor-
mance of kNN?

• RQ3) Does the use of the RMkNN technique - that de-
fines a novel competence region of dynamic selection150
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techniques - improve the classification performance of
imbalanced credit scoring datasets?

To answer the questions above, we present and discuss novel
contributions that include:

• a novel local competence definition for imbalance dy-155

namic selection classification.

• an evaluation of the classification complexity of credit
scoring datasets in comparison to the classification com-
plexity of datasets from other domains.

• an evaluation of the prediction performance of RMkNN160

in comparison with the regular kNN.

• a static selection representation of dynamic selection tech-
niques.

Paper Melo Jr et al. (2019b) evaluated the combination of
pool generators, re-sampling approaches, and dynamic selec-165

tion techniques. That paper shows a simple comparison of the
influence of different re-sampling and dynamic selection tech-
niques on the performance of pool generators in imbalanced
credit scoring datasets, in contrast to the present paper where
we propose three new research questions and introduce a new170

method to identify a new local region of the query sample to
define the competence of each base classifier in a dynamic se-
lection approach.

The organization of this paper is as follows. Section 2 re-
views the literature about credit scoring, imbalance learning ap-175

proaches, and dynamic selection techniques. Section 3 includes
a brief description of the classification approaches used in this
paper. Section 4 presents the first contribution of this paper that
is an evaluation of the suitability of dynamic selection for credit
scoring problems. This section also presents the main contribu-180

tion of this paper that is the Reduced Minority k-NN (RMkNN)
technique. Section 5 presents the experimental setup used. Sec-
tion 6 shows the experimental results. Finally, the last section
is dedicated to the conclusion and future work. The online ap-
pendix1 provides details of the results.185

2. Background and related work

This study involves four main elements: credit scoring, im-
balanced learning, pool generators, and dynamic selection clas-
sification. Next, we present the credit scoring related works
and the background of pool generators, imbalanced learning,190

and dynamic selection classification.

2.1. Credit scoring related works
Several works have been published in last years using en-

sembles focusing on default loan prediction. Table 1 shows
a summary of studies in the literature on classifier ensembles195

used for credit scoring from 2015 to 2019. The comparison

1Supplementary material associated with this article can be found in the
online version, at ...

contains the number of datasets used, the percentage of datasets
with imbalance ratio (IR), the cardinality of the majority class
divided by the cardinality of the minority class, under 3, sam-
pling approaches used, column Sampling, whether the devel-200

oped classifier ensembles are homogeneous or heterogeneous,
column Kind, the type of selection, static (SS), or dynamic
(DS), and the pool generators adopted. As can be seen, only
Melo Jr et al. (2019b) evaluate the combination of dynamic se-
lection, preprocessing techniques, and different pool generators205

for credit scoring datasets.
Another important aspect of this comparative analysis is

the percentage of low imbalanced datasets of each study, with
IR ≤ 3. Except for Melo Jr et al. (2019b), the percentage of
low imbalanced datasets of all reviewed papers is at least 50%.210

We believe that a high number of low imbalanced datasets can
produce a bias evaluation of an imbalanced learning approach.

Besides these ensemble-based solutions, Serrano-Cinca &
Gutiérrez-Nieto (2016) evaluate an alternative approach to tra-
ditional credit scoring. In this paper, the authors use the internal215

rate of return (IRR) to train models, instead of the binary con-
cept of default loan. It is an interesting strategy, once the main
target of most financial institutions is the profit.

Bastani et al. (2019) also evaluate the profitability of a credit
scoring problem instead of evaluating only the probability of220

default. The authors define a two-stage approach to evaluate
the probability of default combined with the profitability using
a wide and deep learning strategy.

All techniques cited above, even the dynamic selection clas-
sification techniques, are based on a static learning setting. It225

means that a static dataset is used to build the prediction model.
Different from static learning, dynamic models update the model
periodically with new data available. Sousa et al. (2016) define
a modeling framework for credit risk assessment and observe
that dynamic modeling outperforms the static models. Despite230

that, static models are widely more used than dynamic ones in
the credit scoring field.

2.2. Background

2.2.1. Imbalanced learning approaches
As mentioned in Section 1, the prediction task in credit scor-235

ing datasets suffers from the lack of sufficient samples of the
minority class, the defaulters. Haixiang et al. (2017) defined
four categories of techniques for handling class imbalance: (1)
modify the data distribution, called preprocessing solutions; (2)
apply different costs to misclassification of positive and nega-240

tive samples, the cost-sensitive solutions. (1) and (2) are “basic
strategies” for imbalanced learning. (3) and (4) are “classifica-
tion algorithms”: (3) adapts a classifier to deal with the class
imbalance, the algorithm level solutions; and (4), ensemble-
based solutions, combines the previous solutions using an en-245

semble. We describe the two most common imbalanced ap-
proaches briefly in the following paragraphs, preprocessing and
ensemble-based.

Preprocessing comes before the learning phase. Resam-
pling, the most common preprocessing technique, is used to250

balance the sample space for an imbalanced dataset to reduce
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Table 1: Approaches tracking credit scoring in literature

Ref. Year # datasets
% datasets
w/ IR≤ 3

Sampling Ensemble

Kind Selection Pool generators

Melo Jr et al.
(2019b)

2019 4 0.25
RUS,

SMOTE,
RAMO

Homog. SS, DS (a)

Garcı́a et al. (2019) 2019 14 0.50 - Homog. - (b)

Feng et al. (2018) 2018 10 0.60 - Heterog. DS
Bagging and different
parameters

He et al. (2018) 2018 6 0.50
Based on

RUS
Heterog. SS Based on bagging

Sun et al. (2018) 2018 1 1.00 SMOTE Homog SS Bagging
Xia et al. (2018) 2018 4 0.75 - Heterog. - Based on bagging
Abellán &
Castellano (2017)

2017 6 0.67 - Homog. - (c)

Xia et al. (2017) 2017 5 0.80 - Homog. - Based on boosting

Xiao et al. (2016) 2016 2 1.00 - Heterog. DS
Bagging based on
clustering

Ala’raj & Abbod
(2016b)

2016 7 0.71 - Heterog. DS Feature selection based

Ala’raj & Abbod
(2016a)

2016 5 0.80 - Heterog. DS Bagging

Lessmann et al.
(2015)

2015 8 0.75 - Both SS, DS (d)

(a) Bagging, Boosting, Random Forest, Rotation Forest, Hybrid
(b) Bagging, Boosting, Random subspace, Random Forest, Rotation Forest, DECORATE
(c) Bagging, Boosting, Random Subspace, DECORATE, Rotation Forest
(d) Bagging, Boosting, Random Forest, Rotation Forest

the skewed class distribution in the learning process. There
are three possible methods to do it, oversampling, undersam-
pling, and hybrid. The first one is over-sampling, which con-
sists of creating new minority class samples synthetically. We255

test the widely used method, Synthetic Minority Over-sampling
Technique (SMOTE), Chawla et al. (2002). The second one is
under-sampling, which consists of removing samples from the
majority class. We test the most used method, Random Under-
sampling (RUS) Barandela et al. (2003). The hybrid methods260

combine the two previous ones.
Ensemble approaches to imbalanced learning consist of com-

bining preprocessing, cost-sensitive, and classifier algorithm mod-
ifications. They combine the power of an ensemble with the
ability of other imbalanced techniques to overcome the imbal-265

ance issue.

2.2.2. Pool generators
A typical ensemble, also known as multiple classifier sys-

tems (MCS), has the following phases: the pool generation,
the selection, and the integration. The main challenge of the270

pool generation phase is to generate a pool of accurate and
diverse classifiers. Homogeneous or heterogeneous base clas-
sifiers can achieve this diversification. Regarding the homo-
geneous pools, the diversity comes from different subsets of
training data (Bagging, Boosting, or Hybrid), or using different275

features subspaces (Random Subspace Selection), or based on
feature extraction (Rotation Forest).

Phase 1
Pool Generation
Bagging, Boosting

Hybrid
Random Forest
Rotation Forest

Phase 2
Selection
No (static)
KNE, KNU
LCA, RNK

Phase 3
Integration

Techniques evaluated

Figure 1: The three MCS phases and the techniques evaluated in this work.

2.2.3. Dynamic selection
The second phase of an MCS is the selection of base clas-

sifiers to the prediction procedure, as shown in Figure 1. The280

main concepts of this phase are related to the type of selection
and the notion of classifier competence (ability to predict cor-
rectly). The type of selection may be static, where the decision
about the competence of the base learners occurs at the fitting
time; or dynamic, when the decision occurs at prediction time.285

The intuition behind the preference for dynamic over static se-
lection is to select the most locally-accurate classifiers for each
unknown sample. A dynamic selection approach defines com-
petence measures, mostly related to the classifier accuracy in
some part of the feature space, and a procedure to select the290

best estimators.
The dynamic selection approaches are classified by the se-

lection methodology. According to this classification, there are
two kinds of strategies: dynamic classifier selection (DCS) and
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dynamic ensemble selection (DES). The difference between them295

is the number of classifiers selected to predict each sample. The
DCS selects only the most competent base classifier, and the
DES selects a set of competent classifiers.

Roy et al. (2018) is the most recent work that evaluated
dynamic selection techniques to solve imbalance classification300

problems. They test DS strategies based on different notions
of competence measure as previous papers that evaluated dy-
namic selection in the context of imbalanced learning Xiao et al.
(2012). For example, Local Class Accuracy (LCA) consid-
ers the local class accuracy separately. The Modified Classi-305

fier Rank (RNK) ranks the classifiers. These two techniques
are DCS. They also test two versions of K-Nearest Oracles
(KNORA), which are Dynamic Ensemble Selection (DES) tech-
niques. Next, we briefly describe the four DS strategies ob-
tained from Cruz et al. (2018) and adopted in this paper.310

• The Local Class Accuracy (LCA) Woods et al. (1997); Britto Jr
et al. (2014) gets the prediction of the test sample of each
base classifier and, according to the predicted class, com-
pute the class accuracy regarding only the predicted class.
The classifier with the higher class accuracy is used to315

predict the test sample.

• The Modified Classifier Rank (RNK) Sabourin et al. (1993);
Britto Jr et al. (2014) method ranks the accuracy of the
base classifiers in the neighborhood for each test instance.
The classifier with the highest accuracy is used to predict320

the test instance.

• The K-Nearest Oracles (KNORA) Ko et al. (2008) techniques
are inspired by the Oracle Kuncheva (2002) concept. Among
them, the most promising are KNORA-Eliminate (KNE)
and KNORA-Union (KNU). The KNE selects only the325

base classifiers with the perfect accuracy in the neighbor-
hood of the test instance. On the other hand, in the KNU
technique, the level of competence of a base classifier is
measured by the number of correctly classified instances
in the defined region of competence. In this case, every330

classifier that correctly classified at least one instance can
vote.

The dynamic selection approaches require a dynamic selec-
tion dataset (DSEL) to define the local regions of the feature
space. This data is used to measure the competence of the base335

classifiers on each part of the feature space. The main chal-
lenge in the DSEL generation is to use a reasonable part of the
training data obtaining good performance of the DS approach
and keep the other part for the training the base classifiers. The
separation between the training data and the DSEL is essential340

to avoid overfitting. In an imbalanced dataset, this task is even
more difficult due to the lack of samples in the minority class.
Roy et al. (2018) work around this problem applying oversam-
pling techniques to generate the DSEL.

The integration is the last step of an MCS, and it consists345

of applying the selected classifiers to recognize a given testing
pattern. In cases where all classifiers are used (without selec-
tion) or when a subset is selected, a fusion strategy is necessary.

Majority voting is the most common fusion approach used by
ensembles. Section 4 evaluates the classification complexity350

and performance measures for credit scoring problems. Next,
we briefly describe the classification approaches used in this
paper.

3. Overview of classification techniques

This study aims to evaluate the performance of a novel dy-355

namic selection approach for imbalanced credit scoring datasets
over a wide range of classification techniques. For the pro-
pose of this study, two sampling approaches, four credit scor-
ing benchmarks, and eight imbalanced ensembles have been se-
lected based on previous credit scoring papers Brown & Mues360

(2012); Melo Jr et al. (2019a).

3.1. Credit Scoring Benchmarks

Our credit scoring benchmarks list starts with Logistic re-
gression. This binary classifier is a trendy statistical model in
commercial credit scoring. It models the relationship between365

independent variables and the response variable using a logistic
function.

The support vector machine method constructs a hyperplane
to split the two classes of borrowers. In this paper, we use
the linear version of SVM, the linear support vector machine370

(LSVM), and also non-linear kernels of SVM, such as poly and
rb f .

The next classification approach is multilayer perceptron ar-
tificial neural networks (ANN). It employs sigmoidal functions
to determine the model parameters by minimizing some loss-375

function. We consider ANNs with logistic activation function
in the hidden and output layer.

We also include the Random Forest ensemble Liaw et al.
(2002) in our credit scoring benchmarks list. This ensemble is
an extension of bagging that uses decision trees as base classi-380

fiers and samples the features used by each decision tree.
The last classifier in the credit scoring benchmarks class

is extreme gradient boosting Chen & Guestrin (2016). This
ensemble is a novel implementation method for the gradient
boosting machine, and it aims to prevent over-fitting.385

3.2. Imbalanced ensembles

An imbalanced ensemble is an ensemble designed that uses
some sampling technique to balance the data before the base
learners training step. We use the imbalanced ensembles avail-
able on Lemaı̂tre et al. (2017) and implement others.390

We start with the bagging ensemble Breiman (1996). Bag-
ging, also known as Bootstrap aggregating, constructs bootstrap
samples from the training data to produce T base models. Bag-
ging uses a majority voting to fusion the T predictions. The first
imbalanced ensemble we use is Balanced Bagging (BBAG).395

It includes an additional step to balance the training set using
random undersampling (RUS). We also use Bagging SMOTE
(BGSM), the bagging ensemble, with a SMOTE step to balance
the training set.
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We also use two imbalanced ensembles using Random For-400

est. We use Balanced Random Forest (BRND) Chen et al.
(2004), the combination of this ensemble with RUS, and the
Random Forest SMOTE, the combination of Random Forest
with SMOTE oversampling technique.

Next, we test an imbalanced ensemble that uses the rotation405

forest. This ensemble applies principal component analysis on
bootstrap samples to rotate the training data. Based on BRND,
we develop a balanced rotation forest (BROT), the combination
of rotation forest and RUS, to execute the experiments of this
work.410

The next three imbalanced ensembles evaluated are derived
from adaptive boosting, also known as AdaBoost. Two ensem-
bles are the combination of AdaBoost and the RUS and SMOTE
preprocessing techniques. They are RUSBoost (RUSB), and
SMOTEBoost (SMTB), respectively. They use the preprocess-415

ing technique to balance the data in each step of the boosting al-
gorithm. The last imbalance ensemble, easy ensemble (EASY)
Liu et al. (2009), is a bagging ensemble that uses AdaBoost en-
semble as base classifiers. It also uses RUS to balance the data
before the training step.420

Table 2 shows the list of evaluated combinations: (I) con-
tains our proposal of modification of k-Nearest Neighbors to
select balanced samples of the DSEL; (II) contains preprocess-
ing techniques (SMOTE, and RUS) to balance the DSEL; (III)
contains the imbalanced ensembles strategies; (IV) lists the dy-425

namic selection techniques evaluated; and (V) lists the credit
scoring benchmarks evaluated.

The combination of the pool generators and preprocessing
approaches occurs as follows. In all imbalanced ensembles that
use RUS, each base classifier receives a subset of the dataset430

with the same number of samples in each class. In the boosting
ensembles combined with SMOTE, we double the number of
samples of the minority class in each boost iteration. For Bag-
ging and Random Forest ensembles combined with SMOTE,
we make the equal size of both classes for each iteration, as435

done in Roy et al. (2018).
In this paper, we test these classification approaches. Next,

we present the Reduced Minority kNN (RMkNN) algorithm
and its application in imbalanced dynamic selection classifica-
tion.440

4. Reduced Minority kNN for dynamic selection techniques

The main purpose of the dynamic selection dataset (DSEL)
in a dynamic selection technique is to introduce the measure-
ment of the competency level of each classifier in each part
of the feature space. These parts are called the local regions.445

The neighbors of a query sample define a local region, and k-
Nearest Neighbors(kNN) is used to find them. These samples
are used to evaluate the competence of each base classifier of
the ensemble. Finally, the prediction procedure uses only the
most competent classifiers.450

This approach works fine in a balanced DSEL. However,
the use of k-NN in an imbalanced DSEL returns almost always
the samples of the majority class. This behavior is not desir-

able because the measure of competence of the base classifiers
considers mainly the majority class.455

Nevertheless, instead of using sampling techniques to gen-
erate the DSEL, this paper evaluates a modification in the k-NN
procedure to try to balance the set of neighbors used to measure
the competence of the base classifiers. The main idea is to re-
duce the distance of the minority samples from the predicted460

instance.

4.1. Suitability of dynamic selection for credit scoring

Before evaluating the improvements of dynamic selection
techniques to credit scoring datasets, we analyze whether the
dynamic selection classification is appropriate to credit scoring465

datasets. As pointed out by Britto Jr et al. (2014), the perfor-
mance of dynamic selection techniques is related to the classi-
fication complexity of the datasets. Considering this, we decide
to evaluate the complexity of credit scoring datasets.

To perform the study, we evaluate the twelve complexity470

measures presented by Ho (1995). However, some complex-
ity measures to binary classification have bias results for imbal-
anced datasets. For instance, the measure of Error Rate for 1NN
Classifier (N3) tends to be low in high imbalanced datasets. Fi-
nally, we choose two less influenced by the imbalanced ratio475

of the dataset, Maximum Fisher’s Discriminant Ratio (F1), and
Ratio of average intra/inter-class NN distance (N2). Next, we
briefly describe the F1 and N2 measures.

1. Fisher’s Discriminant Ratio (F1): This is a class over-
lapping measure computed over every single feature as480

denoted in Eq. 1. In this Equation, fa is the Fisher’s Dis-
criminant Ratio of feature a, and µa1, µa2, σ2

a1, σ2
a2 are

the means and the variances of the two classes, respec-
tively. For a multidimensional problem, not necessarily
all features have to contribute to class discrimination. As485

long as there exists one discriminating feature, the prob-
lem is easy. Therefore, F1 is the maximum of fi over all
the feature dimensions.

fa =
(µa1−µa2)

2

σ2
a1 +σ2

a2
(1)

2. Ratio of Average Intra/Inter class NN distance (N2): This
is a nonparametric separability of classes measure. It490

compares the intraclass dispersion with the interclass sep-
arability, as denoted in Eq. 2. In this equation, let nintra

1 (si)
and ninter

1 (si) denote the intra and inter-class nearest neigh-
bors of the sample si, while δ represents the the Euclid-
ian distance. N2 calculates the ratio between the intra495

and inter-class dispersions. A small N2 value suggests
high separability, and consequently, an easier classifica-
tion problem.

N2 =
∑

N
i δ(nintra

1 (si),si)

∑
N
i δ(ninter

1 (si),si)
(2)
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Table 2: Techniques evaluated.

Label Type Acronym Method
(I) Reduced Minority k-NN RMkNN Modified kNN that reduce the distance of the minority class samples

(II) Imbalance
Preprocessing

SMTE Synthetic Minority Over-sampling Technique
RUS Random under-sampling

(III)
Imbalanced Ensembles
(Pool generator
+ sampling)

BBAG Balanced Bagging (Bagging + RUS)
BGSM Bagging SMOTE (Bagging + SMOTE)
BRND Balanced Random Forest (Random Forest + RUS)
RFSM Random Forest SMOTE (Random Forest + SMOTE)
BROT Balanced Rotation Forest (Rotation Forest + RUS)
RUSB RUS Boost (AdaBoost + RUS)
SMTB SMOTE Boost (AdaBoost + SMOTE)
EASY Easy ensemble (Bagging of AdaBoost + RUS)

(IV) Dynamic
Selection

KNE k-Nearest Oracles-Eliminate
KNU k-Nearest Oracles-Union
LCA Local Class Accuracy
RNK Modified Classifier Rank

(V) Credit Scoring
Benchmarks

LOGR Logistic Regression
XGB eXtreme Gradient Boosting
ANN Airtificial Neural Networks
LSVM Linear Support Vector Machine
SVM Support Vector Machine
RNDF Random Forest

4.2. The Reduced Minority k-NN algorithm

To evaluate the dynamic selection approaches with imbal-500

anced datasets using DSELs without sampling techniques, we
develop a modification in the k-NN algorithm shown in Algo-
rithm 1. The intuition is to reduce the distance of the minority
class samples from the predicted sample in the k-NN computa-
tion. The first step of Algorithm 1 is to separate the samples of505

each class, lines 2 and 3. After, we compute the imbalance ratio
of the dataset, line 4. Next, we compute the k nearest neighbors
and their distances from sample query, sq, for each class, lines 5
and 6. After, we reduce the distances of the minority class sam-
ples using the distance reduction function. The next step is to510

concatenate the indexes and distances of minority and majority
samples, lines 8 and 9. On line 10, we compute the indexes of
the k shortest distances of D and return on line 11 the distances
and the indexes of the nearest neighbors.

We present now a simple example of the modified k-NN in515

Figure 2. This figure shows a DSEL where the majority samples
are numbered circles, and the minority are numbered squares.
kNN algorithm finds the k nearest neighbors of the predicted
sample, the question mark diamond, to compute the confidence
level of the base classifiers in the local region of the diamond.520

Figure 2(A) shows that the normal k-NN, using nneighbors = 7,
selects only one sample of the minority class, one square, and
six samples of the majority class, circles. Figure 2(B) shows
the use of Reduced Minority k-NN (RMkNN) for the same sce-
nario. Different from normal k-NN, before selecting the near-525

est neighbors, the algorithm reduces the distance between the
query sample and the minority class neighbors. Figure 2(B)
shows the reduced distance of the minority class samples as the
dotted squares. Because of this reduced distance, the samples 1
and 3 are also selected as nearest neighbors of the query sam-530

ple. The presented approach introduces a balanced local region

Algorithm 1 Reduced Minority K Nearest Neighbour

1: Inputs:
dataset: X , labels: y, sample query: sq, #
neighbors: k, function:
distance reduction f unction

2: ma jority class,minority class← get classes(y)
3: XM ← X [y == ma jority class]
4: Xm← X [y == minority class]
5: IR← imbalance ratio of [y]
6: Dm,Nm← k nearest neighbors of sq using Xm
7: DM,NM ← k nearest neighbors of sq using XM
8: Dm← distance reduction f unction(Dm, IR)
9: N← concatenate(Nm,NM)

10: D← concatenate(Dm,DM)
11: Ik← index of k smallest distances of D
12: return D[Ik],N[Ik]

definition, in terms of the number of samples, in an imbalanced
dataset.

The use of RMkNN permits a fair evaluation of base classi-
fiers without using sampling approaches to balance the DSEL.535

This reduces the noise produced by oversampling approaches.
Also, it enables the use of the entire DSEL, impossible when
undersampling approaches balances the DSEL. We believe that
this brings a more efficient use of the DSEL to identify the most
competent classifiers in the selection step.540

However, the intensity of the reduction should be applied
carefully. With a significant reduction, only minority class sam-
ples will be used to define the competence of the base classi-
fiers. On the other hand, a small reduction does not balance the
samples used. We define the reduction function for our problem545

based on the datasets evaluated in Section 5. Next, we explain
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Figure 2: The normal k-NN (top) and the Modified k-NN (bottom).

the intuition behind RMkNN.

4.3. “Why does RMkNN should work?”

This subsection explains why RMkNN should improve the
performance of dynamic selection techniques in imbalanced data550

sets. We analyze the role of kNN on a dynamic selection tech-
nique and the benefits of RMkNN for an imbalanced dataset.

In a dynamic selection technique, kNN is used to define the
local region of a query sample. This local region is defined
by selecting the nearest neighbors, usually 7, of a query sam-555

ple. Once defined, a dynamic selection procedure computes the
competence of the base classifiers in this local region and per-
forms some selection based on the base classifiers’ local com-
petence.

In an imbalanced dataset, it is common to find local regions560

composed only by samples of the majority class. This is good
when the local region contains only majority class samples, but
this is not desirable in overlap regions, regions that can contain
samples of both classes. The reduced number of minority class
samples available can lead to kNN only find majority class sam-565

ples in the neighborhood of a query sample. An overlapping lo-
cal region composed only by samples of the majority class may
reduce the influence of base classifiers that correctly recognize
minority class samples in that local region.

The intuition behind Reduced Minority k-NN (RMkNN) is570

to increase the probability of overlap regions to contain samples

from minority and majority classes. RMkNN do it by reduc-
ing the distance between the DSEL minority class samples and
the query sample. This distance reduction should be enough
to include minority samples in overlapping local regions, but575

it should not include minority samples in non-overlapping re-
gions. That the reason why RMkNN uses the imbalanced ratio
to define distance reduction.

Next, we describe the other possible kNN modifications
evaluated to enhance the prediction performance of dynamic580

selection techniques.

4.4. Other possible kNN approaches

Beyond the RMkNN, we also evaluate two other possible
k-NN modifications to handle the DSEL imbalance problem:
Weighted k-NN, and the use of a fixed amount of samples of the585

same class in the feature space region definition. We comment
in the next paragraphs the reasons why we do not use them.

Weighted k-NN consists of add weights to samples in k-
NN computation. For instance, in the example of Figure 2(A),
we can define that the weight for each square is 0.9, and the590

weight for each circle is 0.1. However, for all regions with only
majority class samples, we are not able to evaluate the ability of
base learners to classify the minority class. That is the reason
we do not use weighted k-NN to define the competence region
in the dynamic selection techniques evaluated.595

Another possible approach evaluated in this work is to se-
lect a fixed amount of samples of each class in the k-NN proce-
dure. For instance, in a dynamic selection technique that uses
seven samples of DSEL to define the region of a query sam-
ple in the feature space, this approach consists in selecting four600

nearest neighbors of the majority class and three nearest neigh-
bors of the minority one. However, this approach is not desir-
able in a region of the feature space that contains only samples
of the majority class. In this kind of local region, the goal of the
dynamic selection procedure is to identify the classifiers that605

correctly recognize the majority class. That is the reason we
decided to evaluate an approach based on the reduction of the
distance of the minority class.

Different from the approaches presented in this section, the
novel RMkNN can define a balanced region of competence with-610

out forcing the use of far samples. Additionally, with this ap-
proach, the regions that contain only samples of one class be
evaluated only by this class. The next section describes the
methodology used in our experiments.

5. Experimental setup615

This paper evaluates a novel approach to define the local
region used to compute the competence of base classifiers in
imbalanced datasets. We now present the experimental setup
used to evaluate our proposal.

5.1. Credit datasets and data preprocessing620

We perform the comparison by exploiting seven real-world
credit scoring datasets. Two datasets, German and Default, are
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provided by UCI machine learning repository2. PPDai dataset
comes from a Chinese internet finance enterprise named PaiPaiDai3.
The Iranian dataset comes from paper Sabzevari et al. (2007).625

The private dataset comes from a financial institution in Brazil4.
GiveMe5 comes from a Kaggle competition. LC2015Q123 is
the last one and contains loans of 36 months and a low-interest
rate of the three first quarters in 2015 from Lending Club6. Ta-
ble 3 shows the details of these datasets. We use the Imbalance630

Ratio (IR) measure, the cardinality of the majority class divided
by the cardinality of the minority class, to sort the datasets from
the less imbalanced to the most imbalanced. In the first one,
German, the number of samples of the majority class is 2.33
times higher than the number of samples of the minority class.635

In the last one, LC2017Q1, the majority class has 80.92 times
more samples than the minority class. Readers may notice that
we only consider imbalanced datasets with IR greater than 2.

Table 3: Datasets description

Dataset #Samples #Features Imbalance
Ratio (IR)

German 1,000 24 2.33
Default 29,892 24 3.52
PPDai 55,596 29 6.74
Private 4,976 56 9.05
GiveMe 150,000 10 13.96
Iran 997 27 19.77
LC2015Q123 23,677 70 80.92

We perform the following data preprocessing steps. First,
we use one-hot encoding to transform each categorical feature640

with N values in N binary features. We also fill the missing val-
ues with the mean/mode for numeric/nominal features. These
are base procedures to train any machine learning model.

Additionally, we apply z-score standardization for numeric
features. For instance, considering that a feature of the dataset645

contains the values [40,18,18,18], after removing the mean and
scale, we get the values [1.732,−0.577,−0.577,−0.577]. This
is important because our solution uses the kNN algorithm, and
different features lie within different ranges. Without feature
standardization, large-scale features perform a bigger influence650

than small-scale ones. Next, we evaluate the approaches we use
to measure the gains of our proposal, Reduced Minority k-NN
(RMkNN).

5.2. Hyper-parameter optimization and experiment framework
We use a grid-search to find the best hyper-parameters of655

each ensemble using F-measure to choose the best model. We

2https://archive.ics.uci.edu
3https://www.ppdai.com
4The citations, observations, analyzes, and conclusions related to any ref-

erences to this Brazilian financial institution contained in this academic work,
and their eventual implications, are the sole responsibility of the first author and
do not necessarily represent the thinking or agreement of the institution or its
administrators.

5https://www.kaggle.com/c/GiveMeSomeCredit
6https://www.lendingclub.com

test three pool sizes for all ensembles: [60,100,200]. For Bag-
ging and Random Forest-based ensembles, we test two val-
ues for the maximum number of samples: [0.8,1]. For Ad-
aboost based ensembles, SMOTEBoost, RUSBoost, and Easy660

Ensemble, we test two values for learning rate: [0.1,1]. For
Balanced Random Forest (BRDF), we test three values for the
maximum number of features: [

√
# f eatures/2,

√
# f eatures,√

2×# f eatures]. From Balanced Rotation Forest (BRTF), we
test two possibilities for the size of the feature group. [3,9].665

These are the most common values adopted on the credit scor-
ing papers of Table 1.

The SMOTE preprocessing technique also has parameters.
We use the number of nearest neighbors equal 5. Finally, for
all the dynamic selection methods, we use seven nearest neigh-670

bors to define the region of competence. We get these hyper-
parameters from Roy et al. (2018).

We also test different hyper-parameters for the credit scor-
ing benchmark approaches. For Logistic Regression (LOGR),
we test five values for the regularization parameter C: [0.01,675

0.03, 0.1, 0.3, 1]. We test two different class weights: [bal-
anced, None], two solvers: [liblinear, saga], and two levels
of tolerance for stopping criteria: [0.0001, 0.001]. For linear
support vector machine (LSVM), we test five values for the
regularization parameter C: [0.01, 0.03, 0.1, 0.3, 1]. We test680

two different class weights: [balanced, None], to levels of tol-
erance for stopping criteria: [0.0001, 0.001], and two maxi-
mum number of iterations: [1000, 2000]. For non-linear sup-
port vector machine (SVM), we test four values for the regu-
larization parameter C: [0.01,0.1,0.5,1]. We test two differ-685

ent class weights: [balanced, None], to levels of tolerance for
stopping criteria: [0.0001, 0.001], two maximum number of it-
erations: [1000,2000], and two different kernels: [rb f , poly].
For eXtreme Gradient Boosting (XGB), as for the other ensem-
bles, we test three ensemble sizes: [60, 100, 200]. We also test690

two values for control the balance of positive and negative class
weights: [1,<imbalance ratio of the dataset>]. We also test to
different learning rates: [0.01,0.2], two max tree depth: [3,6],
three minimal child weight: [1,3,5], two values for gamma:
[0.1,0.3], and two values for L1 and L2 regularization weights:695

[1e−5,1e−2]. We also test the Random Forest ensemble with-
out any resampling step to balance the data (RNDF). For RNDF,
we test all the hyperparameters combinations of imbalanced
Random Forest ensembles described above, and we also test
five different values for maximum tree depth: [5,8,15,25,30],700

five values for the minimal samples split: [2,5,10,15,100], four
values for the minimal samples leaf:[1,2,5,10], and two values
for class weight:[None,balanced]. Finally, for artificial neural
networks, we test two hidden layer sizes:[20, 40].

Figure 3 shows the experimental framework of this work.705

To evaluate each classification approach, we perform 5-fold
cross-validation to get the mean and the standard deviation of
each method. For each training fold of the 5-fold, we per-
form 3-fold grid search cross-validation to find the best hyper-
parameters of each static classifier (steps III and V of boxes C710

and D of Figure 3). For boxes C, and D, we use the best static
ensemble to predict the test part of the 5-fold cross-validation.
For boxes A and B of Figure 3, we use the 3-fold training data
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as DSEL, box A, or to generate the DSEL using a preprocess-
ing approach, box B. Then, we use the DSELs and the dynamic715

selection approaches on the imbalanced ensembles to find the
best dynamic selection model, boxes A, and B of Figure 3.

5.3. Dynamic selection setup

As we mentioned above, the DSEL and the training dataset
must be different to avoid overfitting. However, when a dataset720

has few samples of one class, splitting it increases the complex-
ity of the training phase. The learning algorithm has to identify
the patterns with even fewer samples of one class. Therefore,
as adopted by Roy et al. (2018), we do not split the data used
to train each approach in training and DSEL. Roy et al. used725

the diversity of the new samples generated by the oversampling
preprocessing techniques to ensure the difference between the
training data and the DSEL. However, instead of applying over-
sampling techniques, we propose a new approach to define the
local region. This approach provides a balanced local region to730

evaluate the competence of base models.

5.4. Evaluation measures

A correct selection of evaluation measures is critical to avoid
biased results. For instance, the percentage of correctly classi-
fied measure is widely used in classification but is not appro-735

priate to an imbalanced dataset, since a naive classifier always
predicting the majority class achieves a high score.

We evaluate six metrics to measure the predictive accuracy
of the classifiers: Area under the ROC curve (AUC), H-measure,
balanced accuracy (BAcc), G-mean, F-measure, and True Pos-740

itive Rate (TPR). As in other work about imbalanced classifi-
cation, we consider the minority class, namely the bad credit,
as the positive class in order to avoid bias results in F-measure.
In the next paragraphs, we present some essential measure ele-
ments and comment briefly on each performance measure eval-745

uated in this paper.
Based on the elements of the confusion matrix, true positive

(TP), false negative (FN), true negative (TN), and false positive
(FP), we can define the precision, Precision = T P

T P+FP , the re-
call, or sensitivity or true positive rate (TPR), Recall = T P

T P+FN ,750

the specificity or true negative rate (TNR), Speci f icity= T N
T N+FP ,

and the false positive rate (FPR), FPR = 1−T NR = FP
T N+FP .

We now describe the performance metrics used in this pa-
per. AUC is an extensively used evaluation measure obtained
from the area under the ROC curve. The x-axis of the ROC755

curve represents the FPR, and the y-axis represents TPR (sen-
sitivity). The balanced accuracy (BAcc) is the arithmetic mean
of the positive class and negative class accuracy, as shown in
Eq. (3). The F-measure is the weighted harmonic mean be-
tween precision and recall, as shown in Eq. (4). The β in the760

F-measure formula is a hyper-parameter for weighting differ-
ently the precision and recall. In this paper, we evaluate three
values for β: [1,5,35]. The first, 1, gives equal importance for
precision and recall. The second, 5, is based on the misclassi-
fication cost difference evaluated in West (2000). The last, 35,765

is based on Altman et al. (1977). Finally, Eq. (5) shows the
G-mean, the geometric mean of sensitivity and specificity.

Balanced Accuracy =
T P

T P+FN + T N
T N+FP

2
(3)

F-measure =
(1+β2)×Precision×Recall

β2×Precision+Recall
(4)

G-mean =
√

Sensitivity×Speci f icity (5)

H-measure is a threshold-varying evaluation metric proposed
by Hand (2009). This measure overcomes the AUC deficiency
in the use of different misclassification costs distributions for770

different classifiers. H-measure gives a normalized classifier
assessment based on expected minimum misclassification loss,
ranging from zero to one for a random and perfect classifier,
respectively.

5.5. The reduction function deduction775

This section defines the distance function for RMkNN based
on the credit scoring datasets. The distance reduction in the
most imbalanced datasets should be more significant than in the
less imbalanced ones. This means that the Imbalanced Ratio
(IR) of the dataset should influence the reduction function. An-780

alyzing the imbalanced ratio (IR) of real credit scoring datasets
evaluated in the papers of Table 1, we see that the IRs varies
from 1 to 78. For this reason, we analyze the reduction in this
range, and we use the datasets we selected to perform our ex-
periments.785

To find boundaries of the distance reduction function, we
use Reduced Minority k-NN to compute the percentage of mi-
nority samples selected when we get the seven nearest neigh-
bors of each sample of a dataset with different functions. The
goal of this experiment is to find a reduction function that pro-790

duces a balanced percentage of minority and majority class sam-
ples selected. The Equation 6 shows the formula used to com-
pute this percentage: S is a dataset, e is a sample of S, emn means
the set of minority samples among the nearest neighbors of e us-
ing Reduced Minority k-NN, and k is the number of neighbors,795

in this experiment, seven.

Percentage o f minority samples selected =
∑e∈S |emn|

k ∗ |S|
(6)

We perform this experiment with three functions: f (Dm) =
Dm, f (Dm) = 2Dm/3, and f (Dm) = Dm/2, where Dm is the dis-
tance of the minority sample from the query sample. Figure 4
shows the percentage of minority samples for each dataset we800

test and for each boundary function. Since the ideal percentage
is 50%, half of the minority and majority samples, we consider
as the desired percentage, the range between 30% and 70%. In-
deed, this percentage guarantees a minimal amount of samples
of the minority and the majority class in the local region defi-805

nition. We observe empirically that, on average, the reduction
function should reduce the distance of the minority class sam-
ples by a factor between 1 and 2/3.
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Figure 3: The proposed approach and the baselines (adapted from Roy et al. (2018)).

With these parameters in mind, we propose the function in
the Eq. 7. First, we evaluate the behavior of a linear function.810

However, the distance reduction of the linear function is too
low, mainly in less imbalanced datasets. Then, we decide to use
a natural logarithmic function. Finally, we use factor 10 to ad-
just the result of the reduction function to generate a result near
the range of 1 and 2/3. Figure 4 also shows the percentage of815

minority samples selected with this proposed function. As we
can see, the proposed function produces a percentage of minor-
ity samples between 30% and 70% for five of seven datasets.
Only the datasets GiveMe and Iran presented a percentage of
minority neighbors selected below of our established threshold.820

f (Dm, IR) =
Dm

(1+ log(IR)
10 )

(7)

5.6. Statistical significance tests

As recommended by Demšar (2006) and followed by other
credit scoring papers Xia et al. (2018); Lessmann et al. (2015),
we employed nonparametric tests instead of parametric ones
because the assumptions of parametric tests tend to be violated
when comparing classification models. We employ the Fried-
man test Friedman (1940), which is a rank-based nonparametric
test, to compare different models. Eq. 8 formalizes the statistic
of the Friedman test.

X2
F =

12D
K(K +1)

[
K

∑
j=1

AR2
j −

K(K +1)2

4

]
,where AR j =

1
D

D

∑
i=1

r j
i ·

(8)

In Eq (8), D denotes the number of datasets used in the
study, K is the total number of classifiers and r j

i is the rank of
classifier j on dataset i. X2

F is distributed according to the Chi-
square (χ̃2) distribution with K− 1 degrees of freedom. If the825

value of X2
F is large enough, then the null hypothesis that there

is no difference between the techniques can be rejected. The
Friedman statistic is well suited for this type of data analysis as
it is less susceptible to outliers.

The post hoc Nemenyi test Nemenyi (1962) is applied to re-830

port any significant differences between individual classifiers.
The Nemenyi post hoc test states that the performances of two
or more classifiers are significantly different if their average
ranks differ by at least the critical difference (CD), given by

CD = qα,∞,K

√
K(K +1)

12D
· (9)

In this formula, the value qα,∞,K is based on the Studentized835

range statistic Nemenyi (1962). Finally, the results from Fried-
man’s statistic and the Nemenyi post hoc tests are displayed us-
ing a modified version of significance diagrams Demšar (2006);
Lessmann et al. (2008). These diagrams display the ranked per-
formances of the classification techniques along with the criti-840

cal difference to clearly show any techniques which are signif-
icantly different from the best-performing classifiers. Next, we
discuss the results achieved in these tests.

6. Experimental results

We now present the results by answering each research ques-845

tion. First, we analyze if the dynamic selection techniques are
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Figure 4: The percentage of minority samples selected when different reduction
functions are used in seven datasets.

appropriate to credit scoring datasets. Then, we analyze the dif-
ferences between performance measures. Finally, we compare
the proposed approach with dynamic ensemble approaches that
use DSEL generated by preprocessing techniques and the static850

ensembles.
As in previous works Lessmann et al. (2015); Abellán &

Castellano (2017), we use the average rank of the selected per-
formance measures. For the F-measure, we adopted three val-
ues for β: [1,5,35]. β = 1 means to give the same weight855

for precision and recall in the Equation 4. The other two F-
measures gives, respectively, 5 and 35 times more important
to positive class misclassification than to negative class error.
Henceforth, we refer to F-measures as F1, F5, and F35, when β

is [1,5,35], respectively. Next, subsections answer the research860

questions.

6.1. Dynamic selection for Imbalanced credit scoring datasets
To answer RQ1) “Are dynamic selection techniques ap-

propriate for imbalanced credit scoring problems?”, we work
in two lines. First, we investigate two classification complexity865

measures presented by Ho & Basu (2002). After, we reduce the
dynamic selection techniques presented in Cruz et al. (2018) to
static selection. The next subsections describe these two inves-
tigations.

6.1.1. Credit scoring dataset complexity870

We evaluate the classification complexity based on the con-
clusion of Britto Jr et al. (2014) that dynamic selection tech-
niques are appropriate to complex datasets. We apply Fisher’s
Discriminant Ratio (F1) and Ratio of Average Intra/Inter class
NN distance (N2) as classification complexity measures to the875

datasets described in Table 3. The results are in the top part
of Figure 5. Each axis of the graph is one of the complexity
measures. Each red cross represents a credit scoring dataset.
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Figure 5: Credit scoring classification complexity measures (up). Credit scor-
ing classification complexity measures compared with other datasets (bottom).
Dataset abbreviations: DF: Default, GE: German, GM: GiveMe, IR: Iran, LC:
LC2015Q123, PD: PPDai, PR: private.

The first conclusion we find is that, regarding N2, the datasets
Iran (IR) and GiveMe (GM) have a lower ratio of Intra/Inter880

class NN distance. It means that these datasets have a higher
separability of classes. This explains the different behavior of
these datasets in the experiment performed in subsection 5.5.
As there is a higher separability of the classes on these datasets,
the impact of reducing the Euclidian distance of the minority885

class in k-NN is lower. Fortunately, for five of seven credit
scoring datasets evaluated, the N2 measure is higher, suggest-
ing that most of the datasets are complex.

The second finding is related to Fisher’s Discriminant Ratio
(F1). Regarding this measure, all seven credit scoring datasets890

evaluated have F1 < 0.31. This means that all credit scoring
datasets are complex regarding F1.

We now compare the F1 and N2 measures with the datasets
evaluated by Britto Jr et al. (2014) in the bottom part of Figure
5. In this figure, the datasets evaluated by Britto Jr et al. (2014)895

are indicated by the green triangles, while red crosses indicate
the credit scoring datasets used in this paper. Only one among
all datasets evaluated by Britto Jr et al. (2014) is more com-
plex than the credit scoring datasets of Table 3 regarding F1.
Regarding N2, the easiest credit scoring datasets, Iran (IR) and900

GiveMe (GM), are among the three harder datasets evaluated
by Britto Jr et al. (2014).

Finally, based on the result of Britto Jr et al. (2014) stating
that dynamic selection techniques are more appropriate to com-
plex classification problems, we can conclude empirically that905

credit scoring datasets are complex and suitable for dynamic
selection techniques. We use Fisher’s Discriminant Ratio (F1)
and Ratio of Average Intra/Inter class NN distance (N2) to mea-
sure and compare with datasets of other fields.

6.1.2. Equivalence of dynamic and static selection techniques910

To handle the regulatory compliance of Basel accords, that
requires the use of the same prediction model to all costumers,
we find a static classifier equivalence to the dynamic selection
techniques of Cruz et al. (2018). We begin this subsection de-
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scribing the structure of the KNORA-Union (KNU) dynamic915

selection technique. After, we describe the static equivalence
of KNU.

KNORA-U implementation starts by collecting all base clas-
sifiers’ predictions of all DSEL samples. If all classifiers pre-
dict the same class for one query sample, there is no selection920

to be done. Otherwise, this prediction information is used to
compute the local accuracy of each base classifier. The local
accuracy is used to define the weight of each base classifier in
the final prediction. To illustrate this behavior with an example,
if the accuracy in some local region of classifiers A, B and C is925

1, 0.7 and 0, respectively, the weights of the classifiers A and
B in the final prediction are 1, and 0.7, respectively, while the
classifier C does not influence the final prediction.

We observe that all information needed to compute the base
models’ accuracy in each part of the feature space is available930

at the fit time. With the base models and the DSEL samples,
we can define statically in all local regions of the feature space
which base classifiers participate and what is their contribution
weight in the final prediction.

To illustrate the concept described previously, Figure shows935

a simple example of the definition of the local regions. Figure
6 (up) shows a bi-dimensional feature space with nine DSEL
samples marked in green. Using only two neighbors to define
a local region, Figure 6 (bottom) shows the local regions de-
fined by these 9 DSEL samples in different colors. In each local940

region, different colors of Figure 6 (bottom), the local compe-
tence of the base classifiers is the same. It means that the influ-
ence of the base classifiers on the final prediction is the same
on all local region.
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Figure 6: A bi-dimensional feature space with nine DSEL random samples in
green (up). The 13 local regions defined by these nine samples. Each local
region is defined by two DSEL nearest neighbors (bottom).

As these local regions define the influence of each base clas-945

sifier on the final prediction, we can define a static tree where
the root node has one child for each different local region, in the
example of Figure 6 (bottom), 13 child nodes. In each node of
this tree, we can have a static ensemble with the weights defined
by the competence of the base models in the DSEL samples that950

define the local region.
Figure 7 shows the static tree equivalent to the dynamic ap-

proach. In Figure 7, the SE’s represent the 13 different sub-
ensembles. As in each local region of Figure 6 the local com-
petence of the base classifiers are the same, each local region955

define a static sub ensemble of the original ensemble.
In this subsection, we observe that a dynamic classification

technique has a similar static approach. This can be a starting
point to allow the use of dynamic classification in credit scoring
field.960

6.2. RMkNN and kNN comparison

To assess RQ2) “Does the RMkNN improve the predic-
tion performance of kNN?”, we use these techniques as clas-
sifiers and perform the static experiment flow of Figure 3 to
compare them. Table 4 shows the results of two classifiers over965

the seven evaluated datasets. To simplify the results evaluation
task, we sort the datasets by the imbalance level. About the
performance measures, we start with the threshold-free mea-
sures, AUC, and H-measure. After, we include balanced ac-
curacy and geometric mean (G-mean). We also include the F-970

measures measures at an increasing level of True Positive Rate
(TPR) influence, F1, F5, and F35. Finally, we include TPR
alone. For all threshold dependent measures, we consider 0.5
as the threshold.

First, we observe that RMkNN outperforms kNN regarding975

G-mean, F1-score, F5-score, F35-score, and TPR. Evaluating
G-mean, we notice that kNN outperforms RMkNN only on the
private dataset. However, the performance difference between
RMkNN and kNN is only 0.01 = (0.51− 0.5). Regarding the
threshold-free measures, AUC and H-measure, we observe that980

RMkNN outperforms kNN in 4 of 7 datasets. Additionally, we
observe that on the 3 cases where kNN achieves superior per-
formance, RMkNN achieves similar results.

We can conclude the superiority of RMkNN in imbalanced
credit scoring problems considering the following arguments.985

First, we remember that AUC and H-measure give the same
weight for the misclassification error of both classes, and F5,

STATIC
TREE

SE1 SE2

SE11

SE5SE4SE3

SE6 SE7 SE10SE9SE8

SE12 SE13

Figure 7: Static tree equivalent to a dynamic selection classification.
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Table 4: kNN and RMkNN comparison (each column contains the average and standard deviation of 5-fold execution)

Dataset Classifier Performance measures
AUC H BAcc G-mean F1 F5 F35 TPR

German kNN 0.74 (0.047) 0.09 (0.05) 0.6 (0.036) 0.5 (0.063) 0.38 (0.077) 0.29 (0.066) 0.28 (0.065) 0.28 (0.065)

RMkNN 0.75 (0.024) 0.16 (0.043) 0.69 (0.026) 0.69 (0.025) 0.57 (0.029) 0.71 (0.042) 0.72 (0.043) 0.72 (0.043)

Default kNN 0.73 (0.018) 0.16 (0.02) 0.64 (0.011) 0.56 (0.019) 0.43 (0.022) 0.34 (0.024) 0.34 (0.024) 0.34 (0.024)

RMkNN 0.72 (0.018) 0.16 (0.027) 0.67 (0.016) 0.65 (0.019) 0.48 (0.023) 0.52 (0.029) 0.52 (0.029) 0.52 (0.029)

PPDai kNN 0.57 (0.017) 0.01 (0.005) 0.51 (0.004) 0.14 (0.036) 0.04 (0.018) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)

RMkNN 0.57 (0.007) 0.01 (0.004) 0.55 (0.007) 0.52 (0.017) 0.23 (0.007) 0.35 (0.056) 0.37 (0.067) 0.37 (0.067)

Private kNN 0.57 (0.047) 0.01 (0.008) 0.51 (0.009) 0.14 (0.036) 0.04 (0.021) 0.02 (0.011) 0.02 (0.011) 0.02 (0.011)

RMkNN 0.51 (0.049) 0.0 (0.002) 0.5 (0.014) 0.22 (0.036) 0.18 (0.005) 0.71 (0.019) 0.93 (0.028) 0.94 (0.028)

GiveMe kNN 0.72 (0.003) 0.07 (0.008) 0.55 (0.005) 0.32 (0.015) 0.17 (0.015) 0.11 (0.01) 0.1 (0.009) 0.1 (0.009)

RMkNN 0.77 (0.007) 0.22 (0.009) 0.65 (0.005) 0.58 (0.008) 0.37 (0.008) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Iran kNN 0.77 (0.043) 0.1 (0.141) 0.5 (0.002) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

RMkNN 0.75 (0.061) 0.06 (0.073) 0.56 (0.082) 0.38 (0.242) 0.13 (0.097) 0.2 (0.162) 0.21 (0.172) 0.21 (0.173)

LC2015
Q123

kNN 0.6 (0.008) 0.0 (0.002) 0.51 (0.003) 0.17 (0.02) 0.05 (0.011) 0.03 (0.007) 0.03 (0.007) 0.03 (0.007)

RMkNN 0.61 (0.007) 0.02 (0.005) 0.57 (0.009) 0.55 (0.011) 0.28 (0.01) 0.42 (0.019) 0.44 (0.02) 0.44 (0.02)

(a) BAcc stands for balanced accuracy.

F35, and TPR give a higher weight to the positive class mis-
classification. When we observe split results in AUC and H-
measure and RMkNN superiority in F5, F35, and TRP, we can990

conclude that RMkNN is more appropriate than kNN to handle
classification problems when the positive class misclassifica-
tion is higher.

6.3. Reduced Minority k-NN on dynamic selection techniques

To answer RQ3) Does the use of the RMkNN technique995

- that defines a novel competence region of dynamic selec-
tion techniques - improve the classification performance of
imbalanced credit scoring datasets?, we perform three exper-
iments. First, we compute the overall average ranking of 110
classification approaches. After, we compare the best estimator1000

of the previous test with the credit scoring benchmarks. Fi-
nally, we simulate a real scenario of a credit scoring problem.
The following subsections describe each experiment.

6.3.1. Overall average ranking
In this experiment, we compare the combinations of pool1005

generators, preprocessing approaches, and dynamic selection
techniques of Table 2 with the static application of the imbal-
anced ensemble and with credit scoring benchmarks. We eval-
uate the average rank of all 110 combinations (8 imbalanced
ensembles × 4 selection approaches × 3 strategies to handle1010

DSEL + 8 static imbalanced ensembles + 6 credit scoring bench-
marks) to start the investigation of the best approaches to imbal-
anced credit scoring datasets.

To get a first observation of the best results among the 110
approaches evaluated, we compute the average ranking of the1015

eight performance measures evaluated, AUC, H-measure, bal-
anced accuracy, geometric mean, F1-score, F5-score, F35-score,
and recall (TPR). After, we compute the average of these aver-
ages to find a unique global rank. Table 5 shows these ranks and
the overall average of the average ranks. In this table, the gray1020

cells indicate the lowest average rank of each performance mea-
sure. As we can see, the balanced versions of Random Forest

(BRDN) and Rotation Forest (BROT) achieve the best global
average rankings.

Table 5 shows that the three imbalanced ensembles achieve1025

the lowest average ranks of all performance measures evalu-
ated. The 14 first places in the ranking are composed only
by Balanced Random Forest (BRND), Balanced Rotation For-
est (BROT), Easy Ensemble (EASY), and Balanced Bagging
(BBAG). Extreme Gradient Boosting achieves only the 15th1030

place in this rank.
Another important observation extracted from Table 5 is

that the lowest average ranking of each imbalanced ensemble
uses KNORA-Union and Reduced Minority kNN. We highlight
in green the lines of Table 5 these combinations.1035

6.3.2. Comparison of the best average ranking with the credit
scoring benchmarks

After this preliminary evaluation, we decide to evaluate the
actual results of the balanced random forest combined with the
dynamic selection technique KNORA-Union and Reduced Mi-1040

nority kNN (RMkNN), the lowest rank of Table 5, and the
benchmark approaches for credit scoring: Logistic Regression
(LOGR), Artificial Neural Networks (ANN), Linear Support
Vector Machine (LSVM), Non-linear Support Vector Machine
(SVM), Random Forest (RNDF) and eXtreme Gradient Boost-1045

ing (XGB). We also include the static version of the balanced
random forest to evaluate the improvement of the dynamic se-
lection technique by each dataset.

Table 6 shows the these results. For each dataset evaluated,
Table 6 shows the average and the standard deviation of 5-fold1050

execution explained in Figure 3. Here, we also highlight the
best result of each dataset and each performance measure in
gray.

The investigation of German, Private, Iran and LC2015123
is quite straightforward. BRDN+KNU+RMkNN achieves the1055

best results inat least 4 of 8 performance measures. In the Pri-
vate dataset, BRDN+KNU+RMkNN achieves the best result in
6 of 8 performance measures.
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Table 5: Average ranking of all 110 techniques

Appr. Selection Performance Measures AvgAUC H BAcc G-mean F1 F5 F35 TPR
BRND KNU+RMkNN 12.8 (12.12) 15.4 (15.09) 10.5 (14.08) 11.6 (15.53) 18.7 (17.02) 15.6 (16.92) 18.4 (16.59) 19.2 (16.63) 15.3
BROT KNU+RMkNN 12.7 (8.5) 14.8 (18.4) 11.9 (13.87) 11.4 (13.33) 16.8 (14.07) 17.1 (15.1) 20.1 (14.12) 20.7 (12.95) 15.7
BROT KNU+SMTE 14.7 (8.39) 19.0 (14.91) 13.9 (10.28) 13.6 (11.36) 21.5 (12.68) 16.1 (12.65) 18.3 (12.61) 18.7 (12.58) 17.0
BRND KNU+SMTE 14.4 (7.93) 20.5 (14.55) 13.2 (12.79) 13.7 (14.94) 23.8 (16.94) 15.8 (15.47) 17.9 (15.93) 18.5 (15.72) 17.2
BRND STATIC 15.2 (16.55) 24.6 (19.79) 13.8 (15.36) 14.5 (16.39) 29.6 (25.1) 14.6 (15.19) 15.5 (15.92) 15.0 (15.99) 17.8
BROT STATIC 14.4 (12.59) 23.6 (16.73) 14.8 (12.32) 14.7 (13.8) 28.9 (21.07) 15.7 (12.82) 16.5 (13.45) 16.1 (13.6) 18.1
BROT KNU+RUS 15.8 (11.83) 23.0 (16.84) 14.3 (11.64) 14.1 (12.61) 27.8 (19.91) 16.1 (13.37) 17.3 (13.47) 17.7 (13.43) 18.3
BRND KNU+RUS 15.5 (14.64) 24.9 (19.11) 15.4 (16.35) 15.5 (16.97) 30.0 (24.78) 16.2 (15.74) 17.2 (16.18) 17.4 (16.13) 19.0
EASY KNU+RMkNN 29.6 (21.55) 21.5 (23.01) 22.2 (29.24) 22.9 (30.91) 31.1 (26.09) 21.3 (22.44) 22.3 (21.79) 22.2 (21.78) 24.1
EASY KNU+SMTE 30.3 (21.07) 23.2 (23.04) 23.8 (28.78) 24.5 (31.48) 33.5 (26.66) 22.4 (22.89) 23.6 (22.31) 23.5 (22.19) 25.6
EASY STATIC 24.4 (21.45) 26.7 (24.38) 26.0 (29.29) 26.0 (30.98) 37.4 (29.61) 22.6 (22.57) 22.6 (22.7) 21.6 (23.27) 25.9
EASY KNU+RUS 32.1 (22.02) 26.1 (25.34) 25.1 (29.03) 25.5 (31.4) 36.7 (30.03) 22.3 (22.64) 22.5 (22.71) 22.0 (22.92) 26.5
EASY KNE+RMkNN 28.2 (20.18) 25.3 (21.1) 31.4 (26.86) 32.6 (28.66) 28.5 (24.5) 32.7 (23.34) 34.5 (22.6) 35.1 (22.53) 31.0
BBAG KNU+RMkNN 26.4 (25.38) 14.7 (21.04) 26.6 (26.35) 28.8 (21.93) 20.2 (27.92) 41.9 (20.51) 47.2 (18.65) 48.1 (17.45) 31.7
XGB STATIC 18.5 (20.92) 25.4 (26.38) 26.1 (29.38) 28.6 (32.47) 23.9 (25.41) 41.6 (30.22) 44.7 (29.22) 45.2 (29.19) 31.8

It is a significant result, once we have one low imbalanced
dataset, German, one moderate imbalanced one, Private, and1060

two high imbalanced, Iran and LC2015Q123.
On the other hand, BRDN+KNU+RMkNN, our proposed

combination, does not achieve any best result in any perfor-
mance measure on the Default, PPDai, and GiveMe datasets.
However, if we evaluate the difference between the best ap-1065

proaches of these datasets carefully, we see that the differences
between BRDN+KNU+RMkNN and the highest scores are un-
der 0.03. For instance, regarding AUC and H-measure, mea-
sures that give the same importance to the misclassification cost
of both classes, the highest differences between BRDN+KNU+1070

RMkNN and the best results are 0.023 (H-measure difference in
Default dataset) and 0.021 (AUC difference in PPDai dataset).
Additionally, evaluating the three different f-measures, the gap
of BRDN+KNU+RMkNN to the best results is under 0.002, an
acceptable result.1075

6.3.3. Real credit scoring scenario
Our last experiment to measure the ability of RMkNN to

improve the prediction performance of credit scoring datasets
is a practical application of credit scoring. We use the entire
LC2015Q123 dataset to train the models using the experimental1080

setup defined in Figure 3, and we evaluate the performance of
all 110 models in the last quarter, LC2015Q4.

After collecting the performance measure of all classifier
combinations, we compute the average rank of all performance
measures to find, by each ensemble, the best combination. The1085

best combinations and the credit scoring benchmarks results are
in Table 7.

The first exciting outcome from Table 7 is the amount of
best ensemble combinations with RMkNN. Four of the eight
best ensemble combinations use RMkNN. They are: Balanced1090

Random Forest (BRND), Random Forest SMOTE (RFSM), Bag-
ging SMOTE (BGSM), and Easy ensemble (EASY). This result
shows the superiority of RMkNN over the other imbalanced dy-
namic selection strategies evaluated.

Another interesting result of this experiment is the perfor-1095

mance of BRND+KNU+RMkNN. As in the results shown in
Table 6, BRND+KNU+RMkNN does not achieve the best re-
sults on F35 and TPR. However, the performance of this com-
bination on these measures is not far from the best ones.

With these experiments, we infer that RMkNN combined1100

with dynamic selection approaches improves the prediction per-
formance of imbalanced ensembles. We also note that Balanced
Random Forest combined with KNORA-Union and RMkNN
outperforms classical credit scoring classifiers, such as eXtreme
Gradient Boosting, Support Vector Machine, Artificial Neural1105

Networks, and Logistic Regression.
Finally, we test RMkNN in a real credit scoring scenario,

where we train the model with the available data on time to
predict future loans. Again, the dynamic selection approaches
combined with RMkNN outperform credit scoring benchmarks.1110

6.4. Discussion

We now investigate the best combination strategy among
all evaluated. To achieve it, we compute a new average rank
of the best results of each ensemble combination and the credit
scoring benchmarks. Applying the Friedman test on the aver-1115

age ranking of these twelve classifiers, we get a Friedman test
statistic = 90.41, and a p−value < 0.005. As this result is sig-
nificant (p < 0.005), we can apply the post hoc Nemenyi test to
the distribution.

Figure 8 shows the average ranks of these best combina-1120

tions and the Critical Distance of Nemenyi test. This figure
shows that balanced random forest (BRDF) and balanced Rota-
tion Forest (BROT) combined with KNORA Union (KNU) and
using RMkNN to generate the DSEL are the best approaches,
the lowest ranks. However, these approaches are statistically1125

better than Artificial Neural Networks and Support Vector Ma-
chine, as indicated by the critical distance bar.

We also observe that RMkNN is present on four best com-
binations of eight ensembles. They are highlighted in green
on Figure 8, and they are: Balanced Random Forest (BRND),1130
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Table 6: Balanced Random Forest combined with KNORA-U and RMkNN compared with state-of-the-art classifiers in credit scoring problem

Dataset Classif. Selection Performance Measures
AUC H BAcc G-mean F1 F5 F35 TPR

German

XGB STATIC 0.788 (0.02) 0.232 (0.04) 0.720 (0.02) 0.717 (0.02) 0.607 (0.02) 0.668 (0.04) 0.673 (0.04) 0.673 (0.04)

LOGR STATIC 0.795 (0.03) 0.264 (0.05) 0.738 (0.03) 0.736 (0.03) 0.628 (0.03) 0.718 (0.08) 0.726 (0.08) 0.727 (0.08)

ANN STATIC 0.767 (0.02) 0.180 (0.04) 0.675 (0.02) 0.651 (0.03) 0.540 (0.03) 0.501 (0.05) 0.498 (0.05) 0.498 (0.05)

LSVM STATIC 0.721 (0.02) 0.232 (0.03) 0.721 (0.02) 0.717 (0.03) 0.606 (0.03) 0.685 (0.09) 0.693 (0.10) 0.693 (0.10)

SVM STATIC 0.796 (0.03) 0.188 (0.07) 0.672 (0.03) 0.637 (0.04) 0.532 (0.05) 0.465 (0.04) 0.460 (0.04) 0.460 (0.04)

RNDF STATIC 0.791 (0.03) 0.225 (0.04) 0.715 (0.02) 0.711 (0.02) 0.600 (0.03) 0.658 (0.07) 0.663 (0.07) 0.663 (0.07)

BRDF STATIC 0.800 (0.03) 0.240 (0.07) 0.729 (0.03) 0.727 (0.03) 0.617 (0.04) 0.750 (0.04) 0.764 (0.04) 0.764 (0.04)

BRDF KNU+RMkNN 0.802 (0.03) 0.256 (0.06) 0.737 (0.03) 0.736 (0.03) 0.627 (0.04) 0.757 (0.04) 0.770 (0.04) 0.770 (0.04)

Default

XGB STATIC 0.783 (0.02) 0.229 (0.04) 0.714 (0.02) 0.709 (0.02) 0.540 (0.03) 0.617 (0.03) 0.624 (0.03) 0.624 (0.03)

LOGR STATIC 0.722 (0.02) 0.137 (0.03) 0.672 (0.02) 0.671 (0.02) 0.478 (0.02) 0.623 (0.03) 0.639 (0.03) 0.639 (0.03)

ANN STATIC 0.773 (0.02) 0.205 (0.04) 0.659 (0.02) 0.592 (0.03) 0.475 (0.04) 0.377 (0.03) 0.371 (0.03) 0.371 (0.03)

LSVM STATIC 0.673 (0.02) 0.140 (0.03) 0.673 (0.02) 0.671 (0.02) 0.479 (0.02) 0.619 (0.03) 0.635 (0.03) 0.635 (0.03)

SVM STATIC 0.633 (0.02) 0.001 (0.00) 0.501 (0.00) 0.022 (0.03) 0.003 (0.00) 0.001 (0.00) 0.001 (0.00) 0.001 (0.00)

RNDF STATIC 0.784 (0.02) 0.239 (0.04) 0.714 (0.02) 0.704 (0.02) 0.546 (0.03) 0.591 (0.03) 0.595 (0.03) 0.596 (0.03)

BRDF STATIC 0.780 (0.02) 0.211 (0.04) 0.709 (0.02) 0.706 (0.02) 0.529 (0.02) 0.631 (0.03) 0.641 (0.03) 0.641 (0.03)

BRDF KNU+RMkNN 0.779 (0.02) 0.216 (0.04) 0.711 (0.02) 0.707 (0.02) 0.533 (0.03) 0.627 (0.03) 0.637 (0.03) 0.637 (0.03)

PPDai

XGB STATIC 0.632 (0.05) 0.024 (0.02) 0.564 (0.04) 0.455 (0.26) 0.211 (0.12) 0.357 (0.21) 0.379 (0.22) 0.380 (0.22)

LOGR STATIC 0.629 (0.03) 0.019 (0.04) 0.521 (0.04) 0.146 (0.20) 0.066 (0.13) 0.058 (0.12) 0.058 (0.12) 0.058 (0.12)

ANN STATIC 0.627 (0.03) 0.009 (0.00) 0.509 (0.01) 0.132 (0.08) 0.041 (0.03) 0.023 (0.02) 0.023 (0.02) 0.022 (0.02)

LSVM STATIC 0.519 (0.04) 0.018 (0.04) 0.519 (0.04) 0.115 (0.21) 0.061 (0.13) 0.055 (0.12) 0.054 (0.12) 0.054 (0.12)

SVM STATIC 0.477 (0.05) 0.000 (0.00) 0.500 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)

RNDF STATIC 0.631 (0.04) 0.022 (0.02) 0.560 (0.04) 0.437 (0.25) 0.204 (0.12) 0.406 (0.27) 0.448 (0.31) 0.449 (0.31)

BRDF STATIC 0.615 (0.05) 0.018 (0.01) 0.554 (0.03) 0.428 (0.23) 0.200 (0.11) 0.459 (0.30) 0.519 (0.35) 0.521 (0.35)

BRDF KNU+RMkNN 0.611 (0.04) 0.018 (0.01) 0.554 (0.03) 0.432 (0.23) 0.200 (0.11) 0.452 (0.30) 0.509 (0.35) 0.511 (0.35)

Private

XGB STATIC 0.682 (0.04) 0.067 (0.05) 0.603 (0.06) 0.541 (0.13) 0.242 (0.07) 0.369 (0.17) 0.387 (0.19) 0.388 (0.19)

LOGR STATIC 0.668 (0.05) 0.060 (0.03) 0.620 (0.03) 0.618 (0.03) 0.245 (0.02) 0.550 (0.06) 0.612 (0.08) 0.613 (0.08)

ANN STATIC 0.561 (0.07) 0.019 (0.01) 0.513 (0.06) 0.414 (0.05) 0.160 (0.04) 0.212 (0.05) 0.220 (0.05) 0.221 (0.05)

LSVM STATIC 0.546 (0.04) 0.017 (0.02) 0.546 (0.04) 0.403 (0.23) 0.144 (0.09) 0.308 (0.26) 0.347 (0.30) 0.347 (0.30)

SVM STATIC 0.644 (0.05) 0.015 (0.01) 0.539 (0.03) 0.355 (0.21) 0.149 (0.09) 0.184 (0.12) 0.188 (0.13) 0.188 (0.13)

RNDF STATIC 0.719 (0.02) 0.106 (0.06) 0.618 (0.05) 0.540 (0.12) 0.283 (0.07) 0.343 (0.14) 0.351 (0.15) 0.352 (0.15)

BRDF STATIC 0.719 (0.03) 0.105 (0.02) 0.662 (0.02) 0.661 (0.02) 0.279 (0.01) 0.603 (0.05) 0.666 (0.06) 0.668 (0.06)

BRDF KNU+RMkNN 0.718 (0.03) 0.111 (0.03) 0.667 (0.03) 0.666 (0.02) 0.281 (0.01) 0.617 (0.06) 0.683 (0.07) 0.685 (0.07)

GiveMe

XGB STATIC 0.865 (0.00) 0.343 (0.01) 0.786 (0.00) 0.786 (0.00) 0.338 (0.00) 0.703 (0.01) 0.770 (0.01) 0.772 (0.01)

LOGR STATIC 0.806 (0.01) 0.252 (0.01) 0.732 (0.00) 0.726 (0.00) 0.311 (0.01) 0.593 (0.01) 0.641 (0.01) 0.642 (0.01)

ANN STATIC 0.833 (0.01) 0.125 (0.01) 0.582 (0.00) 0.414 (0.01) 0.266 (0.01) 0.178 (0.01) 0.173 (0.01) 0.173 (0.01)

LSVM STATIC 0.651 (0.00) 0.089 (0.00) 0.651 (0.00) 0.651 (0.00) 0.203 (0.00) 0.545 (0.01) 0.632 (0.01) 0.635 (0.01)

SVM STATIC 0.484 (0.03) 0.000 (0.00) 0.500 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)

RNDF STATIC 0.862 (0.00) 0.349 (0.02) 0.779 (0.00) 0.777 (0.01) 0.356 (0.02) 0.674 (0.02) 0.728 (0.03) 0.729 (0.03)

BRDF STATIC 0.862 (0.00) 0.337 (0.01) 0.785 (0.00) 0.785 (0.00) 0.331 (0.00) 0.708 (0.00) 0.780 (0.00) 0.782 (0.00)

BRDF KNU+RMkNN 0.861 (0.00) 0.344 (0.01) 0.786 (0.00) 0.785 (0.00) 0.340 (0.00) 0.701 (0.00) 0.767 (0.01) 0.769 (0.01)

Iran

XGB STATIC 0.760 (0.06) 0.146 (0.06) 0.608 (0.03) 0.489 (0.06) 0.267 (0.06) 0.251 (0.06) 0.251 (0.06) 0.251 (0.06)

LOGR STATIC 0.777 (0.06) 0.000 (0.00) 0.499 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)

ANN STATIC 0.769 (0.03) 0.010 (0.02) 0.501 (0.01) 0.032 (0.07) 0.018 (0.04) 0.010 (0.02) 0.010 (0.02) 0.010 (0.02)

LSVM STATIC 0.567 (0.16) 0.093 (0.21) 0.567 (0.16) 0.169 (0.38) 0.062 (0.14) 0.157 (0.35) 0.179 (0.40) 0.180 (0.40)

SVM STATIC 0.760 (0.09) 0.000 (0.00) 0.500 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)

RNDF STATIC 0.792 (0.04) 0.107 (0.04) 0.569 (0.02) 0.374 (0.06) 0.227 (0.06) 0.148 (0.05) 0.145 (0.05) 0.144 (0.05)

BRDF STATIC 0.770 (0.05) 0.176 (0.08) 0.708 (0.05) 0.707 (0.05) 0.192 (0.04) 0.585 (0.07) 0.706 (0.08) 0.709 (0.08)

BRDF KNU+RMkNN 0.810 (0.07) 0.279 (0.12) 0.735 (0.07) 0.722 (0.08) 0.266 (0.06) 0.566 (0.12) 0.625 (0.15) 0.627 (0.15)

LC2015
Q123

XGB STATIC 0.712 (0.04) 0.081 (0.02) 0.636 (0.02) 0.622 (0.04) 0.049 (0.00) 0.295 (0.03) 0.507 (0.08) 0.515 (0.08)

LOGR STATIC 0.693 (0.02) 0.028 (0.04) 0.555 (0.08) 0.253 (0.35) 0.017 (0.02) 0.120 (0.16) 0.230 (0.32) 0.234 (0.32)

ANN STATIC 0.519 (0.01) 0.004 (0.00) 0.503 (0.01) 0.049 (0.08) 0.007 (0.01) 0.013 (0.03) 0.016 (0.03) 0.016 (0.03)

LSVM STATIC 0.502 (0.00) 0.000 (0.00) 0.502 (0.00) 0.057 (0.13) 0.005 (0.01) 0.015 (0.03) 0.017 (0.04) 0.017 (0.04)

SVM STATIC 0.550 (0.02) 0.000 (0.00) 0.500 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)

RNDF STATIC 0.709 (0.03) 0.030 (0.05) 0.539 (0.06) 0.202 (0.29) 0.024 (0.03) 0.090 (0.13) 0.120 (0.19) 0.121 (0.19)

BRDF STATIC 0.703 (0.03) 0.083 (0.01) 0.654 (0.01) 0.653 (0.01) 0.043 (0.00) 0.317 (0.01) 0.661 (0.03) 0.676 (0.03)

BRDF KNU+RMkNN 0.702 (0.03) 0.092 (0.03) 0.656 (0.02) 0.655 (0.02) 0.047 (0.00) 0.319 (0.02) 0.614 (0.04) 0.626 (0.04)
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Table 7: Classification results of the 8 best ensemble combinations and the 4 credit scoring benchmark approaches over the last quarter of 2015 of LC2015 dataset.

Dataset Appr. Selection Performance Measures
AUC H BAcc G-mean F1 F5 F35 TPR

LC2015Q4

BRND KNU+RMkNN 0.679 0.065 0.631 0.629 0.037 0.272 0.563 0.576
BBAG KNU+RUS 0.67 0.039 0.584 0.534 0.038 0.215 0.343 0.348
RFSM RNK+RMkNN 0.505 0.01 0.519 0.25 0.036 0.06 0.064 0.064
BGSM RNK+RMkNN 0.518 0.012 0.518 0.234 0.038 0.054 0.056 0.056
RUSB RNK+RUS 0.572 0.012 0.558 0.558 0.026 0.218 0.557 0.576
EASY KNU+RMkNN 0.65 0.051 0.62 0.619 0.034 0.262 0.577 0.592
BROT STATIC 0.662 0.04 0.605 0.604 0.032 0.25 0.557 0.572
SMTB KNU+RUS 0.589 0.012 0.54 0.434 0.031 0.149 0.218 0.22
LOGR STATIC 0.649 0.037 0.599 0.595 0.033 0.243 0.515 0.528
ANN STATIC 0.502 0.003 0.502 0.045 0.008 0.004 0.004 0.004
LSVM STATIC 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0
XGB STATIC 0.683 0.04 0.597 0.581 0.035 0.237 0.451 0.46
RNDF STATIC 0.664 0.021 0.546 0.275 0.019 0.112 0.185 0.188
SVM STATIC 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0

Balanced Rotation Forest(BROT), Easy Ensemble (EASY), and
Balanced Bagging (BBAG). The next three best ranking posi-
tions are combinations that use Random Undersampling (RUS)
to generate the dynamic selection dataset (DSEL). They are:
SMOTEBoost (SMTB), RUSBoost (RUSB), and Random For-1135

est SMOTE (RFSM). Only the last position, Bagging SMOTE
(BGSM), uses SMOTE to generate the DSEL. Figure 8 high-
lights these last four combinations in yellow.

Another important finding is the performance of KNORA-
Union (KNU). This dynamic ensemble selection technique is1140

in the six best ranking combinations, BRND, BROT, EASY,
BBAG, RUSB, and RFSM. The last two ranking positions are
combinations that use KNORA-Elimination (KNE) and Local
Class Accuracy (LCA). This result demonstrates that KNU is
an excellent technique to combine with imbalanced pool gener-1145

ators to address imbalanced datasets.
With these experiments, we observe that RMkNN improves

the local region definition in a dynamic selection technique. We
also observe that KNORA-Union (KNU) is an excellent dy-
namic selection technique to combine with imbalanced ensem-1150

bles. After, we observe that BRDF is the best pool generator to

combine with KNU.

6.5. Limitations of the study
This study presents RMkNN, a new kNN algorithm used

by dynamic selection techniques for imbalanced credit scoring1155

datasets. The first apparent issue in this work is the performance
of RMkNN. The proposed version of kNN runs two kNN inter-
nally. It is slower than the original kNN algorithm.

Another possible limitation is the reduction function pro-
posed in Eq. 7. This reduction function uses only the imbalance1160

ratio. Maybe a better result can be achieved with the inclusion
of other variables, such as a complexity measure of the dataset.

7. Conclusions and future work

In this work, we present a study of the credit scoring prob-
lem. We assess the combination of Dynamic Selection (DS)1165

methods, data preprocessing, and pool generation ensembles to
deal with the imbalanced nature of the credit scoring data sets
using a novel approach to define the local regions of a dynamic
selection technique.

24681012

Critical Distance = 7.408

BRND+KNU+RMkNN
BROT+KNU+RMkNN
EASY+KNU+RMkNN
BBAG+KNU+RMkNN

XGB (STATIC)
RNDF (STATIC)

SMTB+KNU+RUSRUSB+KNU+RUS
LOGR (STATIC)
RFSM+KNE+RUS
LSVM (STATIC)
BGSM+LCA+SMTE
ANN (STATIC)
SVM (STATIC)

Figure 8: The average rank of the best combinations.
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We propose RMkNN to perform a balanced selection of1170

DSEL samples in a dynamic selection technique. To assess the
performance of our technique, we compare our proposal with
two preprocessing techniques, SMOTE and RUS.

Experiments conducted on seven datasets shown that the
credit scoring problem is complex, and dynamic selection tech-1175

niques are appropriate to this kind of problem. We also find
that combining RMkNN with DS techniques enhances the pre-
diction performance according to 8 performance measures. We
also reduce a DS technique to a static selection approach. Af-
ter, we empirically conclude that the KNORA-Union (KNU) is1180

the best DS technique to use in these combinations. Finally,
we evaluate our proposed technique in a real-life credit scoring
problem to assess that RMkNN outperforms other techniques
and classical credit scoring benchmark classifiers.

An interesting future work is to examine the inclusion of1185

dataset complexity scores in the reduction function of RMkNN.
There is also a possibility to increase the performance of dy-
namic selection techniques using heterogeneous ensembles to
increase the diversity of base classifiers. We also consider the
evaluation of two-step dynamic selection techniques for credit1190

scoring datasets.
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